
Lecture	17:	Memory	Hierarchy	and	
Cache	Coherence	

Concurrent	and	Mul7core	Programming	
	

Department	of	Computer	Science	and	Engineering	
Yonghong	Yan	

yan@oakland.edu	
www.secs.oakland.edu/~yan	

	

1	

Parallelism	in	Hardware	

•  Instruc7on-Level	Parallelism	
–  Pipeline	
–  Out-of-order	execu7on,	and		
–  Superscalar	

•  Thread-Level	Parallelism	
–  Chip	mul7threading,	mul7core	
–  Coarse-grained	and	fine-grained	mul7threading	
–  SMT	

•  Data-Level	Parallelism	
–  SIMD/Vector	
–  GPU/SIMT	

2	

Computer	Architecture,	A	Quan7ta7ve	
Approach.	5TH	Edi7on,	The	Morgan	Kaufmann,	
September	30,	2011	by	John	L.	Hennessy		
(Author),	David	A.	PaWerson		

Topics	(Part	2)	

•  Parallel	architectures	and	hardware	
–  Parallel	computer	architectures	
–  Memory	hierarchy	and	cache	coherency	

•  Manycore	GPU	architectures	and	programming	
–  GPUs	architectures	
–  CUDA	programming	
–  IntroducGon	to	offloading	model	in	OpenMP	and	OpenACC	

•  Programming	on	large	scale	systems	(Chapter	6)	
–  MPI	(point	to	point	and	collec7ves)	
–  IntroducGon	to	PGAS	languages,	UPC	and	Chapel	

•  Parallel	algorithms	(Chapter	8,9	&10)	
–  Dense	matrix,	and	sor7ng	

3	

Outline	

•  Memory,	Locality	of	reference	and	Caching	
•  Cache	coherence	in	shared	memory	system	

4	

Memory	un7l	now	…	

•  We’ve	relied	on	a	very	simple	model	of	memory	for	most	
this	class	
–  Main	Memory	is	a	linear	array	of	bytes	that	can	be	accessed	

given	a	memory	address	
–  Also	used	registers	to	store	values	

•  Reality	is	more	complex.	There	is	an	enGre	memory	system.	
–  Different	memories	exist	at	different	levels	of	the	computer	
–  Each	vary	in	their	speed,	size,	and	cost	

5	

Random-Access 	Memory 	(RAM)	

•  Key	features	
–  RAM	is	packaged	as	a	chip.	
–  Basic	storage	unit	is	a	cell	(one	bit	per	cell).	
–  MulGple	RAM	chips	form	a	memory.	

•  Sta7c	RAM	(SRAM)	
–  Each	cell	stores	bit	with	a	six-transistor	circuit.	
–  Retains	value	indefinitely,	as	long	as	it	is	kept	powered.	
–  RelaGvely	insensiGve	to	disturbances	such	as	electrical	noise.	
–  Faster	and	more	expensive	than	DRAM.	

6	

Random-Access 	Memory 	(RAM)	

•  Dynamic	RAM	(DRAM)	
–  Each	cell	stores	bit	with	a	capacitor	and	transistor.	
–  Value	must	be	refreshed	every	10-100	ms.	
–  SensiGve	to	disturbances.	
–  Slower	and	cheaper	than	SRAM.	

7	

Memory 	Modules… 	real 	life	DRAM	

•  In	reality,	
–  Several	DRAM	chips	are	bundled	into	Memory	Modules	

•  SIMMS	-	Single	Inline	Memory	Module	
•  DIMMS	-	Dual	Inline	Memory	Module	
•  DDR-	Dual	data	Read	

–  Reads	twice	every	clock	cycle	
•  Quad	Pump:	Simultaneous	R/	W	

Source for Pictures:
http://en.kioskea.net/contents/pc/ram.php3

8	

SDR,	 	DDR,	Quad	Pump	

9	

Memory	Speeds	

•  Processor	Speeds	:	1	GHz	processor	speed	is	1	nsec	cycle	
Gme.	

