Lecture 20: Manycore GPU Architectures and Programming, Part 2

Concurrent and Multicore Programming

Department of Computer Science and Engineering Yonghong Yan

yan@oakland.edu

www.secs.oakland.edu/~yan

Manycore GPU Architectures and Programming: Outline

- Introduction
 - GPU architectures, GPGPUs, and CUDA
- GPU Execution model
- CUDA Programming model
 - Working with Memory in CUDA
 - Global memory, shared and constant memory
 - Streams and concurrency
 - CUDA instruction intrinsic and library
 - Performance, profiling, debugging, and error handling
 - Directive-based high-level programming model
 - OpenACC and OpenMP

Execution Model Review

A nested thread hierarchy on GPUs

SIMT Groups that execute together on the same GPU

Offloading Execution Flow

Offloading Execution Flow

Offloading Execution Flow

How is the GPU controlled?

- The CUDA API is split into:
 - The CUDA Management API
 - The CUDA Kernel API

- The CUDA Management API is for a variety of operations
 - GPU memory allocation, data transfer, execution, resource creation
 - Mostly regular C function and calls
- The CUDA Kernel API is used to define the computation to be performed by the GPU
 - C extensions

How is the GPU controlled?

A CUDA kernel:

- Defines the operations to be performed by a single thread on the GPU
- Just as a C/C++ function defines work to be done on the CPU
- Syntactically, a kernel looks like C/C++ with some extensions

```
__global__ void kernel(...) {
   ...
}
```

- Every CUDA thread executes the same kernel logic (SIMT)
- Initially, the only difference between threads are their thread coordinates

- CUDA thread hierarchy
 - Warp = SIMT Group
 - Thread Block = SIMT Groups that run concurrently on an SM
 - Grid = All Thread Blocks created by the same kernel launch

- Launching a kernel is simple and similar to a function call.
 - kernel name and arguments
 - # of thread blocks/grid and # of threads/block to create:

```
kernel<<<nblocks,
  threads_per_block>>>(arg1, arg2, ...);
```

- In CUDA, only thread blocks and grids are first-class citizens of the programming model.
- The number of warps created and their organization are implicitly controlled by the kernel launch configuration, but never set explicitly.

 GPU threads can be configured in one-, two-, or threedimensional layouts

One-dimensional blocks and grids:

```
int nblocks = 4;
int threads_per_block = 8;
kernel<<<nblocks, threads_per_block>>>(...);
```


 GPU threads can be configured in one-, two-, or threedimensional layouts

Two-dimensional blocks and grids:

```
dim3 nblocks(2,2)
dim3 threads_per_block(4,2);
kernel<<<nblocks, threads_per_block>>>(...);
```


 GPU threads can be configured in one-, two-, or threedimensional layouts

Two-dimensional grid and one-dimensional blocks:

```
dim3 nblocks(2,2);
int threads_per_block = 8;
kernel<<<nblocks, threads_per_block>>>(...);
```


- On the GPU, the number of blocks and threads per block is exposed through intrinsic thread coordinate variables:
 - Dimensions
 - IDs

Variable	Meaning
gridDim.x, gridDim.y, gridDim.z	Number of blocks in a kernel launch.
blockIdx.x, blockIdx.y, blockIdx.z	Unique ID of the block that contains the current thread.
<pre>blockDim.x, blockDim.y,</pre>	Number of threads in each block.
threadIdx.x, threadIdx.y, threadIdx.z	Unique ID of the current thread within its block.

to calculate a **globally unique ID** for a thread on the GPU inside a one-dimensional grid and one-dimensional block:

```
kernel << 4, 8>>> (...);
     global void kernel(...) {
      int tid = blockIdx.x * blockDim.x + threadIdx.x;
                          blockIdx.x = 2;
                          blockDim.x = 8;
                          threadIdx.x = 2;
     Block 0
                 Block 1
                              Block 2
                                          Block 3
                                                        15
```

- Thread coordinates offer a way to differentiate threads and identify thread-specific input data or code paths.
 - Link data and computation, a mapping

```
__global___ void kernel(int *arr) {
  int tid = blockIdx.x * blockDim.x + threadIdx.x;
  if (tid < 32) {
    arr[tid] = f(arr[tid]);
  } code path for threads with tid < 32
  } else {
    arr[tid] = g(arr[tid]);
}</pre>
```

