
Lecture	19:	Manycore	GPU	
Architectures	and	Programming,	Part	1	

Concurrent	and	Mul=core	Programming	
CSE	436/536,		

	
yan@oakland.edu	

www.secs.oakland.edu/~yan	
	

1	

Topics	(Part	2)	

•  Parallel	architectures	and	hardware	
–  Parallel	computer	architectures	
–  Memory	hierarchy	and	cache	coherency	

•  Manycore	GPU	architectures	and	programming	
–  GPUs	architectures	
–  CUDA	programming	
–  Introduc?on	to	offloading	model	in	OpenMP	and	OpenACC	

•  Programming	on	large	scale	systems	(Chapter	6)	
–  MPI	(point	to	point	and	collec=ves)	
–  Introduc?on	to	PGAS	languages,	UPC	and	Chapel	

•  Parallel	algorithms	(Chapter	8,9	&10)	
–  Dense	matrix,	and	sor=ng	

2	

Manycore	GPU	Architectures	and	
Programming:	Outline	

•  Introduc?on	
–  GPU	architectures,	GPGPUs,	and	CUDA	

•  GPU	Execu?on	model	
•  CUDA	Programming	model	
•  Working	with	Memory	in	CUDA	

–  Global	memory,	shared	and	constant	memory	
•  Streams	and	concurrency	
•  CUDA	instruc?on	intrinsic	and	library	
•  Performance,	profiling,	debugging,	and	error	handling	
•  Direc?ve-based	high-level	programming	model	

–  OpenACC	and	OpenMP	

3	

Computer	Graphics	

GPU:	Graphics	Processing	Unit	

4	

Graphics	Processing	Unit	(GPU)	

5	

Image:	h[p://www.ntu.edu.sg/home/ehchua/programming/opengl/CG_BasicsTheory.html	

Graphics	Processing	Unit	(GPU)	

6	

•  Enriching	user	visual	
experience	

•  Delivering	energy-efficient	
compu?ng	

•  Unlocking	poten?als	of	
complex	apps	

•  Enabling	Deeper	scien?fic	
discovery	

What	is	GPU	Today?	

•  It	is	a	processor	op?mized	for	2D/3D	graphics,	video,	visual	
compu?ng,	and	display.	

•  It	is	highly	parallel,	highly	mul=threaded	mul=processor	
op?mized	for	visual	compu?ng.	

•  It	provide	real-?me	visual	interac?on	with	computed	
objects	via	graphics	images,	and	video.	

•  It	serves	as	both	a	programmable	graphics	processor	and	a	
scalable	parallel	compu=ng	plaSorm.	
–  Heterogeneous	systems:	combine	a	GPU	with	a	CPU	

•  It	is	called	as	Many-core	

7	

Graphics	Processing	Units	(GPUs):	Brief	History	

8	

1970	 2010	2000	1990	1980	

Atari	8-bit	computer	
text/graphics	chip	

	

Source	of	informa?on	h[p://en.wikipedia.org/wiki/Graphics_Processing_Unit	

IBM	PC	Professional	
Graphics	Controller	card		

S3	graphics	cards-		
single	chip	2D	
accelerator	

OpenGL	graphics	API	

Hardware-accelerated	
3D	graphics	

DirectX	graphics	API	

Playsta=on	

GPUs	with	programmable	
shading	

Nvidia	GeForce	
GE	3	(2001)	with	

programmable	shading	

General-purpose	compu=ng	on	
graphics	processing	units	

(GPGPUs)	

GPU	Compu=ng		

NVIDIA	Products	

•  NVIDIA	Corp.	is	the	leader	in	GPUs	for	HPC	
•  We	will	concentrate	on	NVIDIA	GPU	

–  Others	AMD,	ARM,	etc	

9	

1993 2010 1999 1995
h[p://en.wikipedia.org/wiki/GeForce	

2009 2007 2008 2000 2001 2002 2003 2004 2005 2006

Established	by	Jen-
Hsun	Huang,	Chris	

Malachowsky,	Cur=s	
Priem	

NV1 GeForce 1
GeForce 2 series GeForce FX series

GeForce 8 series

GeForce 200 series

GeForce 400 series
GTX460/465/470/475/

480/485	

GTX260/275/280/285/295	GeForce	
8800		

GT 80

Tesla

Quadr
o

NVIDIA's	first	
GPU	with	general	
purpose	
processors	

C870,	S870,	C1060,	S1070,	C2050,	…	

Tesla	2050	GPU	
has	448	thread	
processors	

Fermi

Kepler
(2011)

