
Lecture	17:	Memory	Hierarchy	and	
Cache	Coherence	

Concurrent	and	Mul7core	Programming	
	

Department	of	Computer	Science	and	Engineering	
Yonghong	Yan	

yan@oakland.edu	
www.secs.oakland.edu/~yan	

	

1	



Parallelism	in	Hardware	

•  Instruc7on-Level	Parallelism	
–  Pipeline	
–  Out-of-order	execu7on,	and		
–  Superscalar	

•  Thread-Level	Parallelism	
–  Chip	mul7threading,	mul7core	
–  Coarse-grained	and	fine-grained	mul7threading	
–  SMT	

•  Data-Level	Parallelism	
–  SIMD/Vector	
–  GPU/SIMT	
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Topics	(Part	2)	

•  Parallel	architectures	and	hardware	
–  Parallel	computer	architectures	
–  Memory	hierarchy	and	cache	coherency	

•  Manycore	GPU	architectures	and	programming	
–  GPUs	architectures	
–  CUDA	programming	
–  IntroducGon	to	offloading	model	in	OpenMP	and	OpenACC	

•  Programming	on	large	scale	systems	(Chapter	6)	
–  MPI	(point	to	point	and	collec7ves)	
–  IntroducGon	to	PGAS	languages,	UPC	and	Chapel	

•  Parallel	algorithms	(Chapter	8,9	&10)	
–  Dense	matrix,	and	sor7ng	
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Outline	

•  Memory,	Locality	of	reference	and	Caching	
•  Cache	coherence	in	shared	memory	system	

4	



Memory	un7l	now	…	

•  We’ve	relied	on	a	very	simple	model	of	memory	for	most	
this	class	
–  Main	Memory	is	a	linear	array	of	bytes	that	can	be	accessed	

given	a	memory	address	
–  Also	used	registers	to	store	values	

•  Reality	is	more	complex.	There	is	an	enGre	memory	system.	
–  Different	memories	exist	at	different	levels	of	the	computer	
–  Each	vary	in	their	speed,	size,	and	cost	
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Random-Access 	Memory 	(RAM)	

•  Key	features	
–  RAM	is	packaged	as	a	chip.	
–  Basic	storage	unit	is	a	cell	(one	bit	per	cell).	
–  MulGple	RAM	chips	form	a	memory.	

•  Sta7c	RAM	(SRAM)	
–  Each	cell	stores	bit	with	a	six-transistor	circuit.	
–  Retains	value	indefinitely,	as	long	as	it	is	kept	powered.	
–  RelaGvely	insensiGve	to	disturbances	such	as	electrical	noise.	
–  Faster	and	more	expensive	than	DRAM.	
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Random-Access 	Memory 	(RAM)	

•  Dynamic	RAM	(DRAM)	
–  Each	cell	stores	bit	with	a	capacitor	and	transistor.	
–  Value	must	be	refreshed	every	10-100	ms.	
–  SensiGve	to	disturbances.	
–  Slower	and	cheaper	than	SRAM.	
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Memory 	Modules… 	real 	life	DRAM	

•  In	reality,	
–  Several	DRAM	chips	are	bundled	into	Memory	Modules	

•  SIMMS	-	Single	Inline	Memory	Module	
•  DIMMS	-	Dual	Inline	Memory	Module	
•  DDR-	Dual	data	Read	

–  Reads	twice	every	clock	cycle	
•  Quad	Pump:	Simultaneous	R/	W	

Source for Pictures: 
http://en.kioskea.net/contents/pc/ram.php3 
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SDR,	 	DDR,	Quad	Pump	
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Memory	Speeds	

•  Processor	Speeds	:	1	GHz	processor	speed	is	1	nsec	cycle	
Gme.	

•  Memory	Speeds	(50	nsec)	
•  Access	Speed	gap	

–  InstrucGons	that	store	or	load	from	memory	
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DIMM	Module	Chip	Type	 Clock	Speed	(MHz)	 Bus	Speed	(MHz)	 Transfer	Rate	(MB/s)	

PC1600	DDR200	 100	 200	 1600	

PC2100	DDR266	 133	 266	 2133	

PC2400	DDR300	 150	 300	 2400	
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cache (SRAM) 
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(per byte) 
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remote secondary storage 
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Local disks hold files 
retrieved from disks on 
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blocks retrieved from local 
disks. 
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L1 cache holds cache lines retrieved 
from the L2 cache memory. 
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retrieved from L1 cache. 

