Lecture 19: Manycore GPU
Architectures and Programming, Part 1

Concurrent and Multicore Programming
CSE 436/536,

van@oakland.edu
www.secs.oakland.edu/~yan

Topics (Part 2)

* Parallel architectures and hardware
— Parallel computer architectures
— Memory hierarchy and cache coherency

@™ Manycore GPU architectures and programming

— GPUs architectures

— CUDA programming

— Introduction to offloading model in OpenMP and OpenACC
®* Programming on large scale systems (Chapter 6)

— MPI (point to point and collectives)
— Introduction to PGAS languages, UPC and Chapel

* Parallel algorithms (Chapter 8,9 &10)
— Dense matrix, and sorting

Manycore GPU Architectures and
Programming: Outline

@ Introduction
— GPU architectures, GPGPUs, and CUDA

* GPU Execution model
* CUDA Programming model

* Working with Memory in CUDA
— Global memory, shared and constant memory

* Streams and concurrency
®* CUDA instruction intrinsic and library
* Performance, profiling, debugging, and error handling

* Directive-based high-level programming model
— OpenACC and OpenMP

Computer Graphics

CPDADEIYCS

COMPUTER
GRAPHICS

Moy Mok

Graphics Processing Unit (GPU)

Graphics Subsystem

Display
CPU GPU
Inputs . (Central Processing . (Graphics Processing
Unit) Unit)
¢ ‘! :
Main Memory Graphics Memory
External (RAM) (VRAM)

Memory
Frame Buffer

Image: http://www.ntu.edu.sg/home/ehchua/programming/opengl/CG_BasicsTheory.html

GPU Chip

Graphics Processing Unit (GPU)

® Enriching user visual
experience

* Delivering energy-efficient
computing

* Unlocking potentials of
complex apps

* Enabling Deeper scientific , 3
discovery -4

........

T

B . . - -
: ~ ~ -
- . . w21 01 04 a1 '

; S
Computational
Photography

Recognition

‘ v

3D Graphics

What is GPU Today?

It is a processor optimized for 2D/3D graphics, video, visual
computing, and display.

It is highly parallel, highly multithreaded multiprocessor
optimized for visual computing.

It provide real-time visual interaction with computed
objects via graphics images, and video.

It serves as both a programmable graphics processor and a

scalable parallel computing platform.
— Heterogeneous systems: combine a GPU with a CPU

It is called as Many-core

Graphics Processing Units (GPUs): Brief History

General-purpose computing on
graphics processing units
(GPGPUs)

GPUs with programmable
shading

Nvidia GeForce

GE 3 (2001) with

programmable shading
DirectX graphics API

OpenGL graphics API

Hardware-accelerated
3D graphics
S3 graphics cards-
single chip 2D
accelerator
Atari 8-bit computer IBM PC Professional Playstation
text/graphics chip Graphics Controller card

GPU Computing

| | | |
1970 1980 1990 2000

Source of information http://en.wikipedia.org/wiki/Graphics_Processing_Unit

2010

NVIDIA Products

* NVIDIA Corp. is the leader in GPUs for HPC

Maxwe

* We will concentrate on NVIDIA GPU Tesla 2050 GPU (2013
has 448 thread Kepler

— Others AMD, ARM, etc processors w)),

Fermi

NVIDIA's first Tesla
GPU with general €870, S870, C1060, S1070, C2050, ...

purpose GeForce 400 series
processors GTX460/465/470/475/
Quadr

480/485
Established by Jen- GGZEC&)ce GeForce 200 series
Hsun Huang, Chris 8800 GTX260/275/280/285/295

