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Manycore	GPU	Architectures	and	
Programming:	Outline	

•  IntroducFon	
–  GPU	architectures,	GPGPUs,	and	CUDA	
•  GPU	ExecuFon	model	
•  CUDA	Programming	model	
•  Working	with	Memory	in	CUDA	
–  Global	memory,	shared	and	constant	memory	
•  Streams	and	concurrency	
•  CUDA	instrucFon	intrinsic	and	library	
•  Performance,	profiling,	debugging,	and	error	handling	
•  Direc=ve-based	high-level	programming	model	
–  OpenMP	and	OpenACC	
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OpenMP	4.0	for	Accelerators	
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Computa=on	and	data	offloading	for	
accelerators	(2.9)	

•  #pragma	omp	target		device(id)	map()	if()	
–  target:	create	a	data	environment	and	offload	

computaFon	on	the	device	
–  device	(int_exp):	specify	a	target	device	
–  map(to|from|tofrom|alloc:var_list)	:	data	

mapping	between	the	current	data	environment	
and	a	device	data	environment	

•  #pragma	target	data	device	(id)	map()	if()	
–  Create	a	device	data	environment:	to	be	reused/

inherited	

omp	target	

CPU	thread	

omp	parallel	

Accelerator	threads	
CPU	thread	
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target	and	map	examples	
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Accelerator:	explicit	data	mapping	

•  RelaFvely	small	number	of	
truly	shared	memory	
accelerators	so	far	

•  Require	the	user	to	
explicitly	map	data	to	and	
from	the	device	memory	

•  Use	array	region	
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long	a	=	0x858;	
long	b	=	0;	
int	anArray[100]	
	
#pragma	omp	target	data	map(to:a)	\\	
			map(tofrom:b,anArray[0:64])	
{	
				/*	a,	b	and	anArray	are	mapped		
						*	to	the	device	*/	
	
			/*	work	on	the	device	*/	
#pragma	omp	target	…		
			{	
											…	
				}|	
}	
/*	b	and	anArray	are	mapped		
		*	back	to	the	host	*/	



target	date	example	
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Accelerator:	hierarchical	parallelism	

•  Organize	massive	number	of	threads	
–  teams	of	threads,	e.g.	map	to	CUDA	grid/block	
•  Distribute	loops	over	teams	
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#pragma	omp	target	
	
#pragma	omp	teams	num_teams(2)	

	num_threads(8)	
{	
					//--	creates	a	“league”	of	teams						
				//--	only	local	barriers	permihed	
#pragma	omp	distribute	
for	(int	i=0;	i<N;	i++)	{	
	
}	

		
}	



teams	and	distribute	loop	example	

Double-nested	loops	are	mapped	to	the	two	levels	of	thread	hierarchy	(league	
and	team)	
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OpenMP	4.0	

•  Released	July	2013	
–  hhp://www.openmp.org/mp-documents/OpenMP4.0.0.pdf	
–  A	document	of	examples	is	expected	to	release	soon	
•  Changes	from	3.1	to	4.0	(Appendix	E.1):		
–  Accelerator:	2.9	
–  SIMD	extensions:	2.8	
–  Places	and	thread	affinity:	2.5.2,	4.5	
–  Taskgroup	and	dependent	tasks:	2.12.5,	2.11	
–  Error	handling:	2.13	
–  User-defined	reducOons:	2.15	
–  SequenOally	consistent	atomics:	2.12.6	
–  Fortran	2003	support	
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OpenACC	

•  OpenACC’s	guiding	principle	is	simplicity	
–  Want	to	remove	as	much	burden	from	the	programmer	as	

possible	
–  No	need	to	think	about	data	movement,	wriFng	kernels,	

parallelism,	etc.	
–  OpenACC	compilers	automaFcally	handle	all	of	that	

•  In	reality,	it	isn’t	always	that	simple	
–  Don’t	expect	to	get	massive	speedups	from	very	lihle	work	