L2 cache holds cache lines 
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L1: 
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Memory	Hierarchy	(Review)	
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main 
memory I/O 

bridge 
bus interface L2 cache 

ALU register file 

cache bus system bus memory bus 

L1 
cache 

Cache	Memories	(SRAM)	

•  Cache	memories	are	small,	fast	SRAM-based	memories	
managed	automaGcally	in	hardware.	
–  Hold	frequently	accessed	blocks	of	main	memory	

•  CPU	looks	first	for	data	in	L1,	then	in	L2,	then	in	main	
memory.	

•  Typical	bus	structure:	
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Processor 

How		to	Exploit	Memory	Hierarchy	

•  Availability	of	memory	
–  Cost,	size,	speed	

•  Principle	of	locality	
–  Memory	references	are	bunched	together	
–  A	small	porGon	of	address	space	is	accessed	at	any	given	Gme	

•  This	space	in	high	speed	memory	
–  Problem:	not	all	of	it	may	fit	
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Types	of	locality	

•  Temporal	locality	
–  Tendency	to	access	locaGons	recently	referenced	

	
•  SpaGal	locality	

–  Tendency	to	reference	locaGons	around	recently	referenced	
–  LocaGon	x	,	then	others	will	be	x-k	or	x+k	
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Sources	of	locality	

•  Temporal	locality	
–  Code	within	a	loop	
–  Same	instrucGons	fetched	repeatedly	

•  SpaGal	locality	
–  Data	arrays	
–  Local	variables	in	stack	
–  Data	allocated	in	chunks	(conGguous	bytes)	

for	(i=0;	i<N;	i++)	{	
				A[i]	=	B[i]	+	C[i]	*	a;	
}	
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What	does	locality	buy?	

•  Address	the	gap	between	CPU	speed	and	RAM	speed	
•  SpaGal	and	temporal	locality	implies	a	subset	of	
instrucGons	can	fit	in	high	speed	memory	from	Gme	to	Gme	

•  CPU	can	access	instrucGons	and	data	from	this	high	speed	
memory	

•  Small	high	speed	memory	can	make	computer	faster	and	
cheaper	

•  Speed	of	1-20	nsec	at	cost	of	$50	to	$100	per	Mbyte	
•  This	is	Caching!!	

16	



Inser7ng	an	L1	Cache	Between	CPU	and	Main	
Memory	

17	

a b c d block 10 

p q r s block 21 

... 

... 

w x y z block 30 

... 

The big slow main memory 
has room for many 4-word 
blocks. 

The small fast L1 cache has room 
for two 4-word blocks. 

The tiny, very fast CPU register file 
has room for four 4-byte words. The transfer unit between 

the CPU register file and 
the cache is a 4-byte block. 

line 0 

line 1 
The transfer unit between 
the cache and main 
memory is a 4-word block 
(16 bytes). 



What	info.	Does	a	cache	need	

•  Cache:	A	smaller,	faster	storage	device	that	acts	as	a	
staging	area	for	a	subset	of	the	data	in	a	larger,	slower	
device.	

•  You	essenGally	allow	a	smaller	region	of	memory	to	hold	
data	from	a	larger	region.	Not	a	1-1	mapping.	

•  What	kind	of	informaGon	do	we	need	to	keep:	
–  The	actual	data	
–  Where	the	data	actually	comes	from	
–  If	data	is	even	considered	valid	
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Cache	Organiza7on	

•  Map	each	region	of	memory	to	a	smaller	region	of	cache	
•  Discard	address	bits	

–  Discard	lower	order	bits	(a)	
–  Discard	higher	order	bits	(b)	

•  Cache	address	size	is	4	bits	
•  Memory	address	size	is	8	bits	
•  In	case	of 	a)	

–  0000xxxx	is	mapped	to	0000	in	cache	
•  In	case	of	b)	

