Lecture 20: Manycore GPU Architectures and Programming, Part 2

Concurrent and Multicore Programming

Department of Computer Science and Engineering
Yonghong Yan
yan@oakland.edu
www.secs.oakland.edu/~yan
Manycore GPU Architectures and Programming: Outline

• Introduction
 – GPU architectures, GPGPUs, and CUDA

• GPU Execution model

CUDA Programming model
• Working with Memory in CUDA
 – Global memory, shared and constant memory

• Streams and concurrency

• CUDA instruction intrinsic and library

• Performance, profiling, debugging, and error handling

• Directive-based high-level programming model
 – OpenACC and OpenMP
Execution Model Review

- A nested thread hierarchy on GPUs

A single thread

SIMT Group

SIMT Groups that concurrently run on the same SM

SIMT Groups that execute together on the same GPU
1. Copy input data from CPU memory to GPU memory
1. Copy input data from CPU memory to GPU memory
2. Load GPU program and execute, caching data on chip for performance
Offloading Execution Flow

1. Copy input data from CPU memory to GPU memory
2. Load GPU program and execute, caching data on chip for performance
3. Copy results from GPU memory to CPU memory
How is the GPU controlled?

• The CUDA API is split into:
 – The CUDA Management API
 – The CUDA Kernel API

• The CUDA Management API is for a variety of operations
 – GPU memory allocation, data transfer, execution, resource creation
 – Mostly regular C function and calls

• The CUDA Kernel API is used to define the computation to be performed by the GPU
 – C extensions
How is the GPU controlled?

• A CUDA kernel:
 – Defines the operations to be performed by a single thread on the GPU
 – Just as a C/C++ function defines work to be done on the CPU
 – Syntactically, a kernel looks like C/C++ with some extensions

 __global__ void kernel(...) {
 ...
 }

 – Every CUDA thread executes the same kernel logic (SIMT)
 – Initially, the only difference between threads are their thread coordinates
How are GPU threads organized?

• CUDA thread hierarchy
 – **Warp** = SIMT Group
 – **Thread Block** = SIMT Groups that run concurrently on an SM
 – **Grid** = All Thread Blocks created by the same kernel launch

• Launching a kernel is simple and similar to a function call.
 – kernel name and arguments
 – **# of thread blocks/grid and # of threads/block to create:**

```
kernel<<<nbblocks, 
    threads_per_block>>>(arg1, arg2, ...);
```
How are GPU threads organized?

- In CUDA, only thread blocks and grids are first-class citizens of the programming model.
- The number of warps created and their organization are implicitly controlled by the kernel launch configuration, but never set explicitly.

```c
kernel<<<nbblocks,
    threads_per_block>>>(arg1, arg2, ...);
```
How are GPU threads organized?

- GPU threads can be configured in one-, two-, or three-dimensional layouts

 - One-dimensional blocks and grids:
    ```
    int nbblocks = 4;
    int threads_per_block = 8;
    kernel<<<nbblocks, threads_per_block>>>(...);
    ```
How are GPU threads organized?

• GPU threads can be configured in one-, two-, or three-dimensional layouts

 – Two-dimensional blocks and grids:
    ```
    dim3 nblocks(2,2)
    dim3 threads_per_block(4,2);
    kernel<<<nblocks, threads_per_block>>>(...);
    ```
How are GPU threads organized?

• GPU threads can be configured in one-, two-, or three-dimensional layouts

 - Two-dimensional grid and one-dimensional blocks:

    ```cpp
    dim3 nblocks(2,2);
    int threads_per_block = 8;
    kernel<<<nbblocks, threads_per_block>>>(...);
    ```
How are GPU threads organized?