Thread Divergence: recall that useless code path is executed, but then disabled in SIMT execution model

- CUDA Memory Management API
 - Allocation of GPU memory
 - Transfer of data from the host to GPU memory
 - Free-ing GPU memory
 - Foo(int A[][N]) { }

Host Function	CUDA Analogue
malloc	cudaMalloc
memcpy	cudaMemcpy
free	cudaFree

Allocate size bytes of GPU memory and store their address
 at *devPtr

```
cudaError_t cudaFree(void *devPtr);
```

- Release the device memory allocation stored at devPtr
- Must be an allocation that was created using cudaMalloc

```
cudaError_t cudaMemcpy(
  void *dst, const void *src, size_t count,
  enum cudaMemcpyKind kind);
```

- Transfers count bytes from the memory pointed to by src to dst
- kind can be:
 - cudaMemcpyHostToHost,
 - cudaMemcpyHostToDevice,
 - cudaMemcpyDeviceToHost,
 - cudaMemcpyDeviceToDevice
- The locations of dst and src must match kind, e.g. if kind is cudaMemcpyHostToDevice then src must be a host array and dst must be a device array

```
void *d arr, *h arr;
h addr = ...; /* init host memory and data */
// Allocate memory on GPU and its address is in d arr
cudaMalloc((void **)&d arr, nbytes);
// Transfer data from host to device
cudaMemcpy(d arr, h arr, nbytes,
           cudaMemcpyHostToDevice);
// Transfer data from a device to a host
cudaMemcpy(h arr, d arr, nbytes,
           cudaMemcpyDeviceToHost);
// Free the allocated memory
cudaFree(d arr);
```

CUDA Program Flow

- At its most basic, the flow of a CUDA program is as follows:
 - 1. Allocate GPU memory
 - 2. Populate GPU memory with inputs from the host
 - 3. Execute a GPU kernel on those inputs
 - 4. Transfer outputs from the GPU back to the host
 - 5. Free GPU memory
- Let's take a look at a simple example that manipulates data

AXPY Example with OpenMP: Multicore

- $y = \alpha \cdot x + y$
 - x and y are vectors of size n
 - $-\alpha$ is scalar


```
1 void axpy(REAL *x, REAL *y, long n, REAL a) {
2  #pragma omp parallel for shared(x, y, n, a)
3  for (int i = 0; i < n; ++i)
4  y[i] += a * x[i];
5 }</pre>
```

- Data (x, y and a) are shared
 - Parallelization is relatively easy

CUDA Program Flow

- AXPY is an embarrassingly parallel problem
 - How can vector addition be parallelized?
 - How can we map this to GPUs?
- Each thread does one element

AXPY Offloading To a GPU using CUDA

```
CUDA kernel. Each thread takes care of one element of c
     global__ void axpy(REAL *x, REAL *y, int n, REAL a) {
       int id = blockIdx.x*blockDim.x+threadIdx.x;
       if (id < n) y[id] += a * x[id];
   int main( int argc, char* argv[] ) {
       // ... init host a, x and y
       // Allocate memory for each vector on GPU
                                                             Memory allocation on device
       cudaMalloc(&d_x, size);
       cudaMalloc(&d y, size);
13
14
       // Copy host vectors to device
15
       cudaMemcpy( d_x, h_x, size, cudaMemcpyHostToDevice);
                                                                Memcpy from host to device
       cudaMemcpy( d_y, h_y, size, cudaMemcpyHostToDevice);
16
17
18
       int blockSize, gridSize;
       blockSize = 1024;
19
                                                                Launch parallel execution
       gridSize = (int)ceil((float)n/blockSize);
20
       axpy<<<qridSize, blockSize>>>(d_x, d_y, n, a);
21
22
23
       // Copy array back to host
24
       cudaMemcpy( h y, d y, size, cudaMemcpyDeviceToHost );
                                                                Memcpy from device to host
25
26
       // Release device memory
27
       cudaFree(d_x);
                                                                Deallocation of dev memory
       cudaFree(d y);
28
```

29 }

24

CUDA Program Flow

- Consider the workflow of the example vector addition vecAdd.cu:
 - 1. Allocate space for A, B, and C on the GPU
 - 2. Transfer the initial contents of A and B to the GPU
 - 3. Execute a kernel in which each thread sums A_{\pm} and B_{\pm} , and stores the result in C_{\pm}
 - 4. Transfer the final contents of C back to the host
 - 5. Free A, B, and C on the GPU

Modify to
$$C = A+B+C$$

 $A = B*C$;

we will need both C and A in the host side after GPU computation.