–  xxxx0001	is	mapped	to	0001	in	cache	
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Finding	data	in	cache	

•  Part	of	memory	address	applied	to	cache	
•  Remaining	is	stored	as	tag	in	cache	
•  Lower	order	bits	discarded	
•  Need	to	check	if	00010011	

–  Cache	index	is	0001	
–  Tag	is	0011	

•  If	tag	matches,	hit,	use	data	
•  No	match,	miss,	fetch	data	from	memory	
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valid 

valid 

tag 

tag 
set 0: 

B = 2b  bytes 
per cache block 

E  lines 
per set 

S = 2s  sets 

t tag bits 
per line 

1 valid bit 
per line 

Cache size:  C = B x E x S data bytes 

• • • 

valid 

valid 

tag 

tag 
set 1: • • • 

valid 

valid  tag 

tag 

set S-1: • • • 

• • • 

Cache is an array 
of sets. 

Each set contains 
one or more lines. 

Each line holds a 
block of data. 

0 1 • • • B–1 

0 1 • • • B–1 

0 1 • • • B–1 

0 1 • • • B–1 

0 1 • • • B–1 

0 1 • • • B–1 

General	Org	of	a	Cache	Memory	
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t bits s bits b bits 

0 
 

 
<set index>  <block offset> 

m-1 

<tag> 

Address A: 

v 

v 

tag 

tag 
set 0: • • • 

v 

v 

tag 

tag 
set 1: • 

v 

v 

tag 

tag 
set S-1: • • • 

• • • 

The word at address A is in the cache if 
the tag bits in one of the <valid> lines in 
set <set index> match <tag>. 

 
The word contents begin at offset 
<block offset> bytes from the beginning 
of the block. 

Addressing	Caches	
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0 1 • • • B–1 



set 0:  valid  tag  cache block 

Direct-Mapped	Cache	

•  Simplest	kind	of	cache	
•  Characterized	by	exactly	one	line	per	set.	
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set 0:  valid  tag 

valid  tag 

valid tag 

• • • 

set 1: 

set S-1: 
t bits s bits 

set index  block offset0 m-1 

b bits 

tag 

selected set 

cache block 

cache block 

cache block 
0 0  0 0 1 

Accessing	Direct-Mapped	Caches	

•  Set	selecGon	
–  Use	the	set	index	bits	to	determine	the	set	of	interest.	
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=1?  (1) The valid bit must be set 

1  0110 

t bits s bits 

set index  block offset0 m-1 

b bits 

tag 

selected set (i): 

(3) If (1) and (2), then 
cache hit, 

and block offset 
selects 

starting byte. 

(2) The tag bits in the cache 
= ? line must match the 

tag bits in the address 

Accessing	Direct-Mapped	Caches	

•  Line	matching	and	word	selecGon	
–  Line	matching:	Find	a	valid	line	in	the	selected	set	with	a	

matching	tag 		
–  Word	selecGon:	Then	extract	the	word	
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valid 

valid 

valid 

Example:	Direct	mapped	cache	

•  32	bit	address,	64KB	cache,	32	byte	block	
•  How	many	sets,	how	many	bits	for	the	tag,	how	many	bits	
for	the	offset?	
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Write-through	vs	write-back	

•  What	to	do	when	an	update	occurs?	
•  Write-through:	immediately	

–  Simple	to	implement,	synchronous	write	
–  Uniform	latency	on	misses	

•  Write-back:	write	when	block	is	replaced	
–  Requires	addiGonal	dirty	bit	or	modified	bit	
–  Asynchronous	writes		
–  Non-uniform	miss	latency	
–  Clean	miss:	read	from	lower	level	
–  Dirty	miss:	write	to	lower	level	and	read	(fill)	
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Writes	and	Cache	

•  Reading	informaGon	from	a	cache	is	straight	forward.	
•  What	about	wriGng?	

–  What	if	you’re	wriGng	data	that	is	already	cached	(write-hit)?	
–  What	if	the	data	is	not	in	the	cache	(write-miss)?	