Maxwell
(2013)

GPU	Architecture	Revolu=on		

•  Unified	Scalar	Shader	Architecture	

•  Highly	Data	Parallel	Stream	Processing		

10	
An	Introduc?on	to	Modern	GPU	Architecture,	Ashu	Rege,	NVIDIA	Director	of	Developer	Technology	
hp://download.nvidia.com/developer/cuda/seminar/TDCI_Arch.pdf	

Image:	h[p://www.ntu.edu.sg/home/ehchua/programming/opengl/CG_BasicsTheory.html	

GPUs	with	Dedicated	Pipelines	
--	late	1990s-early	2000s	

•  Graphics	chips	generally	
had	a	pipeline	structure	
with	individual	stages	
performing	specialized	
opera?ons,	finally	
leading	to	loading	frame	
buffer	for	display.	

•  Individual	stages	may	
have	access	to	graphics	
memory	for	storing	
intermediate	computed	
data.	

11	

Input stage

Vertex shader
stage

Geometry
shader stage

Rasterizer
stage

Frame
buffer Pixel shading

stage

Graphics
memory

Graphics	Logical	Pipeline	

Processor	Per	Func=on,	each	could	be	vector		

12	

Graphics	logical	pipeline.	Programmable	graphics	shader	stages	are	blue,	and	fixed-func?on	blocks	are	
white.	Copyright	©	2009	Elsevier,	Inc.	All	rights	reserved.	

Unbalanced	
and	
inefficient	
u=liza=on	

Unified	Shader	

•  Op?mal	u?liza?on	in	unified	architecture		

13	

FIGURE A.2.4 Logical pipeline mapped to physical processors. The programmable shader stages execute on the
array of unified processors, and the logical graphics pipeline dataflow recirculates through the processors. Copyright ©
2009 Elsevier, Inc. All rights reserved.

Specialized	Pipeline	Architecture	

14	

GeForce	6	Series	Architecture	
(2004-5)	

From	GPU	Gems	2	

Unified	Shader	Architecture	

15	

FIGURE A.2.5 Basic unified GPU architecture. Example GPU with 112 streaming processor (SP) cores organized in 14
streaming multiprocessors (SMs); the cores are highly multithreaded. It has the basic Tesla architecture of an NVIDIA
GeForce 8800. The processors connect with four 64-bit-wide DRAM partitions via an interconnection network. Each SM has
eight SP cores, two special function units (SFUs), instruction and constant caches, a multithreaded instruction unit, and a
shared memory. Copyright © 2009 Elsevier, Inc. All rights reserved.

Streaming	Processing	

To	be	efficient,	GPUs	must	have	high	throughput,	i.e.	
processing	millions	of	pixels	in	a	single	frame,	but	may	be	

high	latency	
	
•  “Latency	is	a	!me	delay	between	the	moment	something	is	
ini?ated,	and	the	moment	one	of	its	effects	begins	or	
becomes	detectable”		

•  For	example,	the	?me	delay	between	a	request	for	texture	
reading	and	texture	data	returns		

•  Throughput	is	the	amount	of	work	done	in	a	given	amount	
of	?me	
–  CPUs	are	low	latency	low	throughput	processors		
–  GPUs	are	high	latency	high	throughput	processors		

16	

Parallelism	in	CPUs	v.	GPUs		

•  CPUs	use	task	parallelism	
–  Mul?ple	tasks	map	to	mul?ple	

threads	

–  Tasks	run	different	instruc?ons	

–  10s	of	rela?vely	heavyweight	
threads	run	on	10s	of	cores	

–  Each	thread	managed	and	
scheduled	explicitly	

–  Each	thread	has	to	be	
individually	programmed	
(MPMD)	

17	

•  GPUs	use	data	parallelism	
–  SIMD	model	(Single	Instruc?on	

Mul?ple	Data)	

–  Same	instruc?on	on	different	
data	

–  10,000s	of	lightweight	threads	
on	100s	of	cores	

–  Threads	are	managed	and	
scheduled	by	hardware	

–  Programming	done	for	batches	
of	threads	(e.g.	one	pixel	
shader	per	group	of	pixels,	or	
draw	call)	

