
Projects	

•  Work	together	for	the	implementa1on	
–  Discussion	and	debugging,	but	not	the	code	itself	
•  Each	submit	your	own	implementa1on	and	report	
•  Presenta1on	
–  One	presenta1on	

•  Addi1onal	mee1ng	1me	

1	

Name	
Adi0	Pa0l	 Project	1	
Aparna	Puram	 Project	1	
Erik	Hoggard	 Project	1	
Jacques	Breaux	 Project	1	
Karam	Abughalieh	 Project	2	
Kevin	Weinert	 Project	2	
Mark	Easterly	 Project	2	
Nathan	Sketch	 Project	2	
Shayan	Mukhtar	 Project	2	

Lecture	16:	Parallel	Architecture	–	
Thread	Level	Parallelism	

Concurrent	and	Mul0core	Programming	
	

Department	of	Computer	Science	and	Engineering	
Yonghong	Yan	

yan@oakland.edu	
www.secs.oakland.edu/~yan	

	

2	

Topics	(Part	1)	

•  Introduc1on	
•  Principles	of	parallel	algorithm	design	(Chapter	3)	
•  Programming	on	shared	memory	system	(Chapter	7)	
–  OpenMP	
–  Cilk/Cilkplus	
–  PThread,	mutual	exclusion,	locks,	synchroniza0ons	
•  Analysis	of	parallel	program	execu1ons	(Chapter	5)	
–  Performance	Metrics	for	Parallel	Systems	
•  Execu0on	Time,	Overhead,	Speedup,	Efficiency,	Cost		

–  Scalability	of	Parallel	Systems	
–  Use	of	performance	tools	

3	

Topics	(Part	2)	

•  Parallel	architectures	and	hardware	
–  Parallel	computer	architectures	
•  Thread	level	parallelism	and	data	level	parallelism	

–  Memory	hierarchy	and	cache	coherency	
•  Manycore	GPU	architectures	and	programming	
–  GPUs	architectures	
–  CUDA	programming	
–  Introduc1on	to	offloading	model	in	OpenMP	
•  Programming	on	large	scale	systems	(Chapter	6)	
–  MPI	(point	to	point	and	collec0ves)	
–  Introduc1on	to	PGAS	languages,	UPC	and	Chapel	
•  Parallel	algorithms	(Chapter	8,9	&10)	

4	

Moore’s	Law	

Source:	hZp://en.wikipedia.org/wki/Images:Moores_law.svg	
	

•  Long-term	trend	on	the	number	of	transistor	per	integrated	circuit	
•  Number	of	transistors	double	every	~18	month	

Binary	Code	and	Instruc0ons	

6	

Stages	to	Execute	an	Instruc0on	

7	

Pipeline	

8	

Pipeline	and	Superscalar	

9	

What	do	we	do	with	that	many	transistors?		

•  Op1mizing	the	execu1on	of	a	single	instruc1on	stream	through	
–  Pipelining	
•  Overlap	the	execu1on	of	mul1ple	instruc1ons	
•  Example:	all	RISC	architectures;	Intel	x86	underneath	the	
hood	

–  Out-of-order	execu1on:		
•  Allow	instruc1ons	to	overtake	each	other	in	accordance	with	
code	dependencies	(RAW,	WAW,	WAR)	

•  Example:	all	commercial	processors	(Intel,	AMD,	IBM,	SUN)	
–  Branch	predic1on	and	specula1ve	execu1on:		
•  Reduce	the	number	of	stall	cycles	due	to	unresolved	
branches	

•  Example:	(nearly)	all	commercial	processors	

What	do	we	do	with	that	many	transistors?	(II)	

–  Mul1-issue	processors:			
•  Allow	mul1ple	instruc1ons	to	start	execu1on	per	clock	cycle	
•  Superscalar	(Intel	x86,	AMD,	…)	vs.	VLIW	architectures	

–  VLIW/EPIC	architectures:		
•  Allow	compilers	to	indicate	independent	instruc1ons	per	
issue	packet	

•  Example:	Intel	Itanium	
–  Vector	units:	
•  Allow	for	the	efficient	expression	and	execu1on	of	vector	
opera1ons	

•  Example:	SSE	-	SSE4,	AVX	instruc1ons	

Limita0ons	of	op0mizing	a	single	instruc0on	
stream	(II)	

•  Problem:	within	a	single	instruc1on	stream	we	do	not	find	
enough	independent	instruc1ons	to	execute	simultaneously	due	
to	
–  data	dependencies	
–  limita1ons	of	specula1ve	execu1on	across	mul1ple	branches	
–  difficul1es	to	detect	memory	dependencies	among	instruc1on	

(alias	analysis)	
•  Consequence:	significant	number	of	func1onal	units	are	idling	at	

any	given	1me		
•  Ques1on:	Can	we	maybe	execute	instruc1ons	from	another	

instruc1ons	stream		
–  Another	thread?	
–  Another	process?	