•  However,	OpenACC	can	be	an	easy	and	straighrorward	
programming	model	to	start	with	
–  hhp://www.openacc-standard.org/	
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OpenACC	

•  OpenACC	shares	a	lot	of	principles	with	OpenMP	
–  Compiler	#pragma	based,	and	requires	a	compiler	that	

supports	OpenACC	
–  Express	the	type	of	parallelism,	let	the	compiler	and	runFme	

handle	the	rest	
–  OpenACC	also	allows	you	to	express	data	movement	using	

compiler	#pragmas 
	

#pragma acc 
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OpenACC	Direc=ves	
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Program	myscience	
			...	serial	code	...	
!$acc	kernels	
			do	k	=	1,n1	
						do	i	=	1,n2	
										...	parallel	code	...	
						enddo	
				enddo	
!$acc	end	kernels		
		...	
End	Program	myscience	

CPU	 GPU	 Simple	Compiler	hints	

Compiler	Parallelizes	code	

Works	on	many-core	GPUs	&	
mulFcore	CPUs	

OpenACC 
Compiler 

Hint 



OpenACC	

•  CreaFng	parallelism	in	OpenACC	is	possible	with	either	of	
the	following	two	compute	direcFves:	
   #pragma acc kernels 
   #pragma acc parallel 

•  kernels	and	parallel	each	have	their	own	strengths	
–  kernels	is	a	higher	abstracFon	with	more	automaFon	
–  parallel	offers	more	low-level	control	but	also	requires	

more	work	from	the	programmer	
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OpenACC	Compute	Direc=ves	

•  The	kernels	direcFve	marks	a	code	region	that	the	
programmer	wants	to	execute	on	an	accelerator	
–  The	code	region	is	analyzed	for	parallelizable	loops	by	the	

compiler	
–  Necessary	data	movement	is	also	automaFcally	generated	

#pragma acc kernels 
{ 
    for (i = 0; i < N; i++) 
        C[i] = A[i] + B[i]; 
 
    for (i = 0; i < N; i++) 
        D[i] = C[i] * A[i]; 
} 
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OpenACC	Compute	Direc=ves	

•  Like	OpenMP,	OpenACC	compiler	direcFves	support	clauses	
which	can	be	used	to	modify	the	behavior	of	OpenACC	
#pragmas 

#pragma acc kernels clause1 clause2 ... 

•  kernels	supports	a	number	of	clauses,	for	example:	
–  if(cond): Only	run	the	parallel	region	on	an	accelerator	if	cond	

is	true	
–  async(id): Don’t	wait	for	the	parallel	code	region	to	complete	

on	the	accelerator	before	returning	to	the	host	applicaFon.	Instead,	
id	can	be	used	to	check	for	compleFon.	

–  wait(id): wait	for	the	async	work	associated	with	id	to	finish	
first	

–  ...	
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OpenACC	Compute	Direc=ves	

•  Take a look at the simple-kernels.c example 

–  Compile with an OpenACC compiler, e.g. PGI: 
$ pgcc –acc simple-kernels.c –o simple-
kernels  
 

–  You may be able to add compiler-specific flags to print 
more diagnostic information on the accelerator code 
generation, e.g.: 

$ pgcc -acc simple-kernels.c –o simple-
kernels –Minfo=accel 

We	donot	have	this	compiler	on	our	systems	
17	



OpenACC	Compute	Direc=ves	

•  On the other hand, the parallel compute directive 
offers much more control over exactly how a parallel 
code region is executed 

–  With just kernels, we have little control over which 
loops are parallelized or how they are parallelized 

–  Think of #pragma acc parallel similarly to 
#pragma omp parallel 

 
  #pragma acc parallel 
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OpenACC	Compute	Direc=ves	

•  With parallel, all parallelism is created at the 
start of the parallel region and does not change until 
the end 
–  The execution mode of a parallel region changes 

depending on programmer-inserted #pragmas 

•  parallel supports similar clauses to kernels, plus: 
–  num_gangs(g), num_workers(w), 
vector_length(v): Used to configure the amount of 
parallelism in a parallel region 

