Lecture 19: Manycore GPU Architectures and Programming, Part 1

Concurrent and Multicore Programming
CSE 436/536,

yan@oakland.edu
www.secs.oakland.edu/~yan
Topics (Part 2)

• Parallel architectures and hardware
 – Parallel computer architectures
 – Memory hierarchy and cache coherency

◆ Manycore GPU architectures and programming
 – GPUs architectures
 – CUDA programming
 – Introduction to offloading model in OpenMP and OpenACC

• Programming on large scale systems (Chapter 6)
 – MPI (point to point and collectives)
 – Introduction to PGAS languages, UPC and Chapel

• Parallel algorithms (Chapter 8, 9 & 10)
 – Dense matrix, and sorting
Manycore GPU Architectures and Programming: Outline

Introduction
- GPU architectures, GPGPUs, and CUDA

- GPU Execution model

- CUDA Programming model

- Working with Memory in CUDA
 - Global memory, shared and constant memory

- Streams and concurrency

- CUDA instruction intrinsic and library

- Performance, profiling, debugging, and error handling

- Directive-based high-level programming model
 - OpenACC and OpenMP
Graphics Processing Unit (GPU)

Graphics Processing Unit (GPU)

- Enriching user visual experience
- Delivering energy-efficient computing
- Unlocking potentials of complex apps
- Enabling Deeper scientific discovery
What is GPU Today?

• It is a **processor** optimized for 2D/3D graphics, video, visual computing, and display.

• It is **highly parallel, highly multithreaded multiprocessor** optimized for visual computing.

• It provide real-time visual interaction with **computed objects via graphics images, and video**.

• It serves as both a programmable graphics processor and a **scalable parallel computing platform**.
 – Heterogeneous systems: combine a GPU with a CPU

• It is called as **Many-core**
Graphics Processing Units (GPUs): Brief History

Atari 8-bit computer text/graphics chip
IBM PC Professional Graphics Controller card
Playstation

NVIDIA Products

- NVIDIA Corp. is the leader in GPUs for HPC
- We will concentrate on NVIDIA GPU
 - Others AMD, ARM, etc

Established by Jen-Hsun Huang, Chris Malachowsky, Curtis Priem

NVIDIA's first GPU with general purpose processors

http://en.wikipedia.org/wiki/GeForce
GPU Architecture Revolution

- Unified Scalar Shader Architecture
- Highly Data Parallel Stream Processing

3D Graphics Rendering Pipeline: Output of one stage is fed as input of the next stage. A vertex has attributes such as \((x, y, z)\) position, color (RGB or RGBA), vertex-normal \((n_x, n_y, n_z)\), and texture. A primitive is made up of one or more vertices. The rasterizer raster-scans each primitive to produce a set of grid-aligned fragments, by interpolating the vertices.

GPUs with Dedicated Pipelines
-- late 1990s-early 2000s

- Graphics chips generally had a pipeline structure with individual stages performing specialized operations, finally leading to loading frame buffer for display.

- Individual stages may have access to graphics memory for storing intermediate computed data.
Graphics Logical Pipeline

Graphics logical pipeline. Programmable graphics shader stages are blue, and fixed-function blocks are white. Copyright © 2009 Elsevier, Inc. All rights reserved.

Processor Per Function, each could be vector

Unbalanced and inefficient utilization

Figure 14. Characteristic pixel and vertex shader workload variation over time
Unified Shader

- Optimal utilization in unified architecture

FIGURE A.2.4 Logical pipeline mapped to physical processors. The programmable shader stages execute on the array of unified processors, and the logical graphics pipeline dataflow recirculates through the processors. Copyright © 2009 Elsevier, Inc. All rights reserved.
Specialized Pipeline Architecture

GeForce 6 Series Architecture
(2004-5)
From GPU Gems 2
Unified Shader Architecture

FIGURE A.2.5 Basic unified GPU architecture. Example GPU with 112 streaming processor (SP) cores organized in 14 streaming multiprocessors (SMs); the cores are highly multithreaded. It has the basic Tesla architecture of an NVIDIA GeForce 8800. The processors connect with four 64-bit-wide DRAM partitions via an interconnection network. Each SM has eight SP cores, two special function units (SFUs), instruction and constant caches, a multithreaded instruction unit, and a shared memory. Copyright © 2009 Elsevier, Inc. All rights reserved.
Streaming Processing

To be efficient, GPUs must have *high throughput*, i.e. processing millions of pixels in a single frame, but may be high latency

• “Latency is a *time delay* between the moment something is initiated, and the moment one of its effects begins or becomes detectable”