Streaming	Processing	to	Enable	Massive	
Parallelism	

•  Given	a	(typically	large)	set	of	data(“stream”)	
•  Run	the	same	series	of	opera?ons	(“kernel”	or	“shader”)	on	
all	of	the	data	(SIMD)		

•  GPUs	use	various	op?miza?ons	to	improve	throughput:		
•  Some	on	chip	memory	and	local	caches	to	reduce	
bandwidth	to	external	memory		

•  Batch	groups	of	threads	to	minimize	incoherent	memory	
access		
–  Bad	access	pa[erns	will	lead	to	higher	latency	and/or	thread	

stalls.	
•  Eliminate	unnecessary	opera?ons	by	exi?ng	or	killing	
threads		

18	

19 19	

GPU	Compu=ng	–	The	Basic	Idea		

•  Use	GPU	for	more	than	just	genera=ng	graphics	
–  The	computa?onal	resources	are	there,	they	are	most	of	the	

?me	underu?lized	
	

GPU	Performance	Gains	Over	CPU	

20	

h[p://docs.nvidia.com/cuda/cuda-c-programming-guide	

GPU	Performance	Gains	Over	CPU	

21	

GPU	Compu=ng	–	Offloading	Computa=on	

•  The	GPU	is	connected	to	the	CPU	by	a	reasonable	fast	bus	
(8	GB/s	is	typical	today):	PCIe	

•  Terminology	
–  Host:	The	CPU	and	its	memory	(host	memory)	
–  Device:	The	GPU	and	its	memory	(device	memory)	

22	

Simple	Processing	Flow	

1.  Copy	input	data	from	CPU	memory	to	
GPU	memory	

PCI	Bus	

23	

Simple	Processing	Flow	

1.  Copy	input	data	from	CPU	memory	to	
GPU	memory	

2.  Load	GPU	program	and	execute,	
caching	data	on	chip	for	performance	

PCI	Bus	

24	

Simple	Processing	Flow	

1.  Copy	input	data	from	CPU	memory	to	
GPU	memory	

2.  Load	GPU	program	and	execute,	
caching	data	on	chip	for	performance	

3.  Copy	results	from	GPU	memory	to	
CPU	memory	

PCI	Bus	

25	

Offloading	Computa=on	
#define N 1024
#define RADIUS 3
#define BLOCK_SIZE 16

__global__ void stencil_1d(int *in, int *out) {

 __shared__ int temp[BLOCK_SIZE + 2 * RADIUS];
 int gindex = threadIdx.x + blockIdx.x * blockDim.x;
 int lindex = threadIdx.x + RADIUS;

 // Read input elements into shared memory
 temp[lindex] = in[gindex];
 if (threadIdx.x < RADIUS) {
 temp[lindex - RADIUS] = in[gindex - RADIUS];
 temp[lindex + BLOCK_SIZE] = in[gindex + BLOCK_SIZE];
 }

 // Synchronize (ensure all the data is available)
 __syncthreads();

 // Apply the stencil
 int result = 0;
 for (int offset = -RADIUS ; offset <= RADIUS ; offset++)
 result += temp[lindex + offset];

 // Store the result
 out[gindex] = result;

}

void fill_ints(int *x, int n) {

 fill_n(x, n, 1);
}

int main(void) {

 int *in, *out; // host copies of a, b, c
 int *d_in, *d_out; // device copies of a, b, c
 int size = (N + 2*RADIUS) * sizeof(int);

 // Alloc space for host copies and setup values
 in = (int *)malloc(size); fill_ints(in, N + 2*RADIUS);
 out = (int *)malloc(size); fill_ints(out, N + 2*RADIUS);

 // Alloc space for device copies
 cudaMalloc((void **)&d_in, size);
 cudaMalloc((void **)&d_out, size);

 // Copy to device
 cudaMemcpy(d_in, in, size, cudaMemcpyHostToDevice);
 cudaMemcpy(d_out, out, size, cudaMemcpyHostToDevice);

 // Launch stencil_1d() kernel on GPU
 stencil_1d<<<N/BLOCK_SIZE,BLOCK_SIZE>>>(d_in + RADIUS, d_out + RADIUS);
 // Copy result back to host
 cudaMemcpy(out, d_out, size, cudaMemcpyDeviceToHost);