Malachowsky, Curtis GeForce 8 series

Priem
GeForce 2 seriesGeForce FX series
NV1 GeForce 1

| | | l ! ! | ! | ! | | | l
1993 1995 1999 2000 2001 2002 2003 2004 2005 20062007 2008 2009 2010

http://en.wikipedia.org/wiki/GeForce

9

GPU Architecture Revolution

* Unified Scalar Shader Architecture

* Highly Data Parallel Stream Processing

Transformed
Raw Vertices Vertices & Processed
& Primitives Primitives Fragments Fragments Pixels _ Display
Vertex Fragment o
Processor , Rasterizer Processor Mu p-u
(Programmable) (Programmable) ereing
3D ,,'zg\.\?,D l,’.;~\3D 2D array of
/ N ’ .(3'\\ -
‘,‘.’..‘:\ ‘,‘.’.OQ;:\ color-values

Y

3D Graphics Rendering Pipeline: Output of one stage is fed as input of the next stage. A vertex has attributes
such as (x, y, z) position, color (RGB or RGBA), vertex-normal (nx, ny, n;), and texture. A primitive is made up of
one or more vertices. The rasterizer raster-scans each primitive to produce a set of grid-aligned fragments, by
interpolating the vertices.

Image: http://www.ntu.edu.sg/home/ehchua/programming/opengl/CG_BasicsTheory.html

An Introduction to Modern GPU Architecture, Ashu Rege, NVIDIA Director of Developer Technology

ftp://download.nvidia.com/developer/cuda/seminar/TDCI_Arch.pdf 10

GPUs with Dedicated Pipelines

-- late 1990s-early 2000s

® Graphics chips generally
had a pipeline structure
with individual stages
performing specialized
operations, finally
leading to loading frame
buffer for display.

* Individual stages may
have access to graphics
memory for storing
intermediate computed
data.

11

Graphics Logical Pipeline

Input " Vertex L Geometry " Setup & 5 Pixel L5 Raster Operations/

Assembler Shader Shader Rasterizer Shader Output Merger

Graphics logical pipeline. Programmable graphics shader stages are blue, and fixed-function blocks are
white. Copyright © 2009 Elsevier, Inc. All rights reserved.

Processor Per Function, each could be vector

Unbalanced
and
inefficient
utilization

13 6 7 9 1113 15171 21 21 25 27 2931331’)37394143454 4951

Figure 14. Characteristic pixel and vertex shader workload 12
variation over time

Unified Shader

* Optimal utilization in unified architecture

Input Vertex
Assembler Shader
Geometry
- Shader
Setup & Pixel - Raster Operations/
(Rasterizer Shader Output Merger

FIGURE A.2.4 Logical pipeline mapped to physical processors. The programmable shader stages execute on the
array of unified processors, and the logical graphics pipeline dataflow recirculates through the processors. Copyright ©
2009 Elsevier, Inc. All rights reserved. 13

Specialized Pipeline Architecture

Vertex Processing

Texture and
Fragment Processing

Z-Compare
and Blend

GeForce 6 Series Architecture
(2004-5)
From GPU Gems 2

1
f] f f f i
1
Cull / Clip / Setup
, L
C Z-Cull Rasterization
N rovm—" —— Ca—
= I | Texture Cache |=—
| 4 ' 1))
[anmenttumlm]
| P I T P D, A R . [K A, SO S T P
h W WK u LDJ
3
: ‘ ' L} 1
Memory Memory Memory Memory
Partition Partition Partition Partition

Unified Shader Architecture

GPU
| Host Interface L
| | | SM
Viewport/Clip/ T e
| Input Assembler | Seluptiasion v R@MMM@Q
ZCull o - I-Cache
[[P
Vertex Work Pixel Work Compute Work
Distribution Distribution Distribution 3 MT |Ssue
I I [/ 4
[[[[[[] y. = C-Cache
TPC TPC TPC TPC TPC TPC TPC 7 /1
[[|] [[| Z E 7
I I]] I J{ | V4 1
SM SM
ngrovy h?‘e::ory : Ma::ory 32:‘ ry g la::\my :::; Sen:lory S:;r;‘}
Texture Unit Texture Unit Texture Unit Texture Unit Texture Unit Texture Unit Texture E it i ™ -
| Tex L1 IRl Tex L1 IRl Tex L1 I 1] Tex L1 1] Tex L1 1] 1] Tex L1 1 Tex L1 <
| | | | | | | | | | | | | | E
(Interconnection Network s\ Shared
[[| [| | | [[N Memory
|rop || L2 | [Rop || 2 | [Rop || 2 | [Ror || L2 | | Display Interface | -
| | | | | | | | |
| | | | | | | | I i
DRAM DRAM DRAM DRAM " Display '