•  Dealing	with	a	write-hit.	
–  Write-through	-	immediately	write	data	back	to	memory	
–  Write-back	-	defer	the	write	to	memory	for	as	long	as	possible	

•  Dealing	with	a	write-miss.	
–  write-allocate	-	load	the	block	into	memory	and	update	
–  no-write-allocate	-	writes	directly	to	memory	

•  Benefits?	Disadvantages?	
•  Write-through	are	typically	no-write-allocate.	
•  Write-back	are	typically	write-allocate.	
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size: 
speed: 
$/Mbyte: 
line size: 

200 B 
3 ns 

8 B  32 B 
larger, slower, cheaper 

8-64 KB 
3  ns 

1-4MB SRAM  128 MB DRAM 
60 ns 
$1.50/MB 
8  KB 

30 GB 
8 ms 
$0.05/MB 

Memory 

L1 
d-cache 

Regs 
Unified 

L2 
Cache 

Processor 

6 ns 
$100/MB 
32 B 

L1 
i-cache 

disk 

Mul7-Level	Caches	

•  OpGons:	separate	data	and	instrucGon	caches,	or	a	unified	
cache	
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Cache	Performance	Metrics	

•  Miss	Rate	
–  FracGon	of	memory	references	not	found	in	cache	(misses/	

references)	
–  Typical	numbers:	

•  3-10%	for	L1	
•  can	be	quite	small	(e.g.,	<	1%)	for	L2,	depending	on	size,	etc.	

•  Hit	Time	
–  Time	to	deliver	a	line	in	the	cache	to	the	processor	(includes	Gme	to	

determine	whether	the	line	is	in	the	cache)	
–  Typical	numbers:	

•  1	clock	cycle	for	L1	
•  3-8	clock	cycles	for	L2	

•  Miss	Penalty	
–  AddiGonal	Gme	required	because	of	a	miss	

•  Typically	25-100	cycles	for	main	memory	
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int  sumarrayrows(int  a[M][N]) 
{ 

int  i,  j,  sum  =  0; 
 

for  (i  =  0;  i  <  M;  i++) 
for  (j  =  0;  j  <  N;  j++) 

sum  +=  a[i][j]; 
return  sum; 

} 

int  sumarraycols(int  a[M][N]) 
{ 

int  i,  j,  sum  =  0; 
 

for  (j  =  0;  j  <  N;  j++) 
for  (i  =  0;  i  <  M;  i++) 

sum  +=  a[i][j]; 
return  sum; 

} 

Miss rate =  1/4 = 25% Miss rate =  100% 

Wri7ng	Cache	Friendly	Code	

•  Repeated	references	to	variables	are	good	(temporal	
locality)	

•  Stride-1	reference	paxerns	are	good	(spaGal	locality)	
•  Examples:	

–  cold	cache,	4-byte	words,	4-word	cache	blocks	
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Matrix	Mul7plica7on	Example	

•  Major	Cache	Effects	to	Consider	
–  Total	cache	size	

•  Exploit	temporal	locality	and	blocking)	
–  Block	size	

•  Exploit	spaGal	locality	

•  DescripGon:	
–  MulGply	N	x	N	matrices	
–  O(N3)	total	operaGons	
–  Accesses	

•  N	reads	per	source	element	
•  N	values	summed	per	desGnaGon	

–  but	may	be	able	to	hold	in	register	

/*  ijk  */ 
for  (i=0;  i<n;  i++)  { 

for  (j=0;  j<n;  j++)  { 
sum  =  0.0; 
for  (k=0;  k<n;  k++) 

sum  +=  a[i][k]  *  b[k][j]; 
c[i][j]  =  sum; 

} 
} 

Variable sum 
held in register 
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Miss	Rate	Analysis	for	Matrix	Mul7ply	

•  Assume:		
–  Line	size	=	32BYTES	(big	enough	for	4	64-bit	words)		
–  Matrix	dimension	(N)	is	very	large	

•  Approximate	1/N	as	0.0		
–  Cache	is	not	even	big	enough	to	hold	mulGple	rows	

•  Analysis	Method:		
–  Look	at	access	paxern	of	inner	loop	
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Layout	of	C	Arrays	in	Memory	(review)	

•  C	arrays	allocated	in	row-major	order	
–  each	row	in	conGguous	memory	locaGons	