- On the GPU, the number of blocks and threads per block is exposed through intrinsic thread coordinate variables:
 - **Dimensions**
 - **IDs**

<table>
<thead>
<tr>
<th>Variable</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>`gridDim.x, gridDim.y,</td>
<td>Number of blocks in a kernel launch.</td>
</tr>
<tr>
<td>gridDim.z`</td>
<td></td>
</tr>
<tr>
<td>`blockIdx.x, blockIdx.y,</td>
<td>Unique ID of the block that contains the current thread.</td>
</tr>
<tr>
<td>blockIdx.z`</td>
<td></td>
</tr>
<tr>
<td>`blockDim.x, blockDim.y,</td>
<td>Number of threads in each block.</td>
</tr>
<tr>
<td>blockDim.z`</td>
<td></td>
</tr>
<tr>
<td><code>threadIdx.x, threadIdx.y, threadIdx.z</code></td>
<td>Unique ID of the current thread within its block.</td>
</tr>
</tbody>
</table>
How are GPU threads organized?

to calculate a **globally unique ID** for a thread on the GPU inside a one-dimensional grid and one-dimensional block:

```c
__global__ void kernel(...) {
    int tid = blockIdx.x * blockDim.x + threadIdx.x;
    ...
}
```

```c
kernel<<<4, 8>>>(...);
```

Block 0

Block 1

Block 2

Block 3

blockIdx.x = 2;
blockDim.x = 8;
threadIdx.x = 2;

0 1 2 3 4 5 6 7

8
How are GPU threads organized?

- Thread coordinates offer a way to differentiate threads and identify thread-specific input data or code paths.
 - Link data and computation, a mapping

```c
__global__ void kernel(int *arr) {
    int tid = blockIdx.x * blockDim.x + threadIdx.x;
    if (tid < 32) {
        arr[tid] = f(arr[tid]);
    } else {
        arr[tid] = g(arr[tid]);
    }
}
```

Thread Divergence: recall that useless code path is executed, but then disabled in SIMT execution model.
How is GPU memory managed?

- CUDA Memory Management API
 - Allocation of GPU memory
 - Transfer of data from the host to GPU memory
 - Free-ing GPU memory
 - Foo(int A[][N]) {

Host Function	CUDA Analogue
malloc | cudaMalloc
memcpy | cudaMemcpy
free | cudaFree
How is GPU memory managed?

cudaError_t cudaMalloc(void **devPtr, size_t size);
- Allocate size bytes of GPU memory and store their address at *devPtr

cudaError_t cudaFree(void *devPtr);
- Release the device memory allocation stored at devPtr
- Must be an allocation that was created using cudaMalloc
How is GPU memory managed?

cudaError_t cudaMemcpy(
 void *dst, const void *src, size_t count,
 enum cudaMemcpyKind kind);

– Transfers count bytes from the memory pointed to by src to dst
– kind can be:
 • cudaMemcpyHostToDevice,
 • cudaMemcpyHostToDevice,
 • cudaMemcpyDeviceToDevice,
 • cudaMemcpyDeviceToDevice
– The locations of dst and src must match kind, e.g. if kind is cudaMemcpyHostToDevice then src must be a host array and dst must be a device array
How is GPU memory managed?

```c
void *d_arr, *h_arr;

h_addr = ...; /* init host memory and data */
// Allocate memory on GPU and its address is in d_arr
cudaMalloc((void **)&d_arr, nbytes);

// Transfer data from host to device
cudaMemcpy(d_arr, h_arr, nbytes,
    cudaMemcpyHostToDevice);

// Transfer data from a device to a host
cudaMemcpy(h_arr, d_arr, nbytes,
    cudaMemcpyDeviceToHost);

// Free the allocated memory
cudaFree(d_arr);
```
CUDA Program Flow

• At its most basic, the flow of a CUDA program is as follows:
 1. Allocate GPU memory
 2. Populate GPU memory with inputs from the host
 3. Execute a GPU kernel on those inputs
 4. Transfer outputs from the GPU back to the host
 5. Free GPU memory

• Let’s take a look at a simple example that manipulates data

AXPY Example with OpenMP: Multicore

- $y = \alpha \cdot x + y$
 - x and y are vectors of size n
 - α is scalar

```c
1 void axpy(REAL *x, REAL *y, long n, REAL a) {
2   #pragma omp parallel for shared(x, y, n, a)
3     for (int i = 0; i < n; ++i)
4       y[i] += a * x[i];
5 }
```

- Data (x, y and α) are shared
 - Parallelization is relatively easy
CUDA Program Flow