FIGURE A.2.5 Basic unified GPU architecture. Example GPU with 112 streaming processor (SP) cores organized in 14
streaming multiprocessors (SMs); the cores are highly multithreaded. It has the basic Tesla architecture of an NVIDIA
GeForce 8800. The processors connect with four 64-bit-wide DRAM partitions via an interconnection network. Each SM has
eight SP cores, two special function units (SFUs), instruction and constant caches, a multithreaded instruction unit, and a 15
shared memory. Copyright © 2009 Elsevier, Inc. All rights reserved.

Streaming Processing

To be efficient, GPUs must have high throughput, i.e.
processing millions of pixels in a single frame, but may be
high latency

* “lLatency is a time delay between the moment something is
initiated, and the moment one of its effects begins or
becomes detectable”

* For example, the time delay between a request for texture
reading and texture data returns

* Throughput is the amount of work done in a given amount
of time

— CPUs are low latency low throughput processors
— GPUs are high latency high throughput processors

16

Parallelism in CPUs v. GPUs

®* CPUs use task parallelism

Multiple tasks map to multiple
threads

Tasks run different instructions

10s of relatively heavyweight
threads run on 10s of cores

Each thread managed and
scheduled explicitly

Each thread has to be
individually programmed
(MPMD)

®* GPUs use data parallelism

SIMD model (Single Instruction
Multiple Data)

Same instruction on different
data

10,000s of lightweight threads
on 100s of cores

Threads are managed and
scheduled by hardware

Programming done for batches
of threads (e.g. one pixel
shader per group of pixels, or
draw call)

17

Streaming Processing to Enable Massive
Parallelism

Given a (typically large) set of data(“stream”)

Run the same series of operations (“kernel” or “shader”) on
all of the data (SIMD)

GPUs use various optimizations to improve throughput:

Some on chip memory and local caches to reduce
bandwidth to external memory

Batch groups of threads to minimize incoherent memory
access

— Bad access patterns will lead to higher latency and/or thread
stalls.

Eliminate unnecessary operations by exiting or killing
threads

18

GPU Computing — The Basic Idea

* Use GPU for more than just generating graphics

— The computational resources are there, they are most of the
time underutilized

19

GPU Performance Gains Over CPU

Theoretical GFLOP/s

5750
5500
5250
5000
4750
4500
4250
4000

NVIDIA GPU Single Precision
et NVIDIA GPU Double Precision

Intel CPU Double Precision
emgmm|ntel CPU Single Precision

3750 http://docs.nvidia.com/cuda/cuda-c-programming-guide

3500
3250
3000
2750
2500
2250
2000
1750
1500
1250
1000

750

500

250

0
Apr-01

Pentium 4

Sep-02 Jan-04

Tesla K40
Tesla K20X

Tesla M2090

Tesla C2050
Tesla C1060
Harpertown

lvy Bridge
Sandy Bridge
Woodcrest

Bloomfield Westmere

May-05 Oct-06 Feb-08 Jul-09 Nov-10 Apr-12 Aug-13 Dec-14

20

GPU Performance Gains Over CPU

BLAS Performance: CPU vs GPU <3

NVIDIA
(Got Performance boost in CUDA 2.0)

Gflops Single Precision BLAS: SGEMM Gflops Double Precision BLAS: DGEMM
400 - 80 1