•  Stepping	through	columns	in	one	row:	
–  for	(i 	= 	0; 	i 	< 	N; 	i++)	
									sum	+= 	a[0][i];	
–  accesses	successive	elements	
–  if	block	size	(B)	>	4	bytes,	exploit	spaGal	locality	

•  compulsory	miss	rate	=	4	bytes	/	B	
•  Stepping	through	rows	in	one	column:	

–  for	(i 	= 	0; 	i 	< 	n; 	i++)	
							sum 	+= 	a[i][0];	

•  accesses	distant	elements	
•  no	spaGal	locality!	

–  compulsory	miss	rate	=	1	(i.e.	100%)	
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Matrix	Mul7plica7on	(ijk)	
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Matrix	Mul7plica7on	(jik)	
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Matrix	Mul7plica7on	(kij)	
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Matrix	Mul7plica7on	(ikj)	
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Matrix	Mul7plica7on	(jki)	
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Matrix	Mul7plica7on	(kji)	
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Summary	of	Matrix	Mul7plica7on	
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for (i=0; i<n; i++)  
{ for (j=0; j<n; j++) 

{ 

sum = 0.0; 

for (k=0; k<n; k++) 
sum += a[i][k] * b[k][j]; 

c[i][j] = sum; 

} 

} 

ijk (& jik):  kij (& ikj):  jki (& kji): 
• 2 loads, 0 stores 
• misses/iter = 1.25 

for (k=0; k<n; k++) 
{ for (i=0; i<n; i++) 

{ 

r = a[i][k]; 

for (j=0; j<n; j++) c[i]

[j] += r * b[k][j]; 

} 

} 

for (j=0; j<n; j++) { 
for (k=0; k<n; k++) 

{ r = b[k][j]; 

for (i=0; i<n; i++) c[i]

[j] += a[i][k] * r; 
} 

} 

• 2 loads, 1 store 
• misses/iter = 0.5 

• 2 loads, 1 store 
• misses/iter = 2.0 



Outline	

•  Memory,	Locality	of	reference	and	Caching	
•  Cache	coherence	in	shared	memory	system	
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Shared	memory	systems	

•  All	processes	have	access	to	the	same	address	space	
–  E.g.	PC	with	more	than	one	processor	

•  Data	exchange	between	processes	by	wriGng/reading	
shared	variables	
–  Shared	memory	systems	are	easy	to	program	
–  Current	standard	in	scienGfic	programming:	OpenMP	

•  Two	versions	of	shared	memory	systems	available	today	
–  Centralized	Shared	Memory	Architectures		
–  Distributed	Shared	Memory	architectures	



Centralized	Shared	Memory	Architecture	

•  Also	referred	to	as	Symmetric	MulG-Processors	(SMP)	
•  All	processors	share	the	same	physical	main	memory	

•  Memory	bandwidth	per	processor	is	limiGng	factor	for	this	
type	of	architecture	

•  Typical	size:	2-32	processors	

Memory	

CPU	 CPU	

CPU	 CPU	



Centralized	shared	memory	system	(I)	

•  Intel	X7350	quad-core	(Tigerton)	
–  Private	L1	cache:	32	KB	instrucGon,	32	KB	data		
–  Shared	L2	cache:	4	MB	unified	cache	

	
Core	
	
L1	

	
Core	
	
L1	

shared	L2	

	
Core	
	
L1	

	
Core	
	
L1	

shared	L2	

1066	MHz	FSB	



Centralized	shared	memory	systems	(II)	

•  Intel	X7350	quad-core	(Tigerton)	mulG-processor	
configuraGon	

C	
0	

C	
1	

L2	

C	
8	

C	
9	

L2	

C	
2	

C	
3	

L2	

C	
10	

C	
11	

L2	

C	
4	

C	
5	

L2	

C	
12	

C	
13	

L2	

C	
6	

C	
7	

L2	

C	
14	

C	
15	

L2	

Socket	0	 Socket	1	 Socket	2	 Socket	3	

Memory	Controller	
Hub	(MCH)	