• For example, the time delay between a request for texture reading and texture data returns

• Throughput is the amount of work done in a given amount of time
 – CPUs are low latency low throughput processors
 – GPUs are high latency high throughput processors
Parallelism in CPUs v. GPUs

<table>
<thead>
<tr>
<th>CPUs use task parallelism</th>
<th>GPUs use data parallelism</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Multiple tasks map to multiple threads</td>
<td>- SIMD model (Single Instruction Multiple Data)</td>
</tr>
<tr>
<td>- Tasks run different instructions</td>
<td>- Same instruction on different data</td>
</tr>
<tr>
<td>- 10s of relatively heavyweight threads run on 10s of cores</td>
<td>- 10,000s of lightweight threads on 100s of cores</td>
</tr>
<tr>
<td>- Each thread managed and scheduled explicitly</td>
<td>- Threads are managed and scheduled by hardware</td>
</tr>
<tr>
<td>- Each thread has to be individually programmed (MPMD)</td>
<td>- Programming done for batches of threads (e.g. one pixel shader per group of pixels, or draw call)</td>
</tr>
</tbody>
</table>
Streaming Processing to Enable Massive Parallelism

• Given a (typically large) set of data ("stream")
• Run the same series of operations ("kernel" or "shader") on all of the data (SIMD)

• GPUs use various optimizations to improve throughput:
 • Some on chip memory and local caches to reduce bandwidth to external memory
 • Batch groups of threads to minimize incoherent memory access
 – Bad access patterns will lead to higher latency and/or thread stalls.
• Eliminate unnecessary operations by exiting or killing threads
GPU Computing – The Basic Idea

• **Use GPU for more than just generating graphics**
 – The computational resources are there, they are most of the time underutilized
GPU Performance Gains Over CPU

http://docs.nvidia.com/cuda/cuda-c-programming-guide
GPU Performance Gains Over CPU

BLAS Performance: CPU vs GPU
(Got Performance boost in CUDA 2.0)

Gflops Single Precision BLAS: SGEMM

Gflops Double Precision BLAS: DGEMM

CUBLAS: CUDA 2.2, Tesla C1060
MKL 10.0.3: Intel Core2 Extreme, 3.00GHz
NVIDIA Confidential: Under NDA only
GPU Computing – Offloading Computation

• The GPU is connected to the CPU by a reasonable fast bus (8 GB/s is typical today): PCIe

• Terminology
 – **Host**: The CPU and its memory (host memory)
 – **Device**: The GPU and its memory (device memory)
Simple Processing Flow

1. Copy input data from CPU memory to GPU memory
1. Copy input data from CPU memory to GPU memory
2. Load GPU program and execute, caching data on chip for performance
Simple Processing Flow

1. Copy input data from CPU memory to GPU memory
2. Load GPU program and execute, caching data on chip for performance
3. Copy results from GPU memory to CPU memory
#define N 1024
#define RADIUS 3
#define BLOCK_SIZE 16

__global__ void stencil_1d(int *in, int *out) {
 __shared__ int temp[BLOCK_SIZE + 2 * RADIUS];
 int gindex = threadIdx.x + blockIdx.x * blockDim.x;
 int lindex = threadIdx.x + RADIUS;
 // Read input elements into shared memory
 temp[lindex] = in[gindex];
 if (threadIdx.x < RADIUS) {
 temp[lindex - RADIUS] = in[gindex - RADIUS];
 temp[lindex + BLOCK_SIZE] = in[gindex + BLOCK_SIZE];
 }
 // Synchronize (ensure all the data is available)
 __syncthreads();
 // Apply the stencil
 int result = 0;
 for (int offset = -RADIUS; offset <= RADIUS; offset++)
 result += temp[lindex + offset];
 // Store the result
 out[gindex] = result;
}

void fill_ints(int *x, int n) {
 fill_n(x, n, 1);
}

int main(void) {
 int *in, *out; // host copies of a, b, c
 int *d_in, *d_out; // device copies of a, b, c
 int size = (N + 2*RADIUS) * sizeof(int);
 // Alloc space for host copies and setup values
 in = (int*)malloc(size); fill_ints(in, N + 2*RADIUS);
 out = (int*)malloc(size); fill_ints(out, N + 2*RADIUS);
 // Alloc space for device copies
 cudaMalloc((void**)&d_in, size);
 cudaMalloc((void**)&d_out, size);
 // Copy to device
 cudaMemcpy(d_in, in, size, cudaMemcpyHostToDevice);
 cudaMemcpy(d_out, out, size, cudaMemcpyHostToDevice);
 // Launch stencil_1d() kernel on GPU
 stencil_1d<<<N/BLOCK_SIZE,BLOCK_SIZE>>>(d_in + RADIUS, d_out + RADIUS);
 // Copy result back to host
 cudaMemcpy(out, d_out, size, cudaMemcpyDeviceToHost);
 // Cleanup
 free(in); free(out);
 cudaFree(d_in); cudaFree(d_out);
 return 0;
}
Programming for NVIDIA GPUs