350 A 70 4
300 - 60 - ~=-Tesla C1060

| ~+Intel MKL 4 Threads
230 -=-Tesla C1060 S0

200 + ~*=Intel MKL 4 Threads 40
150 30 1
100 - 20 -
S50 10 1
0

P -

6\
Matrix Size Matrix Size
CUBLAS: CUDA 2.2, Tesla C1060

MKL 10.0.3: Intel Core2 Extreme, 3.00GHz
NVIDIA Confidential: Under NDA only

GPU Computing — Offloading Computation

* The GPU is connected to the CPU by a reasonable fast bus
(8 GB/s is typical today): PCle

High-speed
graphics bus

(AGP or PCI Northbridge
press,

(memory

PCI Slots

 Terminology
— Host: The CPU and its memory (host memory)

— Device: The GPU and its memory (device memory)
22

Simple Processing Flow

PCl Bus >

CPU Memory

1. Copy input data from CPU memory to
GPU memory

23

Simple Processing Flow

PCl Bus >

CPU Memory

1. Copy input data from CPU memory to
GPU memory

2. Load GPU program and execute,
caching data on chip for performance

24

Simple Processing Flow

PCl Bus >

/
AL

14

1. Copy input data from CPU memory to
GPU memory

2. Load GPU program and execute,
caching data on chip for performance

3. Copy results from GPU memory to
CPU memory

L2

DRAM

25

Offloading Computation

#define N 1024
#define RADIUS 3
#define BLOCK_SIZE 16

__global__ void stencil_1d(int *in, int *out) {

}

__shared__ int temp[BLOCK_SIZE + 2 * RADIUS];
int gindex = threadldx.x + blockldx.x * blockDim.x;
int lindex = threadldx.x + RADIUS;

/I Read input elements into shared memory
temp][lindex] = in[gindex];
if (threadldx.x < RADIUS) {
templ[lindex - RADIUS] = in[gindex - RADIUS];
temp[lindex + BLOCK_SIZE] = in[gindex + BLOCK_SIZE];
}

/I Synchronize (ensure all the data is available)
__syncthreads();

/I Apply the stencil

int result = 0;

for (int offset = -RADIUS ; offset <= RADIUS ; offset++)
result += templlindex + offset];

/I Store the result
out[gindex] = result;

void fill_ints(int *x, int n) {

}

fill_n(x, n, 1);

int main(void) {

int *in, *out; /I host copies of a, b, ¢
int *d_in, *d_out; /I device copies of a, b, ¢
int size = (N + 2*RADIUS) * sizeof(int);

/I Alloc space for host copies and setup values
in = (int *)malloc(size); fill_ints(in, N + 2*RADIUS);
out = (int *)malloc(size); fill_ints(out, N + 2*RADIUS);

/I Alloc space for device copies
cudaMalloc((void **)&d_in, size);
cudaMalloc((void **)&d_out, size);

/I Copy to device
cudaMemcpy(d_in, in, size, cudaMemcpyHostToDevice);
cudaMemcpy(d_out, out, size, cudaMemcpyHostToDevice);

/I Launch stencil_1d() kernel on GPU
stencil_1d<<<N/BLOCK_SIZE,BLOCK_SIZE>>>(d_in + RADIUS, d_out + RADIUS);
/I Copy result back to host

cudaMemcpy(out, d_out, size, cudaMemcpyDevice ToHost);

/I Cleanup

free(in); free(out);
cudaFree(d_in); cudaFree(d_out);
return 0;

parallel fn

serial code

parallel exe on GPU
serial code

@

26

Programming for NVIDIA GPUs

GPU Computing Applications

CUSPARSE

Programming Languages

Java])
. Directives
c C++ Fortran Python DirectCompute
‘.".’rippers PU® | (e.g.OpenAce)