The	“Future”	of	Moore’s	Law	

•  The	chips	are	down	for	Moore’s	law	
–  hZp://www.nature.com/news/the-chips-are-down-for-moore-

s-law-1.19338	
•  Special	Report:	50	Years	of	Moore's	Law	
–  hZp://spectrum.ieee.org/sta1c/special-report-50-years-of-

moores-law	
•  Moore’s	law	really	is	dead	this	1me	
–  hZp://arstechnica.com/informa1on-technology/2016/02/

moores-law-really-is-dead-this-1me/	
•  Reboo1ng	the	IT	Revolu1on:	A	Call	to	Ac1on	(SIA/SRC,	
2015)	
–  hZps://www.semiconductors.org/clientuploads/Resources/

RITR%20WEB%20version%20FINAL.pdf	

13	

Thread-level	parallelism	

•  Problems	for	execu1ng	instruc1ons	from	mul1ple	threads	
at	the	same	1me	
–  The	instruc1ons	in	each	thread	might	use	the	same	register	

names	
–  Each	thread	has	its	own	program	counter	
•  Virtual	memory	management	allows	for	the	execu1on	of	
mul1ple	threads	and	sharing	of	the	main	memory	

•  When	to	switch	between	different	threads:	
–  Fine	grain	mul1threading:	switches	between	every	instruc1on	
–  Course	grain	mul1threading:	switches	only	on	costly	stalls	(e.g.	

level	2	cache	misses)	

Simultaneous	Mul0-Threading	(SMT)	

•  Convert	Thread-level	parallelism	to	instruc1on-level	
parallelism	

Superscalar	 Course	MT	 Fine	MT	 SMT	

Simultaneous	mul0-threading	(II)	

•  Dynamically	scheduled	processors	already	have	most	
hardware	mechanisms	in	place	to	support	SMT	(e.g.	
register	renaming)	

•  Required	addi1onal	hardware:	
–  Register	file	per	thread	
–  Program	counter	per	thread	
•  Opera1ng	system	view:	
–  If	a	CPU	supports	n	simultaneous	threads,	the	Opera1ng	

System	views	them	as	n	processors	
–  OS	distributes	most	1me	consuming	threads	‘fairly’	across	the	

n	processors	that	it	sees.	

Example	for	SMT	architectures	(I)	

•  Intel	Hyperthreading:	
–  First	released	for	Intel	Xeon	processor	family	in	2002	
–  Supports	two	architectural	sets	per	CPU,		
–  Each	architectural	set	has	its	own	
•  General	purpose	registers	
•  Control	registers	
•  Interrupt	control	registers	
•  Machine	state	registers	

–  Adds	less	than	5%	to	the	rela1ve	chip	size	
	Reference:	D.T.	Marr	et.	al.	“Hyper-Threading	Technology	Architecture	and	
Microarchitecture”,	Intel	Technology	Journal,	6(1),	2002,	pp.4-15.	xp://download.intel.com/
technology/itj/2002/volume06issue01/vol6iss1_hyper_threading_technology.pdf	

Example	for	SMT	architectures	(II)	

•  IBM	Power	5	
–  Same	pipeline	as	IBM	Power	4	processor	but	with	SMT	support	
–  Further	improvements:	
•  Increase	associa1vity	of	the	L1	instruc1on	cache	
•  Increase	the	size	of	the	L2	and	L3	caches	
•  Add	separate	instruc1on	prefetch	and	buffering	units	for	
each	SMT	

•  Increase	the	size	of	issue	queues	
•  Increase	the	number	of	virtual	registers	used	internally	by	
the	processor.	

Simultaneous	Mul0-Threading	

•  Works	well	if	
–  Number	of	compute	intensive	threads	does	not	exceed	the	number	of	

threads	supported	in	SMT	
–  Threads	have	highly	different	characteris1cs	(e.g.	one	thread	doing	mostly	

integer	opera1ons,	another	mainly	doing	floa1ng	point	opera1ons)	
•  Does	not	work	well	if	
–  Threads	try	to	u1lize	the	same	func1on	units	
–  Assignment	problems:		
•  e.g.	a	dual	processor	system,	each	processor	suppor1ng	2	threads	
simultaneously	(OS	thinks	there	are	4	processors)	

•  2	compute	intensive	applica1on	processes	might	end	up	on	the	same	
processor	instead	of	different	processors	(OS	does	not	see	the	difference	
between	SMT	and	real	processors!)	