 // Cleanup
 free(in); free(out);
 cudaFree(d_in); cudaFree(d_out);
 return 0;

}

serial	code	

parallel	exe	on	GPU	
serial	code	

parallel	fn	

26	

Programming	for	NVIDIA	GPUs		

27	

h[p://docs.nvidia.com/cuda/cuda-c-
programming-guide/	

CUDA(Compute	Unified	Device	Architecture)	

Both	an	architecture	and	programming	model	
•  Architecture	and	execu?on	model	

–  Introduced	in	NVIDIA	in	2007	
–  Get	highest	possible	execu?on	performance	requires	

understanding	of	hardware	architecture	
•  Programming	model	

–  Small	set	of	extensions	to	C	
–  Enables	GPUs	to	execute	programs	wri[en	in	C	
–  Within	C	programs,	call	SIMT	“kernel”	rou?nes	that	are	

executed	on	GPU.	
•  Hello	world	introduc?on	today	

–  More	in	later	lectures	

28	

CUDA	Thread	Hierarchy	

•  Allows	flexibility	and	
efficiency	in	
processing	1D,	2-D,	
and	3-D	data	on	GPU.		

•  Linked	to	internal	
organiza?on	

•  Threads	in	one	block	
execute	together.	

29	

Can be 1, 2 or 3
dimensions

Hello	World!	

 int main(void) {
 printf("Hello World!\n");
 return 0;
 }

•  Standard	C	that	runs	on	the	host	

•  NVIDIA	compiler	(nvcc)	can	be	used	to	
compile	programs	with	no	device	code	
•  lennon.secs.oakland.edu	
•  Using	/usr/local/cuda-8.0/bin/nvcc	

•  export	PATH=/usr/local/cuda-8.0/bin:
$PATH	

30	

Output:

$ nvcc
hello.cu
$./a.out
Hello World!
$

Hello	World!	with	Device	Code	

__global__ void hellokernel() {
 printf(”Hello World!\n”);
}
int main(void){
 int num_threads = 1;
 int num_blocks = 1;
 hellokernel<<<num_blocks,num_threads>>>();
 cudaDeviceSynchronize();
 return 0;
}

§  Two	new	syntac?c	elements…	

Output:	
$ nvcc
hello.cu
$./a.out
Hello World!
$

31	

GPU	code	examples	

•  lennon.secs.oakland.edu	
	

•  export	PATH=/usr/local/cuda-8.0/bin:$PATH	
•  cp	-r	~yan/gpu_code_examples	~	

•  cd	gpu_code_examples	
•  nvcc	hello-1.cu	–o	hello-1	
•  ./hello-1	
•  nvcc	hello-2.cu	–o	hello-2	
•  ./hello-2	

32	

Hello	World!	with	Device	Code	

 __global__ void hellokernel(void)

•  CUDA	C/C++	keyword	__global__ indicates	a	func?on	that:	
–  Runs	on	the	device	
–  Is	called	from	host	code	

•  nvcc	separates	source	code	into	host	and	device	
components	
–  Device	func?ons	(e.g.	hellokernel())	processed	by	NVIDIA	

compiler	
–  Host	func?ons	(e.g.	main())	processed	by	standard	host	

compiler	
•  gcc,	cl.exe

	
33	

Hello	World!	with	Device	COde	

 hellokernel<<<num_blocks,num_threads>>>();

	 •  Triple	angle	brackets	mark	a	call	
from	host	code	to	device	code	
–  Also	called	a	“kernel	launch”	
–  <<<	...	>>>	parameters	are	for	thread	

dimensionality		

•  That’s	all	that	is	required	to	
execute	a	func?on	on	the	GPU!	

	

34	

Hello	World!	with	Device	Code	

__device__ const char *STR = "Hello World!";
const char STR_LENGTH = 12;

__global__ void hellokernel(){
 printf("%c", STR[threadIdx.x % STR_LENGTH]);
}
int main(void){
 int num_threads = STR_LENGTH;
 int num_blocks = 1;
 hellokernel<<<num_blocks,num_threads>>>();
 cudaDeviceSynchronize();
 return 0;
}