<table>
<thead>
<tr>
<th>Libraries and Middleware</th>
</tr>
</thead>
<tbody>
<tr>
<td>CUFFT</td>
</tr>
<tr>
<td>CUBLAS</td>
</tr>
<tr>
<td>CURAND</td>
</tr>
<tr>
<td>CUSPARSE</td>
</tr>
<tr>
<td>CUDA</td>
</tr>
<tr>
<td>MAGMA</td>
</tr>
<tr>
<td>Thrust</td>
</tr>
<tr>
<td>NPP</td>
</tr>
<tr>
<td>VSIP, SVM</td>
</tr>
<tr>
<td>OpenCurrent</td>
</tr>
<tr>
<td>PhysX</td>
</tr>
<tr>
<td>OptiX</td>
</tr>
<tr>
<td>iray</td>
</tr>
<tr>
<td>MATLAB</td>
</tr>
<tr>
<td>Mathematica</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Programming Languages</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
</tr>
<tr>
<td>C++</td>
</tr>
<tr>
<td>Fortran</td>
</tr>
<tr>
<td>Java</td>
</tr>
<tr>
<td>Python</td>
</tr>
<tr>
<td>Wrappers</td>
</tr>
<tr>
<td>DirectCompute</td>
</tr>
<tr>
<td>Directives</td>
</tr>
<tr>
<td>(e.g. OpenACC)</td>
</tr>
</tbody>
</table>

CUDA-Enabled NVIDIA GPUs

- **Kepler Architecture (compute capabilities 3.x)**
 - GeForce 600 Series
 - Quadro Kepler Series
 - Tesla K20
 - Tesla K10

- **Fermi Architecture (compute capabilities 2.x)**
 - GeForce 500 Series
 - GeForce 400 Series
 - Quadro Fermi Series
 - Tesla 20 Series

- **Tesla Architecture (compute capabilities 1.x)**
 - GeForce 200 Series
 - GeForce 9 Series
 - GeForce 8 Series
 - Quadro FX Series
 - Quadro Plex Series
 - Quadro NVS Series
 - Tesla 10 Series

- **Entertainment**
- **Professional Graphics**
- **High Performance Computing**

CUDA (Compute Unified Device Architecture)

Both an *architecture* and *programming model*

• Architecture and execution model
 – Introduced in NVIDIA in 2007
 – Get highest possible execution performance requires understanding of hardware architecture

• Programming model
 – Small set of extensions to C
 – Enables GPUs to execute programs written in C
 – Within C programs, call SIMT “kernel” routines that are executed on GPU.

• Hello world introduction today
 – More in later lectures
CUDA Thread Hierarchy

- Allows flexibility and efficiency in processing 1D, 2-D, and 3-D data on GPU.
- Linked to internal organization
- Threads in one block execute together.

Can be 1, 2 or 3 dimensions
Hello World!

```c
int main(void) {
    printf("Hello World!\n");
    return 0;
}
```

- Standard C that runs on the host
- NVIDIA compiler (nvcc) can be used to compile programs with no device code
 - lennon.secs.oakland.edu
 - Using /usr/local/cuda-8.0/bin/nvcc
 - export PATH=/usr/local/cuda-8.0/bin:
 - $PATH

Output:
```
$ nvcc
hello.cu
$ ./a.out
Hello World!
$
```

Hello World! with Device Code

```c
__global__ void hellokernel() {
    printf("Hello World!\n");
}

int main(void) {
    int num_threads = 1;
    int num_blocks = 1;
    hellokernel<<<num_blocks,num_threads>>>();
    cudaDeviceSynchronize();
    return 0;
}
```

- Two new syntactic elements...