•  Memory	Speeds	(50	nsec)	
•  Access	Speed	gap	

–  InstrucGons	that	store	or	load	from	memory	

10	

DIMM	Module	Chip	Type	 Clock	Speed	(MHz)	 Bus	Speed	(MHz)	 Transfer	Rate	(MB/s)	

PC1600	DDR200	 100	 200	 1600	

PC2100	DDR266	 133	 266	 2133	

PC2400	DDR300	 150	 300	 2400	

registers

on-chip L1
cache (SRAM)

main memory
 (DRAM)

local secondary storage
(local disks)

Larger,
slower,

and
cheaper

(per byte)
storage
devices

remote secondary storage
(distributed file systems, Web servers)

Local disks hold files
retrieved from disks on
remote network servers.

Main memory holds disk
blocks retrieved from local
disks.

off-chip L2
cache (SRAM)

L1 cache holds cache lines retrieved
from the L2 cache memory.

CPU registers hold words
retrieved from L1 cache.

L2 cache holds cache lines
retrieved from main memory.

L0:

L1:

L2:

L3:

L4:

L5:

Smaller,
faster,
and

costlier
(per byte)
storage
devices

Memory	Hierarchy	(Review)	

11	

main
memory I/O

bridge
bus interface L2 cache

ALU register file

cache bus system bus memory bus

L1
cache

Cache	Memories	(SRAM)	

•  Cache	memories	are	small,	fast	SRAM-based	memories	
managed	automaGcally	in	hardware.	
–  Hold	frequently	accessed	blocks	of	main	memory	

•  CPU	looks	first	for	data	in	L1,	then	in	L2,	then	in	main	
memory.	

•  Typical	bus	structure:	

12	

Processor

How		to	Exploit	Memory	Hierarchy	

•  Availability	of	memory	
–  Cost,	size,	speed	

•  Principle	of	locality	
–  Memory	references	are	bunched	together	
–  A	small	porGon	of	address	space	is	accessed	at	any	given	Gme	

•  This	space	in	high	speed	memory	
–  Problem:	not	all	of	it	may	fit	

13	

Types	of	locality	

•  Temporal	locality	
–  Tendency	to	access	locaGons	recently	referenced	

	
•  SpaGal	locality	

–  Tendency	to	reference	locaGons	around	recently	referenced	
–  LocaGon	x	,	then	others	will	be	x-k	or	x+k	

14	

X X X t

Sources	of	locality	

•  Temporal	locality	
–  Code	within	a	loop	
–  Same	instrucGons	fetched	repeatedly	

•  SpaGal	locality	
–  Data	arrays	
–  Local	variables	in	stack	
–  Data	allocated	in	chunks	(conGguous	bytes)	

for	(i=0;	i<N;	i++)	{	
				A[i]	=	B[i]	+	C[i]	*	a;	
}	

15	

What	does	locality	buy?	

•  Address	the	gap	between	CPU	speed	and	RAM	speed	
•  SpaGal	and	temporal	locality	implies	a	subset	of	
instrucGons	can	fit	in	high	speed	memory	from	Gme	to	Gme	

•  CPU	can	access	instrucGons	and	data	from	this	high	speed	
memory	

•  Small	high	speed	memory	can	make	computer	faster	and	
cheaper	

•  Speed	of	1-20	nsec	at	cost	of	$50	to	$100	per	Mbyte	
•  This	is	Caching!!	

16	

Inser7ng	an	L1	Cache	Between	CPU	and	Main	
Memory	

17	

a b c d block 10

p q r s block 21

...

...

w x y z block 30

...

The big slow main memory
has room for many 4-word
blocks.

The small fast L1 cache has room
for two 4-word blocks.

The tiny, very fast CPU register file
has room for four 4-byte words. The transfer unit between

the CPU register file and
the cache is a 4-byte block.

line 0

line 1
The transfer unit between
the cache and main
memory is a 4-word block
(16 bytes).

What	info.	Does	a	cache	need	

•  Cache:	A	smaller,	faster	storage	device	that	acts	as	a	
staging	area	for	a	subset	of	the	data	in	a	larger,	slower	
device.	

•  You	essenGally	allow	a	smaller	region	of	memory	to	hold	
data	from	a	larger	region.	Not	a	1-1	mapping.	