CUDA-Enabled NVIDIA GPUs

. TeslaK20
GeForce 600 Series
(com pute capabilities 3.X) TeslaK10

Fermi Architecture GeForce 500 Series

(compute capabilities 2.x) GeForce 400 Series QuadroFermi Series VeslizyJarles

; GeForce 200 Series QuadroFXSeries
'I(':eosr:la ﬁtgc:a:tea(:)ti::tri(; 1.x GeForce 9 Series QuadroPlex Series Tesla10 Series
(P P 2 GeForce 8 Series QuadroNVS Series

http://docs. i D
programming ’h - P retsional. 8 Pertormance
3“ |aanen ; Graphics Computing

CUDA(Compute Unified Device Architecture)

Both an architecture and programming model

* Architecture and execution model
— Introduced in NVIDIA in 2007
— Get highest possible execution performance requires
understanding of hardware architecture
®* Programming model
— Small set of extensions to C
— Enables GPUs to execute programs written in C
— Within C programs, call SIMT “kernel” routines that are
executed on GPU.
* Hello world introduction today
— More in later lectures

28

CUDA Thread Hierarchy

* Allows flexibility and
efficiency in
processing 1D, 2-D,

and 3-D data on GPU.

* Linked to internal
organization

®* Threads in one block
execute together.

Grid

Block (0, 0) | Block (1, 0)

O

Block (2, 0)

Block (0, 1y" Block (1, 1)
335555

999593599599 W

*Block (2, 1) \

C"ém\be 1,2 0r3
dimensions

Block (1, 1)

29

Hello World!

main () {
printf ("Hello World!\n");
0;

* Standard C that runs on the host

* NVIDIA compiler (nvcc) can be used to
compile programs with no device code
* |ennon.secs.oakland.edu
* Using /usr/local/cuda-8.0/bin/nvcc

e export PATH=/usr/local/cuda-8.0/bin:
SPATH

Output:

S nvcc
hello.cu

$./a.out
Hello World!
$

30

Hello World! with Device Code

hellokernel () {
printf (“"Hello World!'\n”);

main () {

int num threads = 1;

int num blocks = 1;
hellokernel<<<num blocks,num threads>>>() ;
cudaDeviceSynchronize () ;

return 0; Output:
} $ nvcc
hello.cu
= Two new syntactic elements... $./a.out

Hello World!
$

31

GPU code examples

* |ennon.secs.oakland.edu

export PATH=/usr/local/cuda-8.0/bin:SPATH
cp -r ~“yan/gpu_code examples ~

cd gpu_code_examples
nvcc hello-1.cu —o hello-1
./hello-1

nvcc hello-2.cu —o hello-2
./hello-2

32

Hello World! with Device Code

void hellokernel (void)

* CUDA C/C++ keyword indicates a function that:
— Runs on the device
— Is called from host code

®* nvcc separates source code into host and device
components

— Device functions (e.g. hellokernel ()) processed by NVIDIA
compiler

— Host functions (e.g. main ()) processed by standard host
compiler

* gcg, cl.exe

33

Hello World! with Device COde

hellokernel<<<num blocks,num threads>>>() ;

* Triple angle brackets mark a call
from host code to device code
— Also called a “kernel launch”

— <<<...>>>parameters are for thread
dimensionality

* That’s all that is required to
execute a function on the GPU!

Grid

Block (0, 0) || Block (1, 0) || Block (2, 0)
p)

Block (0, 1) 7| Block (1,1) |[Block (2, 1)

Block (1, 1)

34

Hello World! with Device Code

*STR = "Hello World!";
STR_LENGTH = 12;

hellokernel () {
printf ("%c", STR[threadIdx.x % STR LENGTH]) ;

main () {
int num threads = STR LENGTH; Output:
int num blocks = 1; $ nvcce
hellokernel<<<num blocks,num threads>>>()]:,)'e]']'c> - Cu
cudaDeviceSynchronize () ; $./a.out
return O: Hello World!