- Compile and running
 - lennon.secs.oakland.edu, copy gpu_code_examples folder from my home folder
 - cp -r ~yan/gpu_code_examples ~
 - \$nvcc vectorAdd.cu
 - \$./a.out

More Examples and Exercises

Matvec:

- Version 1: each thread computes one element of the final vector
- Version 2:

Matmul:

Version 1: each thread computes one row of the final matrix C

CUDA SDK Examples

- CUDA Programming Manual:
 - http://docs.nvidia.com/cuda/cuda-c-programming-guide
- CUDA SDK Examples on lennon.secs.oakland.edu
 - /usr/local/cuda-8.0/samples/
- Copy to your home folder
 - cp –r /usr/local/cuda-8.0/samples ~/CUDA_samples
- Do a "make" in the folder, and it will build all the sources
- Or go to a specific example folder and make, it will build only the binary
- Find ones you are interested in and run to see

Inspecting CUDA Programs

- Debugging CUDA program:
 - cuda-gdb debugging tool, like gdb
- Profiling a program to examine the performance
 - Nvprof tool, like gprof
 - Nvprof ./vecAdd

Manycore GPU Architectures and Programming: Outline

- Introduction
 - GPU architectures, GPGPUs, and CUDA
- GPU Execution model
- CUDA Programming model
- Working with Memory in CUDA
 - Global memory, shared and constant memory
 - Streams and concurrency
 - CUDA instruction intrinsic and library
 - Performance, profiling, debugging, and error handling
 - Directive-based high-level programming model
 - OpenACC and OpenMP

- A memory hierarchy emulates a large amount of lowlatency memory
 - Cache data from a large, high-latency memory bank in a small low-latency memory bank

- The CUDA Memory
 Hierarchy is more complex
 than the CPU memory
 hierarchy
 - Many different types of memory, each with specialpurpose characteristics
 - More explicit control over data movement

Registers

- Lowest latency memory space on the GPU
- Private to each CUDA thread
- Constant pool of registers per-SM divided among threads in resident thread blocks
- Architecture-dependent limit on number of registers per thread
- Registers are not explicitly used by the programmer, implicitly allocated by the compiler
- maxrregcount compiler option allows you to limit # registers per thread

GPU Caches

- Behaviour of GPU caches is architecture-dependent
- Per-SM L1 cache stored on-chip
- Per-GPU L2 cache stored off-chip, caches values for all SMs
- Due to parallelism of accesses, GPU caches do not follow the same LRU rules as CPU caches

Shared Memory

- Declared with the __shared__keyword
- Low-latency, high bandwidth
- Shared by all threads in a thread block
- Explicitly allocated and managed by the programmer, manual L1 cache
- Stored on-SM, same physical memory as the GPU L1 cache
- On-SM memory is statically partitioned between L1 cache and shared memory

- Constant Memory
 - Declared with the __constant__keyword
 - Read-only
 - Limited in size: 64KB
 - Stored in device memory (same physical location as Global Memory)
 - Cached in a per-SM constant cache
 - Optimized for all threads in a warp accessing the same memory cell

- Texture Memory
 - Read-only
 - Stored in device memory (same physical location as Global Memory)
 - Cached in a texture-only on-SM cache
 - Optimized for 2D spatial locality (caches commonly only optimized for 1D locality)
 - Explicitly used by the programmer
 - Special-purpose memory

Storing Data on the GPU

Global Memory

- Large, high-latency memory
- Stored in device memory (along with constant and texture memory)
- Can be declared statically with device
- Can be allocated dynamically with cudaMalloc
- Explicitly managed by the programmer
- Optimized for all threads in a warp accessing neighbouring memory cells

Storing Data on the GPU

MEMORY	ON/OFF CHIP	CACHED	ACCESS	SCOPE	LIFETIME
Register	On	n/a	R/W	1 thread	Thread
Local	Off	†	R/W	1 thread	Thread
Shared	On	n/a	R/W	All threads in block	Block
Global	Off	†	R/W	All threads + host	Host allocation
Constant	Off	Yes	R	All threads + host	Host allocation
Texture	Off	Yes	R	All threads + host	Host allocation