•  What	kind	of	informaGon	do	we	need	to	keep:	
–  The	actual	data	
–  Where	the	data	actually	comes	from	
–  If	data	is	even	considered	valid	

18	

Cache	Organiza7on	

•  Map	each	region	of	memory	to	a	smaller	region	of	cache	
•  Discard	address	bits	

–  Discard	lower	order	bits	(a)	
–  Discard	higher	order	bits	(b)	

•  Cache	address	size	is	4	bits	
•  Memory	address	size	is	8	bits	
•  In	case	of 	a)	

–  0000xxxx	is	mapped	to	0000	in	cache	
•  In	case	of	b)	

–  xxxx0001	is	mapped	to	0001	in	cache	

19	

cache

memory

(b)

(a)

Finding	data	in	cache	

•  Part	of	memory	address	applied	to	cache	
•  Remaining	is	stored	as	tag	in	cache	
•  Lower	order	bits	discarded	
•  Need	to	check	if	00010011	

–  Cache	index	is	0001	
–  Tag	is	0011	

•  If	tag	matches,	hit,	use	data	
•  No	match,	miss,	fetch	data	from	memory	

20	

address tag

valid

valid

tag

tag
set 0:

B = 2b bytes
per cache block

E lines
per set

S = 2s sets

t tag bits
per line

1 valid bit
per line

Cache size: C = B x E x S data bytes

• • •

valid

valid

tag

tag
set 1: • • •

valid

valid tag

tag

set S-1: • • •

• • •

Cache is an array
of sets.

Each set contains
one or more lines.

Each line holds a
block of data.

0 1 • • • B–1

0 1 • • • B–1

0 1 • • • B–1

0 1 • • • B–1

0 1 • • • B–1

0 1 • • • B–1

General	Org	of	a	Cache	Memory	

21	

t bits s bits b bits

0

<set index> <block offset>

m-1

<tag>

Address A:

v

v

tag

tag
set 0: • • •

v

v

tag

tag
set 1: •

v

v

tag

tag
set S-1: • • •

• • •

The word at address A is in the cache if
the tag bits in one of the <valid> lines in
set <set index> match <tag>.

The word contents begin at offset
<block offset> bytes from the beginning
of the block.

Addressing	Caches	

22	

0 1 • • • B–1

0 1 • • • B–1

0 1 • • • B–1
• •
0 1 • • • B–1

0 1 • • • B–1

0 1 • • • B–1

set 0: valid tag cache block

Direct-Mapped	Cache	

•  Simplest	kind	of	cache	
•  Characterized	by	exactly	one	line	per	set.	

23	

valid tag

valid tag

• • •

set 1:

set S-1:

E=1 lines per set

cache block

cache block

set 0: valid tag

valid tag

valid tag

• • •

set 1:

set S-1:
t bits s bits

set index block offset0 m-1

b bits

tag

selected set

cache block

cache block

cache block
0 0 0 0 1

Accessing	Direct-Mapped	Caches	

•  Set	selecGon	
–  Use	the	set	index	bits	to	determine	the	set	of	interest.	

24	

=1? (1) The valid bit must be set

1 0110

t bits s bits

set index block offset0 m-1

b bits

tag

selected set (i):

(3) If (1) and (2), then
cache hit,

and block offset
selects

starting byte.

(2) The tag bits in the cache
= ? line must match the

tag bits in the address

Accessing	Direct-Mapped	Caches	

•  Line	matching	and	word	selecGon	
–  Line	matching:	Find	a	valid	line	in	the	selected	set	with	a	

matching	tag 		
–  Word	selecGon:	Then	extract	the	word	

25	

3 0 1 2 7 4 5 6

0110 i 100

w0 w1 w2 w3

valid

valid

valid

Example:	Direct	mapped	cache	

•  32	bit	address,	64KB	cache,	32	byte	block	
•  How	many	sets,	how	many	bits	for	the	tag,	how	many	bits	
for	the	offset?	

26	

tag

tag

tag

• • •

set 0:

set 1:

cache block

cache block

cache block set n-1:

Write-through	vs	write-back	

•  What	to	do	when	an	update	occurs?	
•  Write-through:	immediately	

–  Simple	to	implement,	synchronous	write	
–  Uniform	latency	on	misses	

•  Write-back:	write	when	block	is	replaced	
–  Requires	addiGonal	dirty	bit	or	modified	bit	
–  Asynchronous	writes		
–  Non-uniform	miss	latency	
–  Clean	miss:	read	from	lower	level	
–  Dirty	miss:	write	to	lower	level	and	read	(fill)	

27	

Writes	and	Cache	

•  Reading	informaGon	from	a	cache	is	straight	forward.	
•  What	about	wriGng?	