• AXPY is an **embarrassingly parallel problem**
 – How can vector addition be parallelized?
 – How can we map this to GPUs?
• Each thread does one element
AXPY Offloading To a GPU using CUDA

```c
__global__ void axpy(REAL *x, REAL *y, int n, REAL a) {
    int id = blockIdx.x*blockDim.x+threadIdx.x;
    if (id < n) y[id] += a * x[id];
}

int main( int argc, char* argv[] ) {

    // Allocate memory for each vector on GPU
    cudaMalloc(&d_x, size);
    cudaMalloc(&d_y, size);

    // Copy host vectors to device
    cudaMemcpy( d_x, h_x, size, cudaMemcpyHostToDevice);
    cudaMemcpy( d_y, h_y, size, cudaMemcpyHostToDevice);

    int blockSize, gridSize;
    blockSize = 1024;
    gridSize = (int)ceil((float)n/blockSize);
    axpy<<<gridSize, blockSize>>>(d_x, d_y, n, a);

    // Copy array back to host
    cudaMemcpy( h_y, d_y, size, cudaMemcpyDeviceToHost );

    // Release device memory
    cudaFree(d_x);
    cudaFree(d_y);
}
```

Memory allocation on device

Memcpy from host to device

Launch parallel execution

Memcpy from device to host

Deallocation of dev memory
CUDA Program Flow

• Consider the workflow of the example vector addition vecAdd.cu:
 1. Allocate space for A, B, and C on the GPU
 2. Transfer the initial contents of A and B to the GPU
 3. Execute a kernel in which each thread sums A_i and B_i, and stores the result in C_i
 4. Transfer the final contents of C back to the host
 5. Free A, B, and C on the GPU

Modify to $C = A+B+C$

A = $B*C$;

we will need both C and A in the host side after GPU computation.

• Compile and running
 – Lennon.secs.oakland.edu, copy gpu_code_examples folder from my home folder
 • cp –r ~yan/gpu_code_examples ~
 – $nvcc vectorAdd.cu$
 – $./a.out$
More Examples and Exercises

- **Matvec:**
 - Version 1: each thread computes one element of the final vector
 - Version 2:

- **Matmul:**
 - Version 1: each thread computes one row of the final matrix \(C \)
CUDA SDK Examples

- CUDA Programming Manual:

- CUDA SDK Examples on lennon.secs.oakland.edu
 - `/usr/local/cuda-8.0/samples/`

- Copy to your home folder
 - `cp -r /usr/local/cuda-8.0/samples ~/CUDA_samples`

- Do a “make” in the folder, and it will build all the sources
- Or go to a specific example folder and make, it will build only the binary

- Find ones you are interested in and run to see
Inspecting CUDA Programs

• Debugging CUDA program:
 – `cuda-gdb` debugging tool, like `gdb`

• Profiling a program to examine the performance
 – `Nvprof tool, like gprof`
 – `Nvprof ./vecAdd`
Manycore GPU Architectures and Programming: Outline

• Introduction
 – GPU architectures, GPGPUs, and CUDA
• GPU Execution model
• CUDA Programming model
 🎯 Working with Memory in CUDA
 – Global memory, shared and constant memory
• Streams and concurrency
• CUDA instruction intrinsic and library
• Performance, profiling, debugging, and error handling
• Directive-based high-level programming model
 – OpenACC and OpenMP
Storing Data on the GPU

- A memory hierarchy emulates a large amount of low-latency memory
 - Cache data from a large, high-latency memory bank in a small low-latency memory bank

CPU Memory Hierarchy
Storing Data on the GPU

• The CUDA Memory Hierarchy is more complex than the CPU memory hierarchy
 – Many different types of memory, each with special-purpose characteristics
 – More explicit control over data movement

SIMT Thread Groups on a GPU

SIMT Thread Groups on an SM

SIMT Thread Group

Registers Local Memory

On-Chip Shared Memory

Global Memory

Constant Memory

Texture Memory
Storing Data on the GPU

- **Registers**
 - Lowest latency memory space on the GPU
 - **Private to each CUDA thread**
 - Constant pool of registers per-SM divided among threads in resident thread blocks
 - Architecture-dependent limit on number of registers per thread
 - Registers are not explicitly used by the programmer, implicitly allocated by the compiler
 - `-maxrregcount` compiler option allows you to limit # registers per thread
Storing Data on the GPU

- **GPU Caches**
 - Behaviour of GPU caches is architecture-dependent
 - Per-SM L1 cache stored on-chip
 - Per-GPU L2 cache stored off-chip, caches values for all SMs
 - Due to parallelism of accesses, GPU caches do not follow the same LRU rules as CPU caches
Storing Data on the GPU