Synchroniza0on	between	processors	

•  Required	on	all	levels	of	mul1-threaded	programming	
–  Lock/unlock	
–  Mutual	exclusion	
–  Barrier	synchroniza1on	

•  Key	hardware	capability:	*cp++	
–  Uninterruptable	instruc1on	capable	of	automa1cally	retrieving	

or	changing	a	value	

Race	Condi0on	
int	count	=	0;	
int	*	cp	=	&count;	
….		
cp++;	/	by	two	threads	*/	

21	Pictures	from	wikipedia:	hZp://en.wikipedia.org/wiki/Race_condi1on	

Simple	Example	(IIIb)	

void *thread_func (void *arg){
 int * cp (int *) arg;

 pthread_mutex_lock (&mymutex);
 *cp++; // read, increment and write shared variable
 pthread_mutex_unlock (&mymutex);

 return NULL;
}

Synchroniza0on		

•  Lock/unlock	opera1ons	on	the	hardware	level,	e.g.	
–  Lock	returning	1	if	lock	is	free/available	
–  Lock	returning	0	if	lock	is	unavailable	
•  Implementa1on	using	atomic	exchange	(compare	and	swap)	
–  Process	sets	the	value	of	a	register/memory	loca1on	to	the	

required	opera1on	
–  Se�ng	the	value	must	not	be	interrupted	in	order	to	avoid	

race	condi1ons	
–  Access	by	mul1ple	processes/threads	will	be	resolved	by	write	

serializa1on	

Synchroniza0on	(II)	

•  Other	synchroniza1on	primi1ves:	
–  Test-and-set	
–  Fetch-and-increment	
•  Problems	with	all	three	algorithms:	
–  Require	a	read	and	write	opera1on	in	a	single,	uninterruptable	

sequence	
–  Hardware	can	not	allow	any	opera1ons	between	the	read	and	

the	write	opera1on	
–  Complicates	cache	coherence	
–  Must	not	deadlock	

Load	linked/store	condi0onal	

•  Pair	of	instruc1ons	where	the	second	instruc1on	returns	a	
value	indica1ng,	whether	the	pair	of	instruc1ons	was	
executed	as	if	the	instruc1ons	were	atomic	

•  Special	pair	of	load	and	store	opera1ons	
–  Load	linked	(LL)	
–  Store	condi8onal	(SC):	returns	1	if	successful,	0	otherwise	
•  Store	condi1onal	returns	an	error	if	
–  Contents	of	memory	loca1on	specified	by	LL	changed	before	

calling	SC	
–  Processor	executes	a	context	switch	

Load	linked/store	condi0onal	(II)	

•  Assembler	code	sequence	to	atomically	exchange	the	
contents	of	register	R4	and	the	memory	loca1on	specified	
by	R1	

try: MOV R3, R4

 LL R2, 0(R1)

 SC R3, 0(R1)

 BEQZ R3, try

 MOV R4, R2		

Load	linked/store	condi0onal	(III)	

•  Implemen1ng	fetch-and-increment	using	load	linked	and	
condi1onal	store	

try: LL R2, 0(R1)
 DADDUI R3, R2, #1
 SC R3, 0(R1)

 BEQZ R3, try
•  Implementa1on	of	LL/SC	by	using	a	special	Link	Register,	
which	contains	the	address	of	the	opera1on	

	
	

Spin	locks	

•  A	lock	that	a	processor	con1nuously	tries	to	acquire,	spinning	around	in	a	
loop	un1l	it	succeeds.	

•  Trivial	implementa1on	

 DADDUI R2, R0, #1

lockit: EXCH R2, 0(R1) !atomic exchange

 BNEZ R2, lockit

•  Since	the	EXCH	opera1on	includes	a	read	and	a	modify	opera1on	
–  Value	will	be	loaded	into	the	cache	
•  Good	if	only	one	processor	tries	to	access	the	lock	
•  Bad	if	mul1ple	processors	in	an	SMP	try	to	get	the	lock	(cache	coherence)	

–  EXCH	includes	a	write	aZempt,	which	will	lead	to	a	write-miss	for	SMPs	

Spin	locks	(II)	

•  For	cache	coherent	SMPs,	slight	modifica1on	of	the	loop	
required	

lockit: LD R2, 0(R1) !load the lock

 BNEZ R2, lockit !lock available?

 DADDUI R2, R0, #1 !load locked value

 EXCH R2, 0(R1) !atomic exchange

 BNEZ R2, lockit !EXCH successful?

Spin	locks	(III)	

•  …or	using	LL/SC	
lockit: LL R2, 0(R1) !load the lock

 BNEZ R2, lockit !lock available?

 DADDUI R2, R0, #1 !load locked value

 SC R2, 0(R1) !atomic exchange

 BNEZ R2, lockit !SC successful?