Output:

```
$ nvcc hello.cu
$ ./a.out
Hello World!
$ 
```


GPU code examples

- lennon.secs.oakland.edu
- export PATH=/usr/local/cuda-8.0/bin:$PATH
- cp -r ~yan/gpu_code_examples ~
- cd gpu_code_examples
- nvcc hello-1.cu –o hello-1
- ./hello-1
- nvcc hello-2.cu –o hello-2
- ./hello-2
Hello World! with Device Code

```c
__global__ void helloworld(void)
```

- CUDA C/C++ keyword `__global__` indicates a function that:
 - Runs on the device
 - Is called from host code

- `nvcc` separates source code into host and device components
 - Device functions (e.g. `helloworld()`) processed by NVIDIA compiler
 - Host functions (e.g. `main()`) processed by standard host compiler
 - `gcc`, `cl.exe`
Hello World! with Device COde

```cpp
hellokernal<<<num_blocks,num_threads>>>()
```

- Triple angle brackets mark a call from *host* code to *device* code
 - Also called a “kernel launch”
 - `<<< ... >>>` parameters are for thread dimensionality

- That’s all that is required to execute a function on the GPU!
Hello World! with Device Code

```c
__device__ const char *STR = "Hello World!";
const char STR_LENGTH = 12;

__global__ void hellokernel(){
    printf("%c", STR[threadIdx.x % STR_LENGTH]);
}
int main(void){
    int num_threads = STR_LENGTH;
    int num_blocks = 1;
    hellokernel<<<num_blocks,num_threads>>>();
    cudaDeviceSynchronize();
    return 0;
}
```

Output:
```
$ nvcc hello.cu
$ ./a.out
Hello World!
$ 
```
Hello World! with Device Code

```
__device__ const char *STR = "Hello World!";
const char STR_LENGTH = 12;

__global__ void hellokernel(){
  printf("%c", STR[threadIdx.x % STR_LENGTH]);
}

int main(void){
  int num_threads = STR_LENGTH;
  int num_blocks = 2;
  hellokernel<<<num_blocks,num_threads>>>();
  cudaDeviceSynchronize();
  return 0;
}
```

__device__: Identify device-only data

threadIdx.x: the thread ID

Each thread only prints one character
Manycore GPU Architectures and Programming

- GPU architectures, graphics and GPGPUs
- GPU Execution model
- CUDA Programming model
- Working with Memory in CUDA
 - Global memory, shared and constant memory
- Streams and concurrency
- CUDA instruction intrinsic and library
- Performance, profiling, debugging, and error handling
- Directive-based high-level programming model
 - OpenACC and OpenMP
GPU Execution Model

- The GPU is a physically separate processor from the CPU
 - Discrete vs. Integrated
- The GPU Execution Model offers different abstractions from the CPU to match the change in architecture
GPU Execution Model

- The GPU is a physically separate processor from the CPU
 - Discrete vs. Integrated
- The GPU Execution Model offers different abstractions from the CPU to match the change in architecture
The Simplest Model: Single-Threaded

- Single-threaded Execution Model
 - Exclusive access to all variables
 - Guaranteed in-order execution of loads and stores
 - Guaranteed in-order execution of arithmetic instructions

- Also the most common execution model, and simplest for programmers to conceptualize and optimize
CPU SPMD Multi-Threading

• Single-Program, Multiple-Data (SPMD) model
 – Makes the same in-order guarantees within each thread
 – Says little or nothing about inter-thread behaviour or exclusive variable access without explicit inter-thread synchronization
GPU Multi-Threading

• Uses the Single-Instruction, Multiple-Thread model
 – Many threads execute the same instructions in lock-step
 – Implicit synchronization after every instruction (think vector parallelism)
GPU Multi-Threading

- In SIMT, all threads share instructions but operate on their own private registers, allowing threads to store thread-local state.
GPU Multi-Threading

- SIMT threads can be "disabled" when they need to execute instructions different from others in their group.

- Improves the flexibility of the SIMT model, relative to similar vector-parallel models (SIMD).

```cpp
if (a > b) {
    max = a;
} else {
    max = b;
}
```
GPU Multi-Threading

- GPUs execute many groups of SIMT threads in parallel
 - Each executes instructions independent of the others
Execution Model to Hardware

- How does this execution model map down to actual GPU hardware?

- NVIDIA GPUs consist of many streaming multiprocessors (SM)
Execution Model to Hardware

- NVIDIA GPU Streaming Multiprocessors (SM) are analogous to CPU cores
 - Single computational unit
 - Think of an SM as a single vector processor
 - Composed of multiple CUDA "cores", load/store units, special function units (sin, cosine, etc.)
 - Each CUDA core contains integer and floating-point arithmetic logic units
Execution Model to Hardware

• GPUs can execute multiple SIMT groups on each SM
 – For example: on NVIDIA GPUs a SIMT group is 32 threads, each Kepler SM has 192 CUDA cores ➔ simultaneous execution of 6 SIMT groups on an SM