- **Shared Memory**
 - Declared with the `__shared__` keyword
 - Low-latency, high bandwidth
 - *Shared by all threads in a thread block*
 - Explicitly allocated and managed by the programmer, manual L1 cache
 - Stored on-SM, same physical memory as the GPU L1 cache
 - On-SM memory is statically partitioned between L1 cache and shared memory
Storing Data on the GPU

• Constant Memory
 – **Declared with the **__constant__** keyword
 – **Read-only**
 – **Limited in size: 64KB**
 – Stored in device memory (same physical location as Global Memory)
 – Cached in a per-SM constant cache
 – Optimized for all threads in a warp accessing the same memory cell
Storing Data on the GPU

- Texture Memory
 - **Read-only**
 - **Stored in device memory (same physical location as Global Memory)**
 - Cached in a texture-only on-SM cache
 - Optimized for 2D spatial locality (caches commonly only optimized for 1D locality)
 - Explicitly used by the programmer
 - Special-purpose memory
Storing Data on the GPU

- Global Memory
 - Large, high-latency memory
 - Stored in device memory (along with constant and texture memory)
 - Can be declared statically with `__device__`
 - Can be allocated dynamically with `cudaMalloc`
 - Explicitly managed by the programmer
 - Optimized for all threads in a warp accessing neighbouring memory cells
Storing Data on the GPU

<table>
<thead>
<tr>
<th>MEMORY</th>
<th>ON/OFF CHIP</th>
<th>CACHED</th>
<th>ACCESS</th>
<th>SCOPE</th>
<th>LIFETIME</th>
</tr>
</thead>
<tbody>
<tr>
<td>Register</td>
<td>On</td>
<td>n/a</td>
<td>R/W</td>
<td>1 thread</td>
<td>Thread</td>
</tr>
<tr>
<td>Local</td>
<td>Off</td>
<td>†</td>
<td>R/W</td>
<td>1 thread</td>
<td>Thread</td>
</tr>
<tr>
<td>Shared</td>
<td>On</td>
<td>n/a</td>
<td>R/W</td>
<td>All threads in block</td>
<td>Block</td>
</tr>
<tr>
<td>Global</td>
<td>Off</td>
<td>†</td>
<td>R/W</td>
<td>All threads + host</td>
<td>Host allocation</td>
</tr>
<tr>
<td>Constant</td>
<td>Off</td>
<td>Yes</td>
<td>R</td>
<td>All threads + host</td>
<td>Host allocation</td>
</tr>
<tr>
<td>Texture</td>
<td>Off</td>
<td>Yes</td>
<td>R</td>
<td>All threads + host</td>
<td>Host allocation</td>
</tr>
</tbody>
</table>
Storing Data on the GPU

<table>
<thead>
<tr>
<th>QUALIFIER</th>
<th>VARIABLE NAME</th>
<th>MEMORY</th>
<th>SCOPE</th>
<th>LIFESPAN</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>float var</td>
<td>Register</td>
<td>Thread</td>
<td>Thread</td>
</tr>
<tr>
<td></td>
<td>float var[100]</td>
<td>Local</td>
<td>Thread</td>
<td>Thread</td>
</tr>
<tr>
<td>shared_</td>
<td>float var†</td>
<td>Shared</td>
<td>Block</td>
<td>Block</td>
</tr>
<tr>
<td>device_</td>
<td>float var†</td>
<td>Global</td>
<td>Global</td>
<td>Application</td>
</tr>
<tr>
<td>constant_</td>
<td>float var†</td>
<td>Constant</td>
<td>Global</td>
<td>Application</td>
</tr>
</tbody>
</table>
Concentrate On:

- Global memory
- Shared memory
- Constant memory
Static Global Memory

• Static Global Memory has a fixed size throughout execution time:

```c
__device__ float devData;
__global__ void checkGlobalVariable()
    printf("devData has value %f\n", devData);
}
```

• Initialized using `cudaMemcpyToSymbol`:

```c
cudaMemcpyToSymbol(devData, &hostData,sizeof(float));
```

• Fetched using `cudaMemcpyFromSymbol`:

```c
cudaMemcpyFromSymbol(&hostData, devData, sizeof(float));
```
Dynamic Global Memory