Memory	 Memory	 Memory	 Memory	

8	GB/s	8	GB/s	8	GB/s	8	GB/s	



Distributed	Shared	Memory	Architectures	

•  Also	referred	to	as	Non-Uniform	Memory	Architectures	
(NUMA)	

•  Some	memory	is	closer	to	a	certain	processor	than	other	
memory	
–  The	whole	memory	is	sGll	addressable	from	all	processors	
–  Depending	on	what	data	item	a	processor	retrieves,	the	access	

Gme	might	vary	strongly	

Memory	

CPU	 CPU	

Memory	

CPU	 CPU	

Memory	

CPU	 CPU	

Memory	

CPU	 CPU	



NUMA	architectures	(II)	

•  Reduces	the	memory	boxleneck	compared	to	SMPs	
•  More	difficult	to	program	efficiently	

–  E.g.	first	touch	policy:	data	item	will	be	located	in	the	memory	
of	the	processor	which	uses	a	data	item	first	

•  To	reduce	effects	of	non-uniform	memory	access,	caches	
are	o}en	used	
–  ccNUMA:	cache-coherent	non-uniform	memory	access	

architectures	
•  Largest	example	as	of	today:	SGI	Origin	with	512	processors	



Distributed	Shared	Memory	Systems	



Cache	Coherence	

•  Real-world	shared	memory	systems	have	caches	between	
memory	and	CPU	

•  Copies	of	a	single	data	item	can	exist	in	mulGple	caches	
•  ModificaGon	of	a	shared	data	item	by	one	CPU	leads	to	
outdated	copies	in	the	cache	of	another	CPU	

Memory	

CPU	0	

Cache	

CPU	1	

Cache	

Original	data	item	

Copy	of	data	item	
in	cache	of	CPU	0	 Copy	of	data	item	

in	cache	of	CPU	1	



Cache	coherence	(II)	

•  Typical	soluGon:	
–  Caches	keep	track	on	whether	a	data	item	is	shared	between	

mulGple	processes	
–  Upon	modificaGon	of	a	shared	data	item,	‘noGficaGon’	of	

other	caches	has	to	occur	
–  Other	caches	will	have	to	reload	the	shared	data	item	on	the	

next	access	into	their	cache	
•  Cache	coherence	is	only	an	issue	in	case	mulGple	tasks	
access	the	same	item	
–  MulGple	threads	
–  MulGple	processes	have	a	joint	shared	memory	segment	
–  Process	is	being	migrated	from	one	CPU	to	another	



Cache	Coherence	Protocols	

•  Snooping	Protocols	
–  Send	all	requests	for	data	to	all	processors	
–  Processors	snoop	a	bus	to	see	if	they	have	a	copy	and	respond	accordingly		
–  Requires	broadcast,	since	caching	informaGon	is	at	processors	
–  Works	well	with	bus	(natural	broadcast	medium)	
–  Dominates	for	centralized	shared	memory	machines	

•  Directory-Based	Protocols		
–  Keep	track	of	what	is	being	shared	in		centralized	locaGon	
–  Distributed	memory	=>	distributed	directory	for	scalability	

(avoids	boxlenecks)	
–  Send	point-to-point	requests	to	processors	via	network	
–  Scales	bexer	than	Snooping	
–  Commonly	used	for	distributed	shared	memory	machines	



Categories	of	cache	misses	

•  Up	to	now:	
–  Compulsory	Misses:	first	access	to	a	block	cannot	be	in	the	cache	(cold	

start	misses)	
–  Capacity	Misses:	cache	cannot	contain	all	blocks	required	for	the	execuGon	
–  Conflict	Misses:		cache	block	has	to	be	discarded	because	of	block	

replacement	strategy	
•  In	mulG-processor	systems:	

–  Coherence	Misses:	cache	block	has	to	be	discarded	because	another	
processor	modified	the	content	
•  true	sharing	miss:	another	processor	modified	the	content	of	the	request	
element	

•  false	sharing	miss:	another	processor	invalidated	the	block,	although	the	
actual	item	of	interest	is	unchanged.	