–  What	if	you’re	wriGng	data	that	is	already	cached	(write-hit)?	
–  What	if	the	data	is	not	in	the	cache	(write-miss)?	

•  Dealing	with	a	write-hit.	
–  Write-through	-	immediately	write	data	back	to	memory	
–  Write-back	-	defer	the	write	to	memory	for	as	long	as	possible	

•  Dealing	with	a	write-miss.	
–  write-allocate	-	load	the	block	into	memory	and	update	
–  no-write-allocate	-	writes	directly	to	memory	

•  Benefits?	Disadvantages?	
•  Write-through	are	typically	no-write-allocate.	
•  Write-back	are	typically	write-allocate.	

28	

size:
speed:
$/Mbyte:
line size:

200 B
3 ns

8 B 32 B
larger, slower, cheaper

8-64 KB
3 ns

1-4MB SRAM 128 MB DRAM
60 ns
$1.50/MB
8 KB

30 GB
8 ms
$0.05/MB

Memory

L1
d-cache

Regs
Unified

L2
Cache

Processor

6 ns
$100/MB
32 B

L1
i-cache

disk

Mul7-Level	Caches	

•  OpGons:	separate	data	and	instrucGon	caches,	or	a	unified	
cache	

29	

Cache	Performance	Metrics	

•  Miss	Rate	
–  FracGon	of	memory	references	not	found	in	cache	(misses/	

references)	
–  Typical	numbers:	

•  3-10%	for	L1	
•  can	be	quite	small	(e.g.,	<	1%)	for	L2,	depending	on	size,	etc.	

•  Hit	Time	
–  Time	to	deliver	a	line	in	the	cache	to	the	processor	(includes	Gme	to	

determine	whether	the	line	is	in	the	cache)	
–  Typical	numbers:	

•  1	clock	cycle	for	L1	
•  3-8	clock	cycles	for	L2	

•  Miss	Penalty	
–  AddiGonal	Gme	required	because	of	a	miss	

•  Typically	25-100	cycles	for	main	memory	

30	

int sumarrayrows(int a[M][N])
{

int i, j, sum = 0;

for (i = 0; i < M; i++)
for (j = 0; j < N; j++)

sum += a[i][j];
return sum;

}

int sumarraycols(int a[M][N])
{

int i, j, sum = 0;

for (j = 0; j < N; j++)
for (i = 0; i < M; i++)

sum += a[i][j];
return sum;

}

Miss rate = 1/4 = 25% Miss rate = 100%

Wri7ng	Cache	Friendly	Code	

•  Repeated	references	to	variables	are	good	(temporal	
locality)	

•  Stride-1	reference	paxerns	are	good	(spaGal	locality)	
•  Examples:	

–  cold	cache,	4-byte	words,	4-word	cache	blocks	

31	

Matrix	Mul7plica7on	Example	

•  Major	Cache	Effects	to	Consider	
–  Total	cache	size	

•  Exploit	temporal	locality	and	blocking)	
–  Block	size	

•  Exploit	spaGal	locality	

•  DescripGon:	
–  MulGply	N	x	N	matrices	
–  O(N3)	total	operaGons	
–  Accesses	

•  N	reads	per	source	element	
•  N	values	summed	per	desGnaGon	

–  but	may	be	able	to	hold	in	register	

/* ijk */
for (i=0; i<n; i++) {

for (j=0; j<n; j++) {
sum = 0.0;
for (k=0; k<n; k++)

sum += a[i][k] * b[k][j];
c[i][j] = sum;

}
}

Variable sum
held in register

32	

Miss	Rate	Analysis	for	Matrix	Mul7ply	

•  Assume:		
–  Line	size	=	32BYTES	(big	enough	for	4	64-bit	words)		
–  Matrix	dimension	(N)	is	very	large	

•  Approximate	1/N	as	0.0		
–  Cache	is	not	even	big	enough	to	hold	mulGple	rows	

•  Analysis	Method:		
–  Look	at	access	paxern	of	inner	loop	

	

33	

Layout	of	C	Arrays	in	Memory	(review)	

•  C	arrays	allocated	in	row-major	order	
–  each	row	in	conGguous	memory	locaGons	

•  Stepping	through	columns	in	one	row:	
–  for	(i 	= 	0; 	i 	< 	N; 	i++)	
									sum	+= 	a[0][i];	
–  accesses	successive	elements	
–  if	block	size	(B)	>	4	bytes,	exploit	spaGal	locality	

•  compulsory	miss	rate	=	4	bytes	/	B	
•  Stepping	through	rows	in	one	column:	

–  for	(i 	= 	0; 	i 	< 	n; 	i++)	
							sum 	+= 	a[i][0];	

•  accesses	distant	elements	
•  no	spaGal	locality!	