• We have already seen dynamic global memory
 – `cudaMalloc` dynamically allocates global memory
 – `cudaMemcpy` transfers to/from global memory
 – `cudaFree` frees global memory allocated by `cudaMalloc`

• `cudaMemcpy` supports 4 types of transfer:
 – `cudaMemcpyHostToHost`,
 `cudaMemcpyHostToDevice`,
 `cudaMemcpyDeviceToHost`,
 `cudaMemcpyDeviceToDevice`

• You can also memset global memory
 `cudaError_t cudaMemcpy(void *devPtr, int value, size_t count);`
Global Memory Access Patterns

• CPU caches are optimized for linear, iterative memory accesses
 – Cache lines ensure that accessing one memory cell brings neighbouring memory cells into cache
 – If an application exhibits good spatial or temporal locality (which many do), later references will also hit in cache
Global Memory Access Patterns

• GPU caching is a more challenging problem
 – Thousands of threads cooperating on a problem
 – Difficult to predict the next round of accesses for all threads

• For efficient global memory access, GPUs instead rely on:
 – Large device memory bandwidth
 – Aligned and coalesced memory access patterns
 – Maintaining sufficient pending I/O operations to keep the memory bus saturated and hide global memory latency
Global Memory Access Patterns

• Achieving **aligned** and **coalesced** global memory accesses is key to optimizing an application’s use of global memory bandwidth

 – **Coalesced**: the threads within a warp reference memory addresses that can all be serviced by a single global memory transaction (think of a memory transaction as the process of bring a cache line into the cache)

 – **Aligned**: the global memory accesses by threads within a warp start at an address boundary that is an even multiple of the size of a global memory transaction
Global Memory Access Patterns

- A global memory transaction is either 32 or 128 bytes
 - The size of a memory transaction depends on which caches it passes through
 - If L1 + L2: 128 byte
 - If L2 only: 32 bytes
 - Which caches a global memory transaction passes through depends on GPU architecture and the type of access (read vs. write)
Global Memory Access Patterns

- When is a global memory read cached in L1?

<table>
<thead>
<tr>
<th>Compute Capability</th>
<th>Reads Cacheable in L1?</th>
<th>Cached by Default?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fermi (2.x)</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Kepler (3.x)</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Kepler K40 and later (3.5 and up)</td>
<td>Yes</td>
<td>No</td>
</tr>
</tbody>
</table>

- If the L1 cache is not used for global memory reads, the L2 cache is always used
Global Memory Access Patterns

- When is a global memory write cached in L1? Never

<table>
<thead>
<tr>
<th>Compute Capability</th>
<th>Reads Cacheable in L1?</th>
<th>Cached by Default?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fermi (2.x)</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Kepler (3.x)</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Kepler K40 and later (3.5 and up)</td>
<td>No</td>
<td>No</td>
</tr>
</tbody>
</table>

- Global memory writes are cached in the L2 cache
Global Memory Access Patterns

- Aligned and Coalesced Memory Access \((w/ L1 cache)\)

- With 128-byte access, a single transaction is required and all of the loaded bytes are used
Global Memory Access Patterns

• Misaligned and Coalesced Memory Access (w/ L1 cache)

• With 128-byte access, two memory transactions are required to load all requested bytes. Only half of the loaded bytes are used.
Global Memory Access Patterns

• Misaligned and Uncoalesced Memory Access (w/ L1 cache)

• With uncoalesced loads, many more bytes loaded than requested
Global Memory Access Patterns

- Misaligned and Uncoalesced Memory Access (w/ L1 cache)

- One factor to consider with uncoalesced loads: while the efficiency of this access is very low it may bring many cache lines into L1/L2 cache which are used by later memory accesses. The GPU is flexible enough to perform well, even for applications that present suboptimal access patterns.
Global Memory Access Patterns

• Memory accesses that are not cached in L1 cache are serviced by 32-byte transactions
 – This can improve memory bandwidth utilization
 – However, the L2 cache is device-wide, higher latency than L1, and still relatively small ➔ many applications may take a performance hit if L1 cache is not used for reads
Global Memory Access Patterns

- Aligned and Coalesced Memory Access (w/o L1 cache)