§  Two new syntactic elements…

Output:	
$ nvcc
hello.cu
$./a.out
Hello World!
$

35	

Hello	World!	with	Device	Code	

__device__ const char *STR = "Hello World!";
const char STR_LENGTH = 12;

__global__ void hellokernel(){
 printf("%c", STR[threadIdx.x % STR_LENGTH]);
}
int main(void){
 int num_threads = STR_LENGTH;
 int num_blocks = 2;
 hellokernel<<<num_blocks,num_threads>>>();
 cudaDeviceSynchronize();
 return 0;
}

§  Two new syntactic elements…

__device__:	Iden?fy	device-only	data	

threadIdx.x:	the	thread	ID	

Each	thread	only	prints	one	character	
36	

Manycore	GPU	Architectures	and	Programming	

•  GPU	architectures,	graphics	and	GPGPUs	
•  GPU	Execu?on	model	
•  CUDA	Programming	model	
•  Working	with	Memory	in	CUDA	

–  Global	memory,	shared	and	constant	memory	
•  Streams	and	concurrency	
•  CUDA	instruc?on	intrinsic	and	library	
•  Performance,	profiling,	debugging,	and	error	handling	
•  Direc?ve-based	high-level	programming	model	

–  OpenACC	and	OpenMP	

37	

PCI	Bus	

GPU	Execu=on	Model	

•  The	GPU	is	a	physically	separate	processor	from	the	CPU	
–  Discrete	vs.	Integrated	

•  The	GPU	Execu?on	Model	offers	different	abstrac?ons	
from	the	CPU	to	match	the	change	in	architecture	

38	

PCI	Bus	

GPU	Execu=on	Model	

•  The	GPU	is	a	physically	separate	processor	from	the	CPU	
–  Discrete	vs.	Integrated	

•  The	GPU	Execu?on	Model	offers	different	abstrac?ons	
from	the	CPU	to	match	the	change	in	architecture	

39	

The	Simplest	Model:	Single-Threaded	

•  Single-threaded	Execu?on	Model	
–  Exclusive	access	to	all	variables	
–  Guaranteed	in-order	execu?on	of	loads	and	stores	
–  Guaranteed	in-order	execu?on	of	arithme?c	instruc?ons	

•  Also	the	most	common	execu?on	model,	and	simplest	for	
programmers	to	conceptualize	and	op?mize	

Single-Threaded

40	

CPU	SPMD	Mul=-Threading	

•  Single-Program,	Mul?ple-Data	(SPMD)	model	
–  Makes	the	same	in-order	guarantees	within	each	thread	
–  Says	li[le	or	nothing	about	inter-thread	behaviour	or	exclusive	

variable	access	without	explicit	inter-thread	synchroniza=on	

SPMD

Synchronize	
41	

GPU	Mul=-Threading	

•  Uses	the	Single-Instruc?on,	Mul?ple-Thread	model	
–  Many	threads	execute	the	same	instruc?ons	in	lock-step	
–  Implicit	synchroniza?on	aher	every	instruc?on	(think	vector	

parallelism)	

SIMT

42	

GPU	Mul=-Threading	

•  In	SIMT,	all	threads	share	instruc?ons	but	operate	on	their	
own	private	registers,	allowing	threads	to	store	thread-
local	state	

SIMT

43	

GPU	Mul=-Threading	

if (a > b) {

 max = a;

} else {

 max = b;

}

a = 4
b = 3

a = 3
b = 4

D
isabled

D
is

ab
le

d

•  SIMT	threads	can	be	
“disabled”	when	they	need	
to	execute	instruc?ons	
different	from	others	in	their	
group	

•  Improves	the	flexibility	of	the	
SIMT	model,	rela?ve	to	
similar	vector-parallel	models	
(SIMD)	

44	

GPU	Mul=-Threading	

•  GPUs	execute	many	groups	of	SIMT	threads	in	parallel	
–  Each	executes	instruc?ons	independent	of	the	others	

SIMT Group 0

SIMT Group 1

45	

•  How	does	this	
execu?on	model	
map	down	to	actual	
GPU	hardware?	

•  NVIDIA	GPUs	consist	
of	many	streaming	
mul?processors	(SM)	

Execu=on	Model	to	Hardware	

46	

Execu=on	Model	to	Hardware	

•  NVIDIAGPU	Streaming	
Mul?processors	(SM)	are	
analogous	to	CPU	cores	
–  Single	computa?onal	unit	
–  Think	of	an	SM	as	a	single	

vector	processor	
–  Composed	of	mul?ple	CUDA	

“cores”,	load/store	units,	
special	func?on	units	(sin,	
cosine,	etc.)	