–  reduction(op:var1, var2, ...): Perform a 
reduction across gangs of the provided variables using 
the specified operation 

–  ... 
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OpenACC	

•  Mapping	from	the	abstract	GPU	ExecuFon	Model	to	
OpenACC	concepts	and	terminology	
–  OpenACC	Vector	element	=	a	thread	
•  The	use	of	“vector”	in	OpenACC	terminology	emphasizes	
that	at	the	lowest	level,	OpenACC	uses	vector-parallelism	

–  OpenACC	Worker	=	SIMT	Group	
•  Each	worker	has	a	vector	width	and	can	contain	many	vector	elements	

–  OpenACC	Gang	=	SIMT	Groups	on	the	same	SM	
•  One	gang	per	OpenACC	PU	
•  OpenACC	supports	mulFple	gangs	execuFng	concurrently	

20	



OpenACC	

•  Mapping	to	CUDA	threading	model:	

–  Gang	Parallelism:	Work	is	run	across	mulFple	OpenACC	Pus	
•  CUDA	Blocks	

–  Worker	Parallelism:	Work	is	run	across	mulFple	workers	(i.e.	
SIMT	Groups)	
•  Threads	per	Blocks	

–  Vector	Parallelism:	Work	is	run	across	vector	elements	(i.e.	
threads)	
• Within	Wrap	
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OpenACC	Compute	Direc=ves	

•  In addition to kernels and parallel, a third 
OpenACC compute directive can help control 
parallelism (but does not actually create threads): 

  
#pragma acc loop 

 
•  The loop directive allows you to explicitly mark 

loops as parallel and control the type of parallelism 
used to execute them 
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OpenACC	Compute	Direc=ves	

•  Using #pragma acc loop gang/worker/vector 
allows you to explicitly mark loops that should use 
gang, worker, or vector parallelism in your OpenACC 
application 
–  Can be used inside both parallel and kernels 

regions 

•  Using #pragma acc independent allows you to 
explicitly mark loops as parallelizable, overriding any 
automatic compiler analysis 
–  Compilers must naturally be conservative when auto-

parallelizing, the independent clause allows you to 
use detailed knowledge of the application to give hints 
to the compiler 
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OpenACC	Compute	Direc=ves	

•  Consider simple-parallel.c, in which the loop 
and parallel directives are used to implement the 
same computation as simple-kernels.c 

 

#pragma acc parallel 
{ 
  #pragma acc loop 
  for (i = 0; i < N; i++) 
    ... 
  #pragma acc loop 
  for (i = 0; i < N; i++) 
    ... 
} 
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OpenACC	Compute	Direc=ves	

•  As a syntactic nicety, you can combine parallel/
kernels directives with loop directives: 

 
#pragma acc kernels loop 
for (i = 0; i < N; i++) { 
    ... 
} 
 
#pragma acc parallel loop 
for (i = 0; i < N; i++) { 
    ... 
} 
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OpenACC	Compute	Direc=ves	

•  This combination has the same effect as a loop 
directive immediately following a parallel/
kernels directive: 

 
#pragma acc kernels 
#pragma acc loop 
for (i = 0; i < N; i++) { ... } 
 
#pragma acc parallel 
#pragma acc loop 
for (i = 0; i < N; i++) { ... } 
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OpenACC	Compute	Direc=ves	

•  In summary, the kernels, parallel, and loop 
directives all offer different ways to control the 
OpenACC parallelism of an application 

–  kernels is highly automated, but your rely heavily on 
the compiler to create an efficient parallelization 
strategy 
•  A short-form of parallel/loop for GPU 

–  parallel is more manual, but allows programmer 
knowledge about the application to improve the 
parallelization strategy 
•  Like OpenMP parallel 

–  loop allows you to take more manual control over both 
•  Like OpenMP worksharing 
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Suggested	Readings	