$

35

Hello World! with Device Code

*STR = "Hello World!";

(\T{NGTH=12;

hellokernel () {

printf ("%c", STR[thregdIdx.x % STR LENGTH]) ;

) ' threadIdx. x: the thread ID
main () {

int num threads = STR LENGTH;
int num blocks = 2;
hellokernel<<<num blocks,num threads>>>() ;

. Identify device-only data

cudaDeviceSynchronize () ;
return O;

v
Each thread only prints one character

36

Manycore GPU Architectures and Programming

®* GPU architectures, graphics and GPGPUs
@ GPU Execution model
®* CUDA Programming model

* Working with Memory in CUDA
— Global memory, shared and constant memory

* Streams and concurrency
®* CUDA instruction intrinsic and library
* Performance, profiling, debugging, and error handling

* Directive-based high-level programming model
— OpenACC and OpenMP

37

GPU Execution Model

* The GPU is a physically separate processor from the CPU
— Discrete vs. Integrated

* The GPU Execution Model offers different abstractions
from the CPU to match the change in architecture

38

GPU Execution Model

* The GPU is a physically separate processor from the CPU
— Discrete vs. Integrated

* The GPU Execution Model offers different abstractions
from the CPU to match the change in architecture

39

The Simplest Model: Single-Threaded

* Single-threaded Execution Model
— Exclusive access to all variables
— Guaranteed in-order execution of loads and stores
— Guaranteed in-order execution of arithmetic instructions

* Also the most common execution model, and simplest for
programmers to conceptualize and optimize

Single-Threaded >

40

CPU SPMD Multi-Threading

* Single-Program, Multiple-Data (SPMD) model
— Makes the same in-order guarantees within each thread

— Says little or nothing about inter-thread behaviour or exclusive
variable access without explicit inter-thread synchronization

)

)
)

SPMD

41

GPU Multi-Threading

® Uses the Single-Instruction, Multiple-Thread model
— Many threads execute the same instructions in lock-step

— Implicit synchronization after every instruction (think vector
parallelism)

SIMT

NEERERR
Ll

42

GPU Multi-Threading

* In SIMT, all threads share instructions but operate on their
own private registers, allowing threads to store thread-
local state

SIMT

43

GPU Multi-Threading

* SIMT threads can be
“disabled” when they need
to execute instructions
different from others in their

group

* Improves the flexibility of the
SIMT model, relative to
similar vector-parallel models
(SIMD)

oo

Disabled

N
>

a
3 b

if (a > b) {

max a
} else {

max = b;

}

1Y

pajqesid

44

GPU Multi-Threading

* GPUs execute many groups of SIMT threads in parallel
— Each executes instructions independent of the others

SIMT Group O

vVVvYv

SIMT Group 1

vVVvYv

45

Execution Model to Hardware

* How does this

execution model GPRC .
Raster Engine
map down to actual T3 T3 t3
3 SM SM SM

* NVIDIA GPUs consist
of many streaming
multiprocessors (SM)

3 i 2
SM

Polymorph Engine Polymorph Engine Polymorph Engine Polymorph Engine

46

Execution Model to Hardware

* NVIDIAGPU Streaming
Multiprocessors (SM) are
analogous to CPU cores

— Single computational unit
— Think of an SM as a single
vector processor

Composed of multiple CUDA
“cores”, load/store units,
special function units (sin,
cosine, etc.)

Each CUDA core contains
integer and floating-point
arithmetic logic units

SMX

Instruction Cache

Warp Scheduler Warp Scheduler

Dispatch Dispatch Dispatch Dispatch
L 2 L 2 L 2 S 2

Warp Scheduler Warp Scheduler

Dispatch Dispatch Dispatch

Dispatch
3 L 2 3 3

Register File (65,536 x 32-bit)