- With 32-byte transactions, four transactions are required and all of the loaded bytes are used
Global Memory Access Patterns

• Misaligned and Coalesced Memory Access (*w/o L1 cache*)

• With 32-byte transactions, extra memory transactions are still required to load all requested bytes but the number of wasted bytes is likely reduced, compared to 128-byte transactions.
Global Memory Access Patterns

• Misaligned and Uncoalesced Memory Access (w/o L1 cache)

• With uncoalesced loads, more bytes loaded than requested but better efficiency than with 128-byte transactions
Global Memory Access Patterns

- Global Memory Writes are always serviced by 32-byte transactions

![Diagram showing Global Memory Access Patterns](image-url)
Global Memory and Special-Purpose Memory

- Global memory is widely useful and as easy to use as CPU DRAM

- Limitations
 - Easy to find applications with memory access patterns that are intrinsically poor for global memory
 - Many threads accessing the same memory cell ➔ poor global memory efficiency
 - Many threads accessing sparse memory cells ➔ poor global memory efficiency

- Special-purpose memory spaces to address these deficiencies in global memory
 - Specialized for different types of data, different access patterns
 - Give more control over data movement and data placement than CPU architectures do
Shared Memory

- Declared with the `__shared__` keyword
- Low-latency, high bandwidth
- Shared by all threads in a thread block
- Explicitly allocated and managed by the programmer, manual L1 cache
- Stored on-SM, same physical memory as the GPU L1 cache
- On-SM memory is statically partitioned between L1 cache and shared memory
Shared Memory Allocation

- Shared memory can be allocated statically or dynamically

- Statically Allocated Shared Memory
 - Size is fixed at compile-time
 - Can declare many statically allocated shared memory variables
 - Can be declared globally or inside a device function
 - Can be multi-dimensional arrays

```c
__shared__ int s_arr[256][256];
```
Shared Memory Allocation

- Dynamically Allocated Shared Memory
 - Size in bytes is set at kernel launch with a third kernel launch configurable
 - Can only have one dynamically allocated shared memory array per kernel
 - Must be one-dimensional arrays

```c
__global__ void kernel(...) {
    extern __shared__ int s_arr[];
    ...
}
```

```c
kernel<<<nbblocks, threads_per_block, shared_memory_bytes>>>(...);
```
Matrix Vector Multiplication

```c
/** N =1024, 4 blocks, 256 threads/per block */
__global__ void
matvec_kernel_shared(float * A, float * B, float * C, int N) {
    int i = blockDim.x * blockIdx.x + threadIdx.x; // 0 ~ 1023
    int j;

    extern __shared__ float B_shared[]; /* the same
    B_shared[i] = B[i];
    /* for block 0: 0–255 are filled */
    /* for block 1: 256–511 are filled */
    /* for block 2: 512–767 are filled */
    /* for block 3: 768 – 1023 are filled */
    B_shared[(i+256)%1024] = B[(i+256)%1024];
    B_shared[(i+512)%1024] = B[(i+512)%1024];
    B_shared[(i+768)%1024] = B[(i+768)%1024];

    __syncthreads();

    if (i < N) {
        float temp = 0.0;
        for (j=0; j<N; j++)
            temp += A[i*N+j] * B_shared[j];

        C[i] = temp;
    }
```
Matrix Vector Multiplication

```c
__global__ void matvec_kernel_shared_general(float * A, float * B, float * C, int N) {
    int i = blockDim.x * blockIdx.x + threadIdx.x; /* 0 - 1023 */
    int j;

    extern __shared__ float B_shared[];
    int k;
    for (k=0; k<gridDim.x; k++) {
        B_shared[(threadIdx.x + k*blockDim.x)%N] = B[(threadIdx.x + k*blockDim.x)%N];
    }

    __syncthreads();

    if (i < N) {
        float temp = 0.0;
        for (j=0; j<N; j++)
            temp += A[i*N+j] * B_shared[j];

        C[i] = temp;
    }
}
```
Shared Memory as a Managed Cache

• Shared memory is explicitly managed and low-latency
 – Enables programmer optimizations not possible on CPU architectures

• Reduction is a common pattern in computational science that can benefit from manual caching

Example: Sum Reduction
Shared Memory as a Managed Cache

• Implementation 1 of parallel sum reduction
 – Note that the global array can be partitioned into subarrays which are themselves independent sequential sum reduction problems
Shared Memory as a Managed Cache