1.  The	secFons	on	Using	OpenACC	and	Using	OpenACC	Compute	
DirecOves	in	Chapter	8	of	Professional	CUDA	C	Programming	

2.  OpenACC	Standard.	2013.	hhp://www.openacc.org/sites/default/
files/	OpenACC.2.0a_1.pdf	

3.  Jeff	Larkin.	IntroducOon	to	Accelerated	CompuOng	Using	Compiler	
DirecOves.	2014.	hhp://	on-demand.gputechconf.com/gtc/2014/
presentaFons/S4167-intro-accelerated-	compuFng-direcFves.pdf		

4.  Michael	Wolfe.	Performance	Analysis	and	OpOmizaOon	with	
OpenACC.	2014.	hhp://	on-demand.gputechconf.com/gtc/2014/
presentaFons/S4472-performance-analysis-	opFmizaFon-openacc-
apps.pdf	
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OpenACC	Data	Direc=ves	

•  #pragma acc data	can	be	used	to	explicitly	perform	
communicaFon	between	a	host	program	and	accelerators	

	
•  The	data	clause	is	applied	to	a	code	region	and	defines	
the	communicaFon	to	be	performed	at	the	start	and	end	of	
that	code	region	

•  The	data	clause	alone	does	nothing,	but	it	takes	clauses	
which	define	the	actual	transfers	to	be	performed	
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OpenACC	Data	Direc=ves	

•  Common clauses used with #pragma acc data: 

Clause Description 

copy(list) Transfer all variables in list to the 
accelerator at the start of the data region 

and back to the host at the end. 

copyin(list) Transfer all variables in list to the 
accelerator at the start of the data 

region. 

copyout(list) Transfer all variables in list back to the 
host at the end of the data region. 

present_or_copy(
list) 

If the variables specified in list are not 
already on the accelerator, transfer them 
to it at the start of the data region and 

back at the end. 

if(cond) Only perform the operations defined by 
this data directive if cond is true. 
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OpenACC	Data	Direc=ves	

•  Consider the example in simple-data.c, which 
mirrors simple-parallel.c and simple-
kernels.c: 

 
#pragma acc data copyin(A[0:N], B[0:N]) 
copyout(C[0:N], D[0:N]) 
{ 
#pragma acc parallel 
  {    
#pragma acc loop 
    for (i = 0; i < N; i++) 
      ... 
#pragma acc loop 
    for (i = 0; i < N; i++) 
      ... 
  } 
} 
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OpenACC	Data	Direc=ves	

•  OpenACC also supports: 
#pragma acc enter data 
#pragma acc exit data 

•  Rather than bracketing a code region, these 
#pragmas allow you to copy data to and from the 
accelerator at arbitrary points in time 
–  Data transferred to an accelerator with enter data 

will remain there until a matching exit data is 
reached or until the application terminates 
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OpenACC	Data	Direc=ves	

•  Finally, OpenACC also allows you to specify data 
movement as part of the compute directives through 
data clauses 

 

#pragma acc data copyin(A[0:N], B[0:N]) 
copyout(C[0:N], D[0:N]) 
{ 
#pragma acc parallel 
  { 
  } 
} 
 
 
#pragma acc parallel copyin(A[0:N], B[0:N]) 
copyout(C[0:N], D[0:N]) 
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OpenACC	Data	Specifica=on	

•  You may have noticed that OpenACC data directives 
use an unusual array dimension specification, for 
example: 

#pragma acc data copy(A[start:length]) 

•  In some cases, data specifications may not even be 
necessary as the OpenACC compiler can infer the size 
of the array: 

int a[5]; 
#pragma acc data copy(a) 
{ 
    ... 
} 

34	



OpenACC	Data	Specifica=on	

•  If the compiler is unable to infer an array size, error 
messages like the one below will be emitted 
–  Example code: 

int *a = (int *)malloc(sizeof(int) * 5); 
#pragma acc data copy(a) 
{ 
    ... 
} 