Storing Data on the GPU

QUALIFIER	VARIABLE NAME	MEMORY	SCOPE	LIFESPAN
	float var	Register	Thread	Thread
	float var[100]	Local	Thread	Thread
shared	float var†	Shared	Block	Block
device	float var†	Global	Global	Application
constant	float var†	Constant	Global	Application

Concentrate On:

- Global memory
- Shared memory
- Constant memory

Static Global Memory

 Static Global Memory has a fixed size throughout execution time:

```
__device__ float devData;
__global__ void checkGlobalVariable()
    printf("devData has value %f\n", devData);
}
```

• Initialized using cudaMemcpyToSymbol:

```
cudaMemcpyToSymbol(devData, &hostData, sizeof(float));
```

Fetched using cudaMemcpyFromSymbol:

```
cudaMemcpyFromSymbol(&hostData, devData,
sizeof(float));
```

Dynamic Global Memory

- We have already seen dynamic global memory
 - cudaMalloc dynamically allocates global memory
 - cudaMemcpy transfers to/from global memory
 - cudaFree frees global memory allocated by cudaMalloc
- cudaMemcpy supports 4 types of transfer:
 - cudaMemcpyHostToHost, cudaMemcpyHostToDevice, cudaMemcpyDeviceToHost, cudaMemcpyDeviceToDevice
- You can also memset global memory

```
cudaError_t cudaMemset(void *devPtr, int value,
size t count);
```

- CPU caches are optimized for linear, iterative memory accesses
 - Cache lines ensure that accessing one memory cell brings neighbouring memory cells into cache
 - If an application exhibits good spatial or temporal locality (which many do), later references will also hit in cache

- GPU caching is a more challenging problem
 - Thousands of threads cooperating on a problem
 - Difficult to predict the next round of accesses for all threads
- For efficient global memory access, GPUs instead rely on:
 - Large device memory bandwidth
 - Aligned and coalesced memory access patterns
 - Maintaining sufficient pending I/O operations to keep the memory bus saturated and hide global memory latency

- Achieving aligned and coalesced global memory accesses is key to optimizing an application's use of global memory bandwidth
 - Coalesced: the threads within a warp reference memory addresses that can all be serviced by a single global memory transaction (think of a memory transaction as the process of bring a cache line into the cache)
 - Aligned: the global memory accesses by threads within a warp start at an address boundary that is an even multiple of the size of a global memory transaction

- A global memory transaction is either 32 or 128 bytes
 - The size of a memory transaction depends on which caches it passes through
 - If L1 + L2: 128 byte
 - If L2 only: 32 bytes
 - Which caches a global memory transaction passes through depends on GPU architecture and the type of access (read vs. write)

When is a global memory read cached in L1?

Compute Capability	Reads Cacheable in L1?	Cached by Default?
Fermi (2.x)	Yes	Yes
Kepler (3.x)	No	No
Kepler K40 and later (3.5 and up)	Yes	No

 If the L1 cache is not used for global memory reads, the L2 cache is always used

When is a global memory write cached in L1? Never

Compute Capability	Reads Cacheable in L1?	Cached by Default?
Fermi (2.x)	No	No
Kepler (3.x)	No	No
Kepler K40 and later (3.5 and up)	No	No

Global memory writes are cached in the L2 cache

Aligned and Coalesced Memory Access (w/L1 cache)

 With 128-byte access, a single transaction is required and all of the loaded bytes are used

Misaligned and Coalesced Memory Access (w/ L1 cache)

 With 128-byte access, two memory transactions are required to load all requested bytes. Only half of the loaded bytes are used.

Misaligned and Uncoalesced Memory Access (w/ L1 cache)

With uncoalesced loads, many more bytes loaded than requested

Misaligned and Uncoalesced Memory Access (w/L1 cache)

• One factor to consider with uncoalesced loads: while the efficiency of this access is very low it may bring many cache lines into L1/L2 cache which are used by later memory accesses. The GPU is flexible enough to perform well, even for applications that present suboptimal access patterns.