• Implementation 2 of parallel sum reduction
 – On the GPU, we change the memory access patterns to improve global memory access coalescing
Shared Memory as a Managed Cache

```c
__global__ void reduce(int *g_idata, int *g_odata, unsigned int n) {
    if (blockIdx.x * blockDim.x + threadIdx.x >= n) return;
    int *idata = g_idata + blockIdx.x * blockDim.x; // per-block data

    for (int stride = blockDim.x / 2; stride > 0; stride >>= 1) {
        // stride accesses from threads in the same thread block
        if (tid < stride) idata[tid] += idata[threadIdx.x + stride];
        __syncthreads();
    }

    // output intermediate result from this thread block
    if (tid == 0) g_odata[blockIdx.x] = idata[0];
}
```

__global__ void reduceSmem(int *g_idata, int *g_odata, unsigned int n)
{
 __shared__ int smem[DIM];

 // set thread ID
 unsigned int tid = threadIdx.x;

 // boundary check
 unsigned int idx = blockIdx.x * blockDim.x + threadIdx.x;
 if (idx >= n) return;

 // convert global data pointer to local pointer of this block
 int *idata = g_idata + blockIdx.x * blockDim.x;

 // set to smem by each threads
 smem[tid] = idata[tid];
}

Cache in shared memory
Shared Memory as a Managed Cache

• Shared memory can be used to cache per-block data as a thread block operates on it, rather than going out to global memory every time

• Take a look at reduceInteger.cu
 – Build and run the code with nvprof
 – Which kernels perform best? Which perform worst?
 – Use kernel metrics from nvprof to explain performance gains or losses
Constant Memory

- Declared with the `__constant__` keyword
- Read-only
- Limited in size: 64KB
- Stored in device memory (same physical location as Global Memory)
- Cached in a per-SM constant cache
- Optimized for all threads in a warp accessing the same memory cell
Constant Memory

• As its name suggests, constant memory is best used for storing constants
 – Values which are read-only
 – Values that are accessed identically by all threads

• For example: suppose all threads are evaluating the equation

\[y = mx + b \]

for different values of \(x \), but identical values of \(m \) and \(b \)
 – All threads would reference \(m \) and \(b \) with the same memory operation
 – This broadcast access pattern is optimal for constant memory
Constant Memory

• A simple 1D stencil
 – target cell is updated based on its 8 neighbors, weighted by some constants \(c_0, c_1, c_2, c_3 \)

\[
f'(x) \approx c_0 (f(x + 4h) - f(x - 4h)) + c_1 (f(x + 3h) - f(x - 3h)) - c_2 (f(x + 2h) - f(x - 2h)) + c_3 (f(x + h) - f(x - h))
\]
Constant Memory

- `constantStencil.cu` contains an example 1D stencil that uses constant memory

```c
__constant__ float coef[RADIUS + 1];

cudaMemcpyToSymbol(coef, h_coef, (RADIUS + 1) * sizeof(float));

__global__ void stencil_1d(float *in, float *out, int N)
{
    ...
    for (int i = 1; i <= RADIUS; i++) {
        tmp += coef[i] * (smem[sidx + i] - smem[sidx - i]);
    }
}
```
CUDA Synchronization

• When using shared memory, you often must coordinate accesses by multiple threads to the same data

• CUDA offers synchronization primitives that allow you to synchronize among threads
CUDA Synchronization

__syncthreads

– Synchronizes execution across all threads in a thread block
– No thread in a thread block can progress past a __syncthreads before all other threads have reached it
– __syncthreads ensures that all changes to shared and global memory by threads in this block are visible to all other threads in this block

__threadfence_block

– All writes to shared and global memory by the calling thread are visible to all other threads in its block after this fence
– Does not block thread execution
CUDA Synchronization

threadfence
- All writes to global memory by the calling thread are visible to all other threads in its grid after this fence
- Does not block thread execution

threadfence_system
- All writes to global memory, page-locked host memory, and memory of other CUDA devices by the calling thread are visible to all other threads on all CUDA devices and all host threads after this fence
- Does not block thread execution
Suggested Readings

1. Chapter 2, 4, 5 in *Professional CUDA C Programming*