–  Example error message: 
PGCC-S-0155-Cannot determine bounds for array a 
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OpenACC	Data	Specifica=on	

•  Instead, you must specify the full array bounds to be 
transferred 

int *a = (int *)malloc(sizeof(int) * 5); 
#pragma acc data copy(a[0:5]) 
{ 
    ... 
} 

–  The lower bound is inclusive and, if not explicitly set, 
will default to 0 

–  The length must be provided if it cannot be inferred 
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Asynchronous	Work	in	OpenACC	

•  In	OpenACC,	the	default	behavior	is	always	to	block	the	
host	while	execuFng	an	acc	region	
–  Host	execuFon	does	not	conFnue	past	a	kernels/
parallel	region	unFl	all	operaFons	within	it	complete	

–  Host	execuFon	does	not	enter	or	exit	a	data	region	unFl	all	
prescribed	data	transfers	have	completed	
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Asynchronous	Work	in	OpenACC	

•  When	the	host	blocks,	host	cycles	are	wasted:	

Single-
threaded	
host	

Accelerator	
w/	many	

PUs	

#pragma acc 
{ ... } 

Wasted cycles 
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Asynchronous	Work	in	OpenACC	

•  In	many	cases	this	default	can	be	overridden	to	perform	
operaFons	asynchronously	
–  Asynchronously	copy	data	to	the	accelerator	
–  Asynchronously	execute	computaFon	

•  As	a	result,	host	cycles	are	not	wasted	idling	while	the	
accelerator	is	working	
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Asynchronous	Work	in	OpenACC	

•  Asynchronous	work	is	created	using	the	async	clause	on	
compute	and	data	direcFves,	and	every	asynchronous	task	
has	an	id 
–  Run	a	kernels	region	asynchronously:	

#pragma acc kernels async(id) 
–  Run	a	parallel	region	asynchronously:	

#pragma acc parallel async(id) 
–  Perform	an	enter data	asynchronously:	

#pragma acc enter data async(id) 
–  Perform	an	exit data	asynchronously:	

#pragma acc exit data async(id) 
–  async	is	not	supported	on	the	data	direcFve	
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Asynchronous	Work	in	OpenACC	

•  Having	asynchronous	work	means	we	also	need	a	way	to	
wait	for	it	
–  Note	that	every	async	clause	on	the	previous	slide	took	an	
id 

–  The	asynchronous	task	created	is	uniquely	idenFfied	by	that	
id 

•  We	can	then	wait	on	that	id	using	either:	
–  The	wait	clause	on	compute	or	data	direcFves	
–  The	OpenACC	RunFme	API’s	Asynchronous	Control	funcFons	
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Asynchronous	Work	in	OpenACC	

•  Adding	a	wait(id)	clause	to	a	compute	or	data	direcFve	
makes	the	associated	data	transfer	or	computaFon	wait	
unFl	the	asynchronous	task	associated	with	that	id	
completes	

•  The	OpenACC	RunFme	API	supports	explicitly	waiFng	using:	
void acc_wait(int id); 
void acc_wait_all(); 
	

•  You	can	also	check	if	asynchronous	tasks	have	completed	
using:	

int acc_async_test(int id); 
int acc_async_test_all(); 
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Asynchronous	Work	in	OpenACC	

•  Let’s	take	a	simple	code	snippet	as	an	example:	
 

#pragma acc data copyin(A[0:N]) 
copyout(B[0:N]) 
{ 
#pragma acc kernels 
  { 
    for (i = 0; i < N; i++) 
      B[i] = foo(A[i]); 
  } 
} 
do_work_on_host(C); 

Host is 
blocked 

Host is 
working 
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Asynchronous	Work	in	OpenACC	

Single-
threaded	
host	

Accelerator	
w/	many	

PUs	

copyin Idling 

acc kernels 

copyout do_work_on_host 
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Asynchronous	Work	in	OpenACC	