Bus	Snooping	Topology	



Larger	Shared	Memory	Systems	

•  Typically	Distributed	Shared	Memory	Systems	
•  Local	or	remote	memory	access	via	memory	controller	
•  Directory	per	cache	that	tracks	state	of	every	block	in	every	cache	

–  Which	caches	have	a	copy	of	block,	dirty	vs.	clean,	...	
•  Info	per	memory	block	vs.	per	cache	block?	

–  PLUS:	In	memory	=>	simpler	protocol	(centralized/one	locaGon)	
–  MINUS:	In	memory	=>	directory	is	ƒ(memory	size)	vs.	ƒ(cache	size)	

•  Prevent	directory	as	boxleneck?		
distribute	directory	entries	with	memory,	each	keeping	track	of	which	
processors	have	copies	of	their	blocks	



Distributed	Directory	MPs	



•  False	sharing	
–  When	at	least	one	thread	write	to	a	

cache	line	while	others	access	it	
•  Thread	0:		=	A[1]				(read)	
•  Thread	1:	A[0]	=	…	(write)	

•  SoluGon:	use	array	padding	

int a[max_threads]; 
#pragma omp parallel for schedule(static,1) 
for(int i=0; i<max_threads; i++) 
     a[i] +=i; 

int a[max_threads][cache_line_size]; 
#pragma omp parallel for schedule(static,1) 
for(int i=0; i<max_threads; i++) 
     a[i][0] +=i; 

False	Sharing	in	OpenMP	

Getting OpenMP Up To Speed



RvdP/V1 Tutorial IWOMP 2010 – CCS Un. of Tsukuba, June 14, 2010

False Sharing

CPUs Caches Memory

A store into a shared cache line invalidates the other 
copies of that line:

The system is not able to 
distinguish between changes 

within one individual line
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A	

T0	

T1	



NUMA	and	First	Touch	Policy	

•  Data	placement	policy	on	NUMA	architectures	

	
•  First	Touch	Policy	

–  The	process	that	first	touches	a	page	of	memory	causes	that	
page	to	be	allocated	in	the	node	on	which	the	process	is	
running	
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Getting OpenMP Up To Speed



RvdP/V1 Tutorial IWOMP 2010 – CCS Un. of Tsukuba, June 14, 2010

A generic cc-NUMA architecture


















 











NUMA	First-touch	placement/1	
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Getting OpenMP Up To Speed
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About “First Touch” placement/1

for (i=0; i<100; i++)
    a[i] = 0;


















 

a[0]
  :
a[99]

First Touch
All array elements are in the memory of 

the processor executing this thread



int a[100]; 
Only	reserve	the	vm	

address	



NUMA	First-touch	placement/2	
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Getting OpenMP Up To Speed
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About “First Touch” placement/2

for (i=0; i<100; i++)
    a[i] = 0;
















 

a[0]
  :
a[49]

#pragma omp parallel for num_threads(2)

First Touch
Both memories each have “their half” of 

the array

a[50]
  :
a[99]

 



Work	with	First-Touch	in	OpenMP	

•  First-touch	in	pracGce	
–  IniGalize	data	consistently	with	the	computaGons	
	

61	

#pragma	omp	parallel	for	
for(i=0;	i<N;	i++)	{	
			a[i]	=	0.0;	b[i]	=	0.0	;	c[i]	=	0.0;		
}	
readfile(a,b,c);	
	
#pragma	omp	parallel	for	
for(i=0;	i<N;	i++)	{	
				a[i]	=	b[i]	+	c[i];	
}	



Concluding	Observa7ons	

•  Programmer	can	opGmize	for	cache	performance	
–  How	data	structures	are	organized	
–  How	data	are	accessed	

•  Nested	loop	structure	
•  Blocking	is	a	general	technique	

•  All	systems	favor	“cache	friendly	code”	
–  Ge�ng	absolute	opGmum	performance	is	very	pla�orm	

specific	
•  Cache	sizes,	line	sizes,	associaGviGes,	etc.	

–  Can	get	most	of	the	advantage	with	generic	code	
•  Keep	working	set	reasonably	small	(temporal	locality)	
•  Use	small	strides	(spaGal	locality)	

–  Work	with	cache	coherence	protocol	and	NUMA	first	touch	
policy	
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