- Memory accesses that are not cached in L1 cache are serviced by 32-byte transactions
 - This can improve memory bandwidth utilization
 - However, the L2 cache is device-wide, higher latency than L1, and still relatively small
 many applications may take a performance hit if L1 cache is not used for reads

Aligned and Coalesced Memory Access (w/o L1 cache)

 With 32-byte transactions, four transactions are required and all of the loaded bytes are used

Misaligned and Coalesced Memory Access (w/o L1 cache)

 With 32-byte transactions, extra memory transactions are still required to load all requested bytes but the number of wasted bytes is likely reduced, compared to 128-byte transactions.

Misaligned and Uncoalesced Memory Access (w/o L1 cache)

 With uncoalesced loads, more bytes loaded than requested but better efficiency than with 128-byte transactions

Global Memory Writes are always serviced by 32-byte transactions

Global Memory and Special-Purpose Memory

Global memory is widely useful and as easy to use as CPU DRAM

Limitations

- Easy to find applications with memory access patterns that are intrinsically poor for global memory
- Many threads accessing the same memory cell poor global memory efficiency
- Many threads accessing sparse memory cells
 poor global memory efficiency
- Special-purpose memory spaces to address these deficiencies in global memory
 - Specialized for different types of data, different access patterns
 - Give more control over data movement and data placement than CPU architectures do

Shared Memory

- Declared with the ___shared___keyword
- Low-latency, high bandwidth
- Shared by all threads in a thread block
- Explicitly allocated and managed by the programmer, manual L1 cache
- Stored on-SM, same physical memory as the GPU L1 cache
- On-SM memory is statically partitioned between L1 cache and shared memory

Shared Memory Allocation

- Shared memory can be allocated statically or dynamically
- Statically Allocated Shared Memory
 - Size is fixed at compile-time
 - Can declare many statically allocated shared memory variables
 - Can be declared globally or inside a device function
 - Can be multi-dimensional arrays

```
<u>__shared__</u> int s_arr[256][256];
```

Shared Memory Allocation

- Dynamically Allocated Shared Memory
 - Size in bytes is set at kernel launch with a third kernel launch configurable
 - Can only have one dynamically allocated shared memory array per kernel
 - Must be one-dimensional arrays

```
__global__ void kernel(...) {
    extern __shared__ int s_arr[];
    ...
}
kernel<<<nblocks, threads_per_block,
shared_memory_bytes>>>(...);
```

Matrix Vector Multiplication

```
/** N =1024, 4 blocks, 256 threads/per block */
     global void
   matvec kernel shared(float * A, float * B, float * C, int N) {
       int i = blockDim.x * blockIdx.x + threadIdx.x; /
61
62
       int j:
63
64
       extern shared float B shared[]; /* the same
65
       B \text{ shared[i]} = B[i];
       /* for block 0: 0-255 are filled */
66
       /* for block 1: 256-511 are filled */
67
       /* for block 2: 512-767 are filled */
68
69
       /* for block 3: 768 - 1023 are filled */
70
71
       B_{shared}[(i+256)%1024] = B[(i+256)%1024];
72
       B shared [(i+512)%1024] = B[(i+512)%1024];
       B shared [(i+768)\%1024] = B[(i+768)\%1024];
73
74
75
       __syncthreads();
76
77
       if (i < N) {
78
         float temp = 0.0;
                                                              4 blocks shared
256 thrads/b/20
         for (j=0; j<N; j++)
79
           temp += A[i*N+j] * B shared[j];
80
81
82
         C[i] = temp;
83
84 }
```

Matrix Vector Multiplication

```
86
   __global__ void
   matvec kernel shared general(float * A, float * B, float * C, int N) {
        int i = blockDim.x * blockIdx.x + threadIdx.x; /* 0 - 1023 */
88
89
       int j;
90
       extern shared float B shared[];
91
92
       int k;
93
       for (k=0; k<qridDim.x; k++) {</pre>
            B_shared[(threadIdx.x + k*blockDim.x)%N] = B[(threadIdx.x + k*blockDim.x)%N];
94
       }
95
96
97
       __syncthreads();
98
       if (i < N) {
99
100
          float temp = 0.0:
101
          for (j=0; j<N; j++)
            temp += A[i*N+j] * B shared[j];
102
103
104
         C[i] = temp;
105
106 }
```

- Shared memory is explicitly managed and low-latency
 - Enables programmer optimizations not possible on CPU architectures

 Reduction is a common pattern in computational science that can benefit from manual caching

- Implementation 1 of parallel sum reduction
 - Note that the global array can be partitioned into subarrays which are themselves independent sequential sum reduction problems