•  Performing	the	transfer	and	compute	asynchronously	allows	us	
to	overlap	the	host	and	accelerator	work:	

 

#pragma acc enter data async(0) 
copyin(A[0:N]) create(B[0:N]) 
#pragma acc kernels wait(0) async(1) 
{ 
  for (i = 0; i < N; i++) 
    B[i] = foo(A[i]); 
} 
#pragma acc exit data wait(1) async(2) 
copyout(B[0:N]) 
do_work_on_host(C); 
 
acc_wait(2); 
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Asynchronous	Work	in	OpenACC	

Single-
threaded	
host	

Accelerator	
w/	many	

PUs	
acc kernels 

do_work_on_host 
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Reduc=ons	in	OpenACC	

•  OpenACC	supports	the	ability	to	perform	automaFc	parallel	
reducFons	
–  The	reduction	clause	can	be	added	to	the	parallel	and	
loop	direcFves,	but	has	a	subtle	difference	in	meaning	on	
each	

#pragma acc parallel reduction(op:var1, var2, ...) 
#pragma acc loop reduction(op:var1, var2, ...) 

	
–  op	defines	the	reducFon	operaFon	to	perform	
–  The	variable	list	defines	a	set	of	private	variables	created	and	

iniFalized	in	the	subsequent	compute	region	
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Reduc=ons	in	OpenACC	

•  When	applied	to	a	parallel	region,	reduction	
creates	a	private	copy	of	each	variable	for	each	gang	
created	for	that	parallel	region	

•  When	applied	to	a	loop	direcFve,	reduction	creates	a	
private	copy	of	each	variable	for	each	vector	element	in	
the	loop	region	

•  The	resulFng	value	is	transferred	back	to	the	host	once	the	
current	compute	region	completes	
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OpenACC	Parallel	Region	Op=miza=ons	

•  To	some	extent,	opFmizing	the	parallel	code	regions	in	
OpenACC	is	contradictory	to	the	whole	OpenACC	principle	
–  OpenACC	wants	programmers	to	focus	on	wriFng	applicaFon	

logic	and	worry	less	about	nihy-grihy	opFmizaFon	tricks	
–  O{en,	low-level	code	opFmizaFons	require	inFmate	

understanding	of	the	hardware	you	are	running	on	

•  In	OpenACC,	opFmizing	is	more	about	avoiding	
symptomaFcally	horrible	scenarios	so	that	the	compiler	has	
the	best	code	to	work	with,	rather	than	making	very	low-
level	opFmizaFons	
–  Memory	access	paherns	
–  Loop	scheduling	
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OpenACC	Parallel	Region	Op=miza=ons	

•  GPUs	are	opFmized	for	aligned,	coalesced	memory	
accesses	
–  Aligned:	the	lowest	address	accessed	by	the	elements	in	a	

vector	to	be	32-	or	128-bit	aligned	(depending	on	architecture)	
–  Coalesced:	neighboring	vector	elements	access	neighboring	

memory	cells	
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OpenACC	Parallel	Region	Op=miza=ons	

•  Improving	alignment	in	OpenACC	is	difficult	because	there	
is	less	visibility	into	how	OpenACC	threads	are	scheduled	on	
GPU	

•  Improving	coalescing	is	also	difficult,	the	OpenACC	compiler	
may	choose	a	number	of	different	ways	to	schedule	a	loop	
across	threads	on	the	GPU	

•  In	general,	try	to	ensure	that	neighboring	iteraFons	of	the	
innermost	parallel	loops	are	referencing	neighboring	
memory	cells	

51	



OpenACC	Parallel	Region	Op=miza=ons	

•  Vecadd	example	using	coalescing	and	noncoalescing		access 

CLI	Flag	 Average	Compute	Time	

Without –b (coalescing) 122.02us	

With –b (noncoalescing	) 624.04ms	
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OpenACC	Parallel	Region	Op=miza=ons	

•  The	loop	direcFve	supports	three	special	clauses	that	control	
how	loops	are	parallelized:	gang,	worker,	and	vector 
–  The meaning of these clauses changes depending on whether 

they are used in a parallel or kernels region 

•  The gang clause: 
–  In a parallel region, causes the iterations of the loop to be 

parallelized across gangs created by the parallel region, 
transitioning from gang-redundant to gang-partitioned mode. 