4 4 4 3
Core Core Core

Core Core Core - Core Core Core - LoisT SFU
Core Core Core - Core Core Core - LoistT SFU
Core Core Core - Core Core Core - LoisT SFU
Core Core Core - Core Core Core - LoisT SFU
Core Core Core - Core Core Core - LoisT SFU
Core Core Core - Core Core Core - Loist SFU
Core Core Core - Core Core Core - LoisT SFU
Core Core Core - Core Core Core - LoisT |SFU
Core Core Core - Core Core Core . LoistT SFU
Core Core Core - Core Core Core - LoistT SFU
Core Core Core - Core Core Core - LoisT SFU
Core Core Core - Core Core Core - LoisT SFU
Core Core Core - Core Core Core - LoisT SFU
Core Core Core - Core Core Core - LoistT SFU
Core Core Core - Core Core Core - LoisT SFU

4 4 3 3
Core Core Core

4 3
LoiST |SFU

T W

4 4 43 3
Core Core Core

Core Core Core - Core Core Core - LoisT |SFU
Core Core Core - Core Core Core - LoisT | SFU
Core Core Core - Core Core Core . LoisT |SFU
Core Core Core - Core Core Core - LoiST |SFU
Core Core Core - Core Core Core - LoisT |SFU
Core Core Core - Core Core Core - LoisT | SFU
Core Core Core - Core Core Core - LoisT | SFU
Core Core Core - Core Core Core - LoiST | SFU
Core Core Core - Core Core Core . LoisT |SFU
Core Core Core - Core Core Core - LoisT | SFU
Core Core Core - Core Core Core . LoisT |SFU
Core Core Core - Core Core Core - LO/ST ' SFU
Core Core Core - Core Core Core . LoisT |SFU
Core Core Core - Core Core Core - LoisT SFU
Core Core Core - Core Core Core . Lo/sT SFU

4 4 3 3
Core Core Core

R
LoisT SFU

64 KB Shared Memory / L1 Cache
48 KB Read-Only Data Cache

Tex

Tex

Tex

Tex

Execution Model to Hardware

®* GPUs can execute multiple SIMT groups on each SM

For example: on NVIDIA GPUs a SIMT group is 32 threads, each
Kepler SM has 192 CUDA cores =2 simultaneous execution of 6 SIMT
groups on an SM

® SMs can support more concurrent SIMT groups than core count
would suggest

Each thread persistently stores its own state in a private register set
Many SIMT groups will spend time blocked on 1/O, not actively
computing

Keeping blocked SIMT groups scheduled on an SM would waste
cores

Groups can be swapped in and out without worrying about losing
state

48

Execution Model to Hardware

* This leads to a nested thread hierarchy on GPUs

A SIMT SIMT Groups that SIMT Groups that execute
single concurrently run on the together on the same
I | |l — 1

il il sz |

49

GPU Memory Model

* Now that we understand how
abstract threads of execution
are mapped to the GPU:

— How do those threads store
and retrieve data?

— What rules are there about
memory consistency?

— How can we efficiently use
GPU memory?

SIMT Thread Groups on a GPU

SIMT Thread Groups on an SM

SIMT Thread Group

Registers Local Memory

On-Chip Shared Memory

Global Memory
Constant Memory

Texture Memory

GPU Memory Model

* There are many levels and types of GPU memory, each of

which has special characteristics that make it useful

— Size

— Latency

— Bandwidth

— Readable and/or Writable

— Optimal Access Patterns

— Accessibility by threads in the same SIMT group, SM, GPU

* Later lectures will go into detail on each type of GPU
memory

51

GPU Memory Model

* For now, we focus on two memory
types: on-chip shared memory and SIMT Thread Groups on a GPU

regISterS SIMT Thread Groups on an SM
— These memory types affect the GPU
execution model

SIMT Thread Group

Local Memory

®* Each SM has a limited set of
registers, each thread receives its
own private set of registers

Global Memory

®* Each SM has a limited amount of
Shared Memory, all SIMT groups on
an SM share that Shared Memory S

Constant Memory

GPU Memory Model

* =» Shared Memory and Registers are limited

— Per-SM resources which can impact how many threads can
execute on an SM

* For example: consider an imaginary SM that supports

executing 1,024 threads concurrently (32 SIMT groups of 32
threads)

— Suppose that SM has a total of 16,384 registers

— Suppose each thread in an application requires 64 registers to
execute

— Even though we can theoretically support 1,024 threads, we
can only simultaneously store state for 16,384 registers / 64
registers per thread = 256 threads

53

GPU Memory Model

* =>» Parallelism is limited by both the computational and
storage resources of the GPU.
— In the GPU Execution Model, they are closely tied together.