- Implementation 2 of parallel sum reduction
 - On the GPU, we change the memory access patterns to improve global memory access coalescing


```
global void reduce (int *g idata, int *g odata, unsigned int n) {
if (blockIdx.x * blockDim.x + threadIdx.x >= n) return;
int *idata = g idata + blockIdx.x * blockDim.x; // per-block data
for (int stride = blockDim.x / 2; stride > 0; stride >>= 1) {
  // stride accesses from threads in the same thread block
  if (tid < stride) idata[tid] += idata[threadIdx.x + stride];</pre>
  syncthreads();
                                          global memory access
// output intermediate result from this thread block
if (tid == 0) g odata[blockIdx.x] = idata[0];
```

```
global void reduceSmem(int *g idata, int *g odata, unsigned int
n)
      shared int smem[DIM];
    // set thread ID
    unsigned int tid = threadIdx.x;
    // boundary check
    unsigned int idx = blockIdx.x * blockDim.x + threadIdx.x;
    if (idx >= n) return;
    // convert global data pointer to local pointer of this block
    int *idata = g idata + blockIdx.x * blockDim.x;
    // set to smem by each threads
    smem[tid] = idata[tid];
```

Cache in shared memory

- Shared memory can be used to cache per-block data as a thread block operates on it, rather than going out to global memory every time
- Take a look at reduceInteger.cu
 - Build and run the code with nvprof
 - Which kernels perform best? Which perform worst?
 - Use kernel metrics from nvprof to explain performance gains or losses

- Declared with the ___constant___keyword
- Read-only
- Limited in size: 64KB
- Stored in device memory (same physical location as Global Memory)
- Cached in a per-SM constant cache
- Optimized for all threads in a warp accessing the same memory cell

- As its name suggests, constant memory is best used for storing constants
 - Values which are read-only
 - Values that are accessed identically by all threads
- For example: suppose all threads are evaluating the equation

$$y = mx + b$$

for different values of x, but identical values of m and b

- All threads would reference m and b with the same memory operation
- This broadcast access pattern is optimal for constant memory

- A simple 1D stencil
 - target cell is updated based on its 8 neighbors, weighted by some constants c0, c1, c2, c3

$$f'(x) \approx c_0 (f(x+4h) - f(x-4h)) + c_1 (f(x+3h) - f(x-3h)) - c_2 (f(x+2h) - f(x-2h)) + c_3 (f(x+h) - f(x-h))$$

 constantStencil.cu contains an example 1D stencil that uses constant memory

```
constant float coef[RADIUS + 1];
cudaMemcpyToSymbol(coef, h coef, (RADIUS + 1) *
sizeof(float));
 global void stencil 1d(float *in, float *out, int N)
  for (int i = 1; i <= RADIUS; i++) {
    tmp += coef[i] * (smem[sidx + i] - smem[sidx - i]);
```

CUDA Synchronization

- When using shared memory, you often must coordinate accesses by multiple threads to the same data
- CUDA offers synchronization primitives that allow you to synchronize among threads

CUDA Synchronization

syncthreads

- Synchronizes execution across all threads in a thread block
- No thread in a thread block can progress past a __syncthreads before all other threads have reached it
- syncthreads ensures that all changes to shared and global memory by threads in this block are visible to all other threads in this block

threadfence block

- All writes to shared and global memory by the calling thread are visible to all other threads in its block after this fence
- Does not block thread execution

CUDA Synchronization

threadfence

- All writes to global memory by the calling thread are visible to all other threads in its grid after this fence
- Does not block thread execution

threadfence system

- All writes to global memory, page-locked host memory, and memory of other CUDA devices by the calling thread are visible to all other threads on all CUDA devices and all host threads after this fence
- Does not block thread execution

Suggested Readings

- 1. Chapter 2, 4, 5 in *Professional CUDA C Programming*
- Cliff Woolley. GPU Optimization Fundamentals. 2013. https://www.olcf.ornl.gov/wp-content/uploads/2013/02/ GPU_Opt_Fund-CW1.pdf
- 3. Mark Harris. *Using Shared Memory in CUDA C/C++*. http://devblogs.nvidia.com/parallelforall/using-shared-memory-cuda-cc/
- 4. Mark Harris. Optimizing Parallel Reduction in CUDA. http://developer.download.nvidia.com/assets/cuda/files/reduction.pdf