–  In a kernels region, does the same but also allows the user 
to specify the number of gangs to use, using gang(ngangs) 
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OpenACC	Parallel	Region	Op=miza=ons	

•  The	worker	clause:	
–  In a parallel region, causes the iterations of the loop 

to be parallelized across workers created by the 
parallel region, transitioning from worker-single to 
worker-partitioned modes. 

–  In a kernels region, does the same but also allows the 
user to specify the number of workers per gang, using 
worker(nworkers) 
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OpenACC	Parallel	Region	Op=miza=ons	

•  The	vector	clause:	
–  In a parallel region, causes the iterations of the loop 

to be parallelized using vector/SIMD parallelism with 
the vector length specified by parallel, transitioning 
from vector-single to vector-partitioned modes. 

–  In a kernels region, does the same but also allows the 
user to specify the vector length to use, using 
vector(vector_length) 
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OpenACC	Parallel	Region	Op=miza=ons	

•  ManipulaFng	the	gang,	worker,	and	vector	clauses	
results	in	different	scheduling	of	loop	iteraFons	on	the	
underlying	hardware	
–  Can result in significant performance improvement or 

loss 

•  Consider the example of loop schedule 
–  The gang and vector clauses are used to change the 

parallelization of two nested loops in a parallel 
region 

–  The # of gangs is set with the command-line flag -g, 
vector width is set with –v 
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OpenACC	Parallel	Region	Op=miza=ons	

•  Try	playing	with	-g	and	-v	to	see	how	gang	and	vector	
affect	performance	
–  OpFons	for	gang	and	vector	sizes	

 

#pragma acc parallel copyin(A[0:M * N], B[0:M * 
N]) copyout(C[0:M * N]) 
#pragma acc loop gang(gangs) 
        for (int i = 0; i < M; i++) { 
#pragma acc loop vector(vector_length) 
            for (int j = 0; j < N; j++) { 
                ... 
            } 
        } 
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OpenACC	Parallel	Region	Op=miza=ons	

Example	results:	
	

-g -v 
(constant) 

Time 

1 128 5.7590ms 

2 128 2.8855ms 

4 128 1.4478ms 

8 128 730.11us 

16 128 373.40us 

32 128 202.89us 

64 128 129.85us 

-g 
(constant) 

-v Time 

32 2 9.3165ms 

32 8 2.7953ms 

32 32 716.45us 

32 128 203.02us 

32 256 129.76us 

32 512 125.16us 

32 1024 124.83us 
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OpenACC	Parallel	Region	Op=miza=ons	

•  Your	opFons	for	opFmizing	OpenACC	parallel	regions	are	
fairly	limited	
–  The	whole	idea	of	OpenACC	is	that	the	compiler	can	handle	

that	for	you	

•  There	are	some	things	you	can	do	to	avoid	poor	code	
characterisFcs	on	the	GPU	that	that	compiler	can’t	opFmize	
you	out	of	(memory	access	paherns)	

•  There	are	also	tunables	you	can	tweak	which	may	improve	
performance	(e.g.	gang,	worker,	vector)	
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The	Tile	Clause	

•  Like	the	gang,	worker,	and	vector	clauses,	the	tile	
clause	is	used	to	control	the	scheduling	of	loop	iteraFons	
–  Used	on	loop	direcFves	only	

•  It	specifies	how	you	would	like	loop	iteraFons	grouped	
across	the	iteraFon	space	
–  IteraFon	grouping	(more	commonly	called	loop	Fling)	can	be	

beneficial	for	locality	on	both	CPUs	and	GPUs	
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The	Tile	Clause	