–  compulsory	miss	rate	=	1	(i.e.	100%)	

34	

Matrix	Mul7plica7on	(ijk)	

35	

Matrix	Mul7plica7on	(jik)	

36	

Matrix	Mul7plica7on	(kij)	

37	

Matrix	Mul7plica7on	(ikj)	

38	

Matrix	Mul7plica7on	(jki)	

39	

Matrix	Mul7plica7on	(kji)	

40	

Summary	of	Matrix	Mul7plica7on	

41	

for (i=0; i<n; i++)
{ for (j=0; j<n; j++)

{

sum = 0.0;

for (k=0; k<n; k++)
sum += a[i][k] * b[k][j];

c[i][j] = sum;

}

}

ijk (& jik): kij (& ikj): jki (& kji):
• 2 loads, 0 stores
• misses/iter = 1.25

for (k=0; k<n; k++)
{ for (i=0; i<n; i++)

{

r = a[i][k];

for (j=0; j<n; j++) c[i]

[j] += r * b[k][j];

}

}

for (j=0; j<n; j++) {
for (k=0; k<n; k++)

{ r = b[k][j];

for (i=0; i<n; i++) c[i]

[j] += a[i][k] * r;
}

}

• 2 loads, 1 store
• misses/iter = 0.5

• 2 loads, 1 store
• misses/iter = 2.0

Outline	

•  Memory,	Locality	of	reference	and	Caching	
•  Cache	coherence	in	shared	memory	system	

42	

Shared	memory	systems	

•  All	processes	have	access	to	the	same	address	space	
–  E.g.	PC	with	more	than	one	processor	

•  Data	exchange	between	processes	by	wriGng/reading	
shared	variables	
–  Shared	memory	systems	are	easy	to	program	
–  Current	standard	in	scienGfic	programming:	OpenMP	

•  Two	versions	of	shared	memory	systems	available	today	
–  Centralized	Shared	Memory	Architectures		
–  Distributed	Shared	Memory	architectures	

Centralized	Shared	Memory	Architecture	

•  Also	referred	to	as	Symmetric	MulG-Processors	(SMP)	
•  All	processors	share	the	same	physical	main	memory	

•  Memory	bandwidth	per	processor	is	limiGng	factor	for	this	
type	of	architecture	

•  Typical	size:	2-32	processors	

Memory	

CPU	 CPU	

CPU	 CPU	

Centralized	shared	memory	system	(I)	

•  Intel	X7350	quad-core	(Tigerton)	
–  Private	L1	cache:	32	KB	instrucGon,	32	KB	data		
–  Shared	L2	cache:	4	MB	unified	cache	

	
Core	
	
L1	

	
Core	
	
L1	

shared	L2	

	
Core	
	
L1	

	
Core	
	
L1	

shared	L2	

1066	MHz	FSB	

Centralized	shared	memory	systems	(II)	

•  Intel	X7350	quad-core	(Tigerton)	mulG-processor	
configuraGon	

C	
0	

C	
1	

L2	

C	
8	

C	
9	

L2	

C	
2	

C	
3	

L2	

C	
10	

C	
11	

L2	

C	
4	

C	
5	

L2	

C	
12	

C	
13	

L2	

C	
6	

C	
7	

L2	

C	
14	

C	
15	

L2	

Socket	0	 Socket	1	 Socket	2	 Socket	3	

Memory	Controller	
Hub	(MCH)	

Memory	 Memory	 Memory	 Memory	

8	GB/s	8	GB/s	8	GB/s	8	GB/s	

Distributed	Shared	Memory	Architectures	

•  Also	referred	to	as	Non-Uniform	Memory	Architectures	
(NUMA)	

•  Some	memory	is	closer	to	a	certain	processor	than	other	
memory	
–  The	whole	memory	is	sGll	addressable	from	all	processors	
–  Depending	on	what	data	item	a	processor	retrieves,	the	access	