–  Each	CUDA	core	contains	
integer	and	floa?ng-point	
arithme?c	logic	units	

47	

Execu=on	Model	to	Hardware	

•  GPUs	can	execute	mul?ple	SIMT	groups	on	each	SM	
–  For	example:	on	NVIDIA	GPUs	a	SIMT	group	is	32	threads,	each	

Kepler	SM	has	192	CUDA	cores	è	simultaneous	execu?on	of	6	SIMT	
groups	on	an	SM	

•  SMs	can	support	more	concurrent	SIMT	groups	than	core	count	
would	suggest	
–  Each	thread	persistently	stores	its	own	state	in	a	private	register	set	
–  Many	SIMT	groups	will	spend	?me	blocked	on	I/O,	not	ac?vely	

compu?ng	
–  Keeping	blocked	SIMT	groups	scheduled	on	an	SM	would	waste	

cores	
–  Groups	can	be	swapped	in	and	out	without	worrying	about	losing	

state	

48	

Execu=on	Model	to	Hardware	

•  This	leads	to	a	nested	thread	hierarchy	on	GPUs	
A

single
thread

SIMT
Group

SIMT Groups that
concurrently run on the

same SM

SIMT Groups that execute
together on the same

GPU

49	

GPU	Memory	Model	

SIMT Thread Groups on a GPU

SIMT Thread Groups on an SM

SIMT Thread Group

Registers Local Memory

On-Chip Shared Memory

Global Memory

Constant Memory

Texture Memory

•  Now	that	we	understand	how	
abstract	threads	of	execu?on	
are	mapped	to	the	GPU:	
–  How	do	those	threads	store	

and	retrieve	data?	
–  What	rules	are	there	about	

memory	consistency?	
–  How	can	we	efficiently	use	

GPU	memory?	

50	

GPU	Memory	Model	

•  There	are	many	levels	and	types	of	GPU	memory,	each	of	
which	has	special	characteris?cs	that	make	it	useful	
–  Size	
–  Latency	
–  Bandwidth	
–  Readable	and/or	Writable	
–  Op?mal	Access	Pa[erns	
–  Accessibility	by	threads	in	the	same	SIMT	group,	SM,	GPU	

•  Later	lectures	will	go	into	detail	on	each	type	of	GPU	
memory	

51	

GPU	Memory	Model	

•  For	now,	we	focus	on	two	memory	
types:	on-chip	shared	memory	and	
registers	
–  These	memory	types	affect	the	GPU	

execu?on	model	

•  Each	SM	has	a	limited	set	of	
registers,	each	thread	receives	its	
own	private	set	of	registers	

•  Each	SM	has	a	limited	amount	of	
Shared	Memory,	all	SIMT	groups	on	
an	SM	share	that	Shared	Memory	

SIMT Thread Groups on a GPU

SIMT Thread Groups on an SM

SIMT Thread Group

Registers Local Memory

On-Chip Shared Memory

Global Memory

Constant Memory

Texture Memory

52	

GPU	Memory	Model	

•  è	Shared	Memory	and	Registers	are	limited	
–  Per-SM	resources	which	can	impact	how	many	threads	can	

execute	on	an	SM	

•  For	example:	consider	an	imaginary	SM	that	supports	
execu?ng	1,024	threads	concurrently	(32	SIMT	groups	of	32	
threads)	
–  Suppose	that	SM	has	a	total	of	16,384	registers	
–  Suppose	each	thread	in	an	applica?on	requires	64	registers	to	

execute	
–  Even	though	we	can	theore?cally	support	1,024	threads,	we	

can	only	simultaneously	store	state	for	16,384	registers	/	64	
registers	per	thread	=	256	threads	

53	

GPU	Memory	Model	

•  è	Parallelism	is	limited	by	both	the	computa=onal	and	
storage	resources	of	the	GPU.		
–  In	the	GPU	Execu?on	Model,	they	are	closely	?ed	together.	