•  Suppose	you	have	a	loop	like	the	following:	
#pragma loop 
for (int i = 0; i < N; i++) { 
    ... 
} 

	
•  The	tile	clause	can	be	added	like	this:	

#pragma loop tile(8) 
for (int i = 0; i < N; i++) { 
    ... 
} 
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The	Tile	Clause	

•  Analogous	to	adding	a	second	inner	loop:	
#pragma loop 
for (int i = 0; i < N; i+=8) { 
    for (int ii = 0; ii < 8; ii++) { 
        ... 
    } 
} 

–  The	same	iteraFons	are	performed,	but	the	compiler	may	
choose	to	schedule	them	differently	on	hardware	threads	
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The	Cache	Direc=ve	

•  The	cache	direcFve	is	used	to	opFmize	memory	accesses	
on	the	accelerator.	It	marks	data	which	will	be	frequently	
accessed,	and	which	therefore	should	be	kept	close	in	the	
cache	hierarchy	

•  The	cache	direcFve	is	applied	immediately	inside	of	a	loop	
that	is	being	parallelized	on	the	accelerator:	
–  Note	the	same	data	specificaFon	is	used	here	as	for	data	

direcFves	
#pragma acc loop 
for (int i = 0; i < N; i++) { 
    #pragma acc cache(A[i:1]) 
    ...  
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The	Cache	Direc=ve	

•  For	example,	suppose	you	have	an	applicaFon	where	every	
thread	i	accesses	cells	i-1,	i,	and	i+1	in	a	vector	A 

3	 4	 -1	 11	 7	 5	 2	 22	 5	 3	 6	 9	

Threads 

A 
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The	Cache	Direc=ve	

•  This	results	in	lots	of	wasted	memory	accesses	as	
neighboring	elements	in	the	vector	reference	the	same	
cells	in	the	array	A 

•  Instead, we can use the cache directive to indicate to 
the compiler which array elements we expect to 
benefit from caching: 

#pragma acc parallel loop 
for (int i = 0; i < N; i++) 
{ 
    B[i] = A[i-1] + A[i] + 
A[i+1]; 
} 

#pragma acc parallel loop 
for (int i = 0; i < N; i++) { 
    #pragma acc cache(A[i-1:2]) 
    B[i] = A[i-1] + A[i] + A[i
+1]; 
} 
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The	Cache	Direc=ve	

•  Now,	the	compiler	will	automaFcally	cache	A[i-1],	
A[i],	and	A[i+1]	and	only	load	them	from	accelerator	
memory	once 

3	 4	 -1	 11	 7	 5	 2	 22	 5	 3	 6	 9	

Threads 

A 

3	 4	 -1	 11	 7	 5	 2	 22	 5	 3	 6	 9	Cache 
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The	Cache	Direc=ve	

•  The	cache	direcFve	requires	a	lot	of	complex	code	
analysis	from	the	compiler	to	ensure	this	is	a	safe	
opFmizaFon	

•  As	a	result,	it	is	not	always	possible	to	use	the	cache	
opFmizaFon	with	arbitrary	applicaFon	code	
–  Some	restructuring	may	be	necessary	before	the	compiler	is	

able	to	determine	how	to	effecFvely	use	the	cache	
opFmizaFon	
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The	Cache	Direc=ve	

•  The	cache	direcFve	can	result	in	significant	performance	
gains	thanks	to	much	improved	data	locality	

•  However,	for	complex	applicaFons	it	generally	requires	
significant	code	refactoring	to	expose	the	cache-ability	of	
the	code	to	the	compiler	
–  Just	like	to	use	shared	memory	in	CUDA	
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Suggested	Readings	

1. OpenACC	Standard.	2013.	hhp://www.openacc.org/sites/
default/files/	OpenACC.2.0a_1.pdf	

2. Peter Messmer. Optimizing OpenACC Codes. http://
on-demand.gputechconf.com/gtc/2013/
presentations/S3019-Optimizing-OpenACC-Codes.pdf 
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