Gme	might	vary	strongly	

Memory	

CPU	 CPU	

Memory	

CPU	 CPU	

Memory	

CPU	 CPU	

Memory	

CPU	 CPU	

NUMA	architectures	(II)	

•  Reduces	the	memory	boxleneck	compared	to	SMPs	
•  More	difficult	to	program	efficiently	

–  E.g.	first	touch	policy:	data	item	will	be	located	in	the	memory	
of	the	processor	which	uses	a	data	item	first	

•  To	reduce	effects	of	non-uniform	memory	access,	caches	
are	o}en	used	
–  ccNUMA:	cache-coherent	non-uniform	memory	access	

architectures	
•  Largest	example	as	of	today:	SGI	Origin	with	512	processors	

Distributed	Shared	Memory	Systems	

Cache	Coherence	

•  Real-world	shared	memory	systems	have	caches	between	
memory	and	CPU	

•  Copies	of	a	single	data	item	can	exist	in	mulGple	caches	
•  ModificaGon	of	a	shared	data	item	by	one	CPU	leads	to	
outdated	copies	in	the	cache	of	another	CPU	

Memory	

CPU	0	

Cache	

CPU	1	

Cache	

Original	data	item	

Copy	of	data	item	
in	cache	of	CPU	0	 Copy	of	data	item	

in	cache	of	CPU	1	

Cache	coherence	(II)	

•  Typical	soluGon:	
–  Caches	keep	track	on	whether	a	data	item	is	shared	between	

mulGple	processes	
–  Upon	modificaGon	of	a	shared	data	item,	‘noGficaGon’	of	

other	caches	has	to	occur	
–  Other	caches	will	have	to	reload	the	shared	data	item	on	the	

next	access	into	their	cache	
•  Cache	coherence	is	only	an	issue	in	case	mulGple	tasks	
access	the	same	item	
–  MulGple	threads	
–  MulGple	processes	have	a	joint	shared	memory	segment	
–  Process	is	being	migrated	from	one	CPU	to	another	

Cache	Coherence	Protocols	

•  Snooping	Protocols	
–  Send	all	requests	for	data	to	all	processors	
–  Processors	snoop	a	bus	to	see	if	they	have	a	copy	and	respond	accordingly		
–  Requires	broadcast,	since	caching	informaGon	is	at	processors	
–  Works	well	with	bus	(natural	broadcast	medium)	
–  Dominates	for	centralized	shared	memory	machines	

•  Directory-Based	Protocols		
–  Keep	track	of	what	is	being	shared	in		centralized	locaGon	
–  Distributed	memory	=>	distributed	directory	for	scalability	

(avoids	boxlenecks)	
–  Send	point-to-point	requests	to	processors	via	network	
–  Scales	bexer	than	Snooping	
–  Commonly	used	for	distributed	shared	memory	machines	

Categories	of	cache	misses	

•  Up	to	now:	
–  Compulsory	Misses:	first	access	to	a	block	cannot	be	in	the	cache	(cold	

start	misses)	
–  Capacity	Misses:	cache	cannot	contain	all	blocks	required	for	the	execuGon	
–  Conflict	Misses:		cache	block	has	to	be	discarded	because	of	block	

replacement	strategy	
•  In	mulG-processor	systems:	

–  Coherence	Misses:	cache	block	has	to	be	discarded	because	another	
processor	modified	the	content	
•  true	sharing	miss:	another	processor	modified	the	content	of	the	request	
element	

•  false	sharing	miss:	another	processor	invalidated	the	block,	although	the	
actual	item	of	interest	is	unchanged.	

Bus	Snooping	Topology	

Larger	Shared	Memory	Systems	

•  Typically	Distributed	Shared	Memory	Systems	
•  Local	or	remote	memory	access	via	memory	controller	
•  Directory	per	cache	that	tracks	state	of	every	block	in	every	cache	

–  Which	caches	have	a	copy	of	block,	dirty	vs.	clean,	...	
•  Info	per	memory	block	vs.	per	cache	block?	