54

The Host and the GPU

* Today, the GPU is not a standalone processor

* GPUs are always tied to a management processing unit,
commonly referred to as the host, and always a CPU

PCle Bus

-

55

The Host and the GPU

* Depending on system architecture, you may choose to
think of the host and GPU in two different ways:

Cooperative co-processors Management processor +
accelerator

PCle Bus

—

PCle Bus

CPU Memory

[T T T

56

The Host and the GPU

* Cooperative co-processors
— CPU and GPU work together on the problem at hand
— Keep both processors well-utilized to get to the solution

— Many different work partitioning techniques across CPU and
GPU

PCle Bus

CPU Memory

T T T

57

The Host and the GPU

* Management processor + accelerator

— CPU is dedicated to GPU management
and other ancillary functions (network I/
O, disk I/O, system memory
management, scheduling decisions)

— CPU may spend a large amount of
application time blocked on the GPU

— GPU is the workhorse of the application,
most computation is offloaded to it

— Allows for a light-weight, inexpensive
CPU to be used

The Host and the GPU

Co-processor Accelerator
More computational * Computational bandwidth of
bandwidth GPU only

Higher power consumption * Lower power consumption
Programmatically challenging ® Programming and optimizing

Requires knowledge of both focused on the GPU
architectures to be * Limited knowledge of CPU
implemented effectively architecture required

Note useful for all applications

59

GPU Communication

* Communicating between the host and GPU is a piece of
added complexity, relative to homogeneous programming
models

* Generally, CPU and GPU have physically and logically
separate address spaces (though this is changing)

PCle Bus

60

GPU Communication

* Data transfer from CPU to GPU over the PCIl bus adds
— Conceptual complexity
— Performance overhead

Communication Latency Bandwidth
Medium

On-Chip Shared A few clock cycles Thousands of GB/s

Memory
GPU Memory Hundreds of clock Hundreds of GB/s
cycles
PCI Bus Hundreds to Tens of GB/s

thousands of clock
cycles

61

GPU Communication

* As aresult, computation-communication overlap is a
common technique in GPU programming

— Asynchrony is a first-class citizen of most GPU programming
frameworks

GPU

Compute Compute Compute Compute
PCle Bus ‘ u u |

Copy Copy Copy

62

GPU Execution Model

®* GPUs introduce a new conceptual model for programmers
used to CPU single- and multi-threaded programming

* While the concepts are different, they are no more complex
than those you would need to learn to extract optimal
performance from CPU architectures

®* GPUs offer programmers more control over how their
workloads map to hardware, which makes the results of
optimizing applications more predictable

63

References

1. The sections on Introducing the CUDA Execution Model,

Understanding the Nature of Warp Execution, and Exposing
Parallelism in Chapter 3 of Professional CUDA C Programming

Michael Wolfe. Understanding the CUDA Data Parallel Threading
Model. https://www.pgroup.com/lit/articles/insider/v2nl1a5.htm

Will Ramey. Introduction to CUDA Platform. http://
developer.download.nvidia .com/compute/
developertrainingmaterials/presentations/general/Why_GPU _
Computing.pptx

Timo Stich. Fermi Hardware & Performance Tips. http://
theinf2.informatik.uni-jena.de/ theinf2_multimedia/
Website_downloads/NVIDIA_Fermi_Perf Jena 2011.pdf

64