• SMs can support more concurrent SIMT groups than core count would suggest
 – Each thread persistently stores its own state in a private register set
 – Many SIMT groups will spend time blocked on I/O, not actively computing
 – Keeping blocked SIMT groups scheduled on an SM would waste cores
 – Groups can be swapped in and out without worrying about losing state
Execution Model to Hardware

• This leads to a nested thread hierarchy on GPUs

A single thread

SIMT Group

SIMT Groups that concurrently run on the same SM

SIMT Groups that execute together on the same GPU
Now that we understand how abstract threads of execution are mapped to the GPU:

- How do those threads store and retrieve data?
- What rules are there about memory consistency?
- How can we efficiently use GPU memory?
There are many levels and types of GPU memory, each of which has special characteristics that make it useful:

- **Size**
- **Latency**
- **Bandwidth**
- **Readable and/or Writable**
- **Optimal Access Patterns**
- **Accessibility by threads in the same SIMT group, SM, GPU**

Later lectures will go into detail on each type of GPU memory.
For now, we focus on two memory types: on-chip shared memory and registers.

- These memory types affect the GPU execution model.

Each SM has a limited set of registers, each thread receives its own private set of registers.

Each SM has a limited amount of Shared Memory, all SIMT groups on an SM share that Shared Memory.
GPU Memory Model

• ➔ Shared Memory and Registers are limited
 – Per-SM resources which can impact how many threads can execute on an SM

• For example: consider an imaginary SM that supports executing 1,024 threads concurrently (32 SIMT groups of 32 threads)
 – Suppose that SM has a total of 16,384 registers
 – Suppose each thread in an application requires 64 registers to execute
 – Even though we can theoretically support 1,024 threads, we can only simultaneously store state for 16,384 registers / 64 registers per thread = 256 threads
• Parallelism is limited by both the computational and storage resources of the GPU.
 – In the GPU Execution Model, they are closely tied together.
The Host and the GPU

• Today, the GPU is not a standalone processor

• GPUs are always tied to a management processing unit, commonly referred to as the host, and always a CPU
The Host and the GPU

• Depending on system architecture, you may choose to think of the host and GPU in two different ways:

Cooperative co-processors

Management processor + accelerator

PCIe Bus
The Host and the GPU

• Cooperative co-processors
 – CPU and GPU work together on the problem at hand
 – Keep both processors well-utilized to get to the solution
 – Many different work partitioning techniques across CPU and GPU
The Host and the GPU

- Management processor + accelerator
 - CPU is dedicated to GPU management and other ancillary functions (network I/O, disk I/O, system memory management, scheduling decisions)
 - CPU may spend a large amount of application time blocked on the GPU
 - GPU is the workhorse of the application, most computation is offloaded to it
 - Allows for a light-weight, inexpensive CPU to be used
The Host and the GPU

Co-processor
• More computational bandwidth
• Higher power consumption
• Programmatically challenging
• Requires knowledge of both architectures to be implemented effectively
• Note useful for all applications

Accelerator
• Computational bandwidth of GPU only
• Lower power consumption
• Programming and optimizing focused on the GPU
• Limited knowledge of CPU architecture required
GPU Communication

• Communicating between the host and GPU is a piece of added complexity, relative to homogeneous programming models

• Generally, CPU and GPU have physically and logically separate address spaces (though this is changing)
GPU Communication

- Data transfer from CPU to GPU over the PCI bus adds:
 - Conceptual complexity
 - Performance overhead

<table>
<thead>
<tr>
<th>Communication Medium</th>
<th>Latency</th>
<th>Bandwidth</th>
</tr>
</thead>
<tbody>
<tr>
<td>On-Chip Shared Memory</td>
<td>A few clock cycles</td>
<td>Thousands of GB/s</td>
</tr>
<tr>
<td>GPU Memory</td>
<td>Hundreds of clock cycles</td>
<td>Hundreds of GB/s</td>
</tr>
<tr>
<td>PCI Bus</td>
<td>Hundreds to thousands of clock cycles</td>
<td>Tens of GB/s</td>
</tr>
</tbody>
</table>
GPU Communication

• As a result, computation-communication overlap is a common technique in GPU programming
 – Asynchrony is a first-class citizen of most GPU programming frameworks
• GPUs introduce a new conceptual model for programmers used to CPU single- and multi-threaded programming

• While the concepts are different, they are no more complex than those you would need to learn to extract optimal performance from CPU architectures

• GPUs offer programmers more control over how their workloads map to hardware, which makes the results of optimizing applications more predictable
References

1. The sections on *Introducing the CUDA Execution Model*, *Understanding the Nature of Warp Execution*, and *Exposing Parallelism* in Chapter 3 of *Professional CUDA C Programming*