–  PLUS:	In	memory	=>	simpler	protocol	(centralized/one	locaGon)	
–  MINUS:	In	memory	=>	directory	is	ƒ(memory	size)	vs.	ƒ(cache	size)	

•  Prevent	directory	as	boxleneck?		
distribute	directory	entries	with	memory,	each	keeping	track	of	which	
processors	have	copies	of	their	blocks	

Distributed	Directory	MPs	

•  False	sharing	
–  When	at	least	one	thread	write	to	a	

cache	line	while	others	access	it	
•  Thread	0:		=	A[1]				(read)	
•  Thread	1:	A[0]	=	…	(write)	

•  SoluGon:	use	array	padding	

int a[max_threads];
#pragma omp parallel for schedule(static,1)
for(int i=0; i<max_threads; i++)
 a[i] +=i;

int a[max_threads][cache_line_size];
#pragma omp parallel for schedule(static,1)
for(int i=0; i<max_threads; i++)
 a[i][0] +=i;

False	Sharing	in	OpenMP	

Getting OpenMP Up To Speed



RvdP/V1 Tutorial IWOMP 2010 – CCS Un. of Tsukuba, June 14, 2010

False Sharing

CPUs Caches Memory

A store into a shared cache line invalidates the other
copies of that line:

The system is not able to
distinguish between changes

within one individual line

57	

A	

T0	

T1	

NUMA	and	First	Touch	Policy	

•  Data	placement	policy	on	NUMA	architectures	

	
•  First	Touch	Policy	

–  The	process	that	first	touches	a	page	of	memory	causes	that	
page	to	be	allocated	in	the	node	on	which	the	process	is	
running	

	
58	

Getting OpenMP Up To Speed



RvdP/V1 Tutorial IWOMP 2010 – CCS Un. of Tsukuba, June 14, 2010

A generic cc-NUMA architecture


















 









NUMA	First-touch	placement/1	

59	

Getting OpenMP Up To Speed



RvdP/V1 Tutorial IWOMP 2010 – CCS Un. of Tsukuba, June 14, 2010

About “First Touch” placement/1

for (i=0; i<100; i++)
 a[i] = 0;


















 

a[0]
 :
a[99]

First Touch
All array elements are in the memory of

the processor executing this thread



int a[100];
Only	reserve	the	vm	

address	

NUMA	First-touch	placement/2	

60	

Getting OpenMP Up To Speed



RvdP/V1 Tutorial IWOMP 2010 – CCS Un. of Tsukuba, June 14, 2010

About “First Touch” placement/2

for (i=0; i<100; i++)
 a[i] = 0;
















 

a[0]
 :
a[49]

#pragma omp parallel for num_threads(2)

First Touch
Both memories each have “their half” of

the array

a[50]
 :
a[99]

 

Work	with	First-Touch	in	OpenMP	

•  First-touch	in	pracGce	
–  IniGalize	data	consistently	with	the	computaGons	
	

61	

#pragma	omp	parallel	for	
for(i=0;	i<N;	i++)	{	
			a[i]	=	0.0;	b[i]	=	0.0	;	c[i]	=	0.0;		
}	
readfile(a,b,c);	
	
#pragma	omp	parallel	for	
for(i=0;	i<N;	i++)	{	
				a[i]	=	b[i]	+	c[i];	
}	

Concluding	Observa7ons	

•  Programmer	can	opGmize	for	cache	performance	
–  How	data	structures	are	organized	
–  How	data	are	accessed	

•  Nested	loop	structure	
•  Blocking	is	a	general	technique	

•  All	systems	favor	“cache	friendly	code”	
–  Ge�ng	absolute	opGmum	performance	is	very	pla�orm	

specific	
•  Cache	sizes,	line	sizes,	associaGviGes,	etc.	

–  Can	get	most	of	the	advantage	with	generic	code	
•  Keep	working	set	reasonably	small	(temporal	locality)	
•  Use	small	strides	(spaGal	locality)	

–  Work	with	cache	coherence	protocol	and	NUMA	first	touch	
policy	

62	

References	

•  Computer	Architecture,	A	QuanGtaGve	Approach.	5TH	
EdiGon,	The	Morgan	Kaufmann,	September	30,	2011	by	
John	L.	Hennessy		(Author),	David	A.	Paxerson		

•  A	Primer	on	Memory	Consistency	and	Cache	Coherence	
Daniel	J.	Sorin	Mark	D.	Hill	David	A.	Wood,	SYNTHESIS	
LECTURES	ON	COMPUTER	ARCHITECTURE	Mark	D.	Hill,	
Series	Editor,	2011	

63	