54	

The	Host	and	the	GPU	

PCI	Bus	

•  Today,	the	GPU	is	not	a	standalone	processor	

•  GPUs	are	always	?ed	to	a	management	processing	unit,	
commonly	referred	to	as	the	host,	and	always	a	CPU	

55	

PCIe Bus

The	Host	and	the	GPU	

Coopera=ve	co-processors	 Management	processor	+	
accelerator	

•  Depending	on	system	architecture,	you	may	choose	to	
think	of	the	host	and	GPU	in	two	different	ways:	

56	

PCIe Bus

PCIe Bus

The	Host	and	the	GPU	

•  Coopera?ve	co-processors	
–  CPU	and	GPU	work	together	on	the	problem	at	hand	
–  Keep	both	processors	well-u?lized	to	get	to	the	solu?on	
–  Many	different	work	par??oning	techniques	across	CPU	and	

GPU	

57	

PCIe Bus

The	Host	and	the	GPU	

•  Management	processor	+	accelerator	
–  CPU	is	dedicated	to	GPU	management	

and	other	ancillary	func?ons	(network	I/
O,	disk	I/O,	system	memory	
management,	scheduling	decisions)	

–  CPU	may	spend	a	large	amount	of	
applica?on	?me	blocked	on	the	GPU	

–  GPU	is	the	workhorse	of	the	applica?on,	
most	computa?on	is	offloaded	to	it	

–  Allows	for	a	light-weight,	inexpensive	
CPU	to	be	used	

58	

PCIe Bus

The	Host	and	the	GPU	

	Co-processor	
•  More	computa?onal	

bandwidth	
•  Higher	power	consump?on	
•  Programma?cally	challenging	
•  Requires	knowledge	of	both	

architectures	to	be	
implemented	effec?vely	

•  Note	useful	for	all	applica?ons	

	
	

Accelerator	
•  Computa?onal	bandwidth	of	

GPU	only	
•  Lower	power	consump?on	
•  Programming	and	op?mizing	

focused	on	the	GPU	
•  Limited	knowledge	of	CPU	

architecture	required	

59	

GPU	Communica=on	

•  Communica?ng	between	the	host	and	GPU	is	a	piece	of	
added	complexity,	rela?ve	to	homogeneous	programming	
models	

•  Generally,	CPU	and	GPU	have	physically	and	logically	
separate	address	spaces	(though	this	is	changing)	

PCIe Bus

60	

GPU	Communica=on	

Communication
Medium

Latency Bandwidth

On-Chip Shared
Memory

A few clock cycles Thousands of GB/s

GPU Memory Hundreds of clock
cycles

Hundreds of GB/s

PCI Bus Hundreds to
thousands of clock

cycles

Tens of GB/s

•  Data	transfer	from	CPU	to	GPU	over	the	PCI	bus	adds	
–  Conceptual	complexity	
–  Performance	overhead	

61	

GPU	Communica=on	

GPU

PCIe Bus
Copy Copy Copy Copy Copy

Compute Compute Compute Compute

•  As	a	result,	computa?on-communica?on	overlap	is	a	
common	technique	in	GPU	programming	
–  Asynchrony	is	a	first-class	ci?zen	of	most	GPU	programming	

frameworks	

62	

GPU	Execu=on	Model	

•  GPUs	introduce	a	new	conceptual	model	for	programmers	
used	to	CPU	single-	and	mul?-threaded	programming	

•  While	the	concepts	are	different,	they	are	no	more	complex	
than	those	you	would	need	to	learn	to	extract	op?mal	
performance	from	CPU	architectures	

•  GPUs	offer	programmers	more	control	over	how	their	
workloads	map	to	hardware,	which	makes	the	results	of	
op?mizing	applica?ons	more	predictable	

63	

References	

1.  The	sec?ons	on	Introducing	the	CUDA	Execu!on	Model,	
Understanding	the	Nature	of	Warp	Execu!on,	and	Exposing	
Parallelism	in	Chapter	3	of	Professional	CUDA	C	Programming		

2.  Michael	Wolfe.	Understanding	the	CUDA	Data	Parallel	Threading	
Model.	h[ps://www.pgroup.com/lit/ar?cles/insider/v2n1a5.htm	

3.  Will	Ramey.	Introduc!on	to	CUDA	PlaBorm.	h[p://
developer.download.nvidia	.com/compute/
developertrainingmaterials/presenta?ons/general/Why_GPU_	
Compu?ng.pptx		

4.  Timo	S?ch.	Fermi	Hardware	&	Performance	Tips.	h[p://
theinf2.informa?k.uni-jena.de/	theinf2_mul?media/
Website_downloads/NVIDIA_Fermi_Perf_Jena_2011.pdf	

64	

