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Classifica;on	of	Parallel	Architectures	

Flynn’s	Taxonomy	
•  SISD:	Single	instrucFon	single	data	

–  Classical	von	Neumann	architecture	
•  SIMD:	Single	instrucFon	mulFple	data	

–  Vector,	GPU,	etc	
•  MISD:	MulFple	instrucFons	single	data	

–  Non	existent,	just	listed	for	completeness	
•  MIMD:	MulFple	instrucFons	mulFple	data	

–  Most	common	and	general	parallel	machine	



Single	Instruc;on	Mul;ple	Data	

•  Also	known	as	Array-processors	
•  A	single	instrucFon	stream	is	broadcasted	to	mulFple	
processors,	each	having	its	own	data	stream	
–  SFll	used	in	some	graphics	cards	today	

InstrucFons	
stream	

processor	 processor	 processor	 processor	

Data	 Data	 Data	 Data	

Control	unit	



SIMD	Instruc;ons	

•  Originally	developed	for	MulFmedia	applicaFons	
•  Same	operaFon	executed	for	mulFple	data	items	
•  Uses	a	fixed	length	register	and	parFFons	the	carry	chain	to	allow	

uFlizing	the	same	funcFonal	unit	for	mulFple	operaFons	
–  E.g.	a	64	bit	adder	can	be	uFlized	for	two	32-bit	add	

operaFons	simultaneously	
•  InstrucFons	originally	not	intended	to	be	used	by	compiler,	but	just	for	

handcraZing	specific	operaFons	in	device	drivers	
•  All	elements	in	a	register	have	to	be	on	the	same	memory	page	to	

avoid	page	faults	within	the	instrucFon	



SIMD	Instruc;ons	

•  MMX	(Mult-Media	Extension)	-	1996	
–  ExisFng	64	bit	floaFng	point	register	could	be	used	for	eight	8-

bit	operaFons	or	four	16-bit	operaFons	
•  SSE	(Streaming	SIMD	Extension)	–	1999	

–  Successor	to	MMX	instrucFons	
–  Separate	128-bit	registers	added	for	sixteen	8-bit,	eight	16-bit,	

or	four	32-bit	operaFons	
•  SSE2	–	2001,	SSE3	–	2004,	SSE4	-	2007	

–  Added	support	for	double	precision	operaFons	
•  AVX	(Advanced	Vector	Extensions)		-	2010	

–  256-bit	registers	added		
		



AVX	Instruc;ons	

AVX	Instruc;on	 Descrip;on	

VADDPD Add	four	packed	double-precision	operands	

VSUBPD Subtract	four	packed	double-precision	operands	

VMULPD MulFply	four	packed	double-precision	operands	

VDIVPD Divide	four	packed	double-precision	operands	

VFMADDPD MulFply	and	add	four	packed	double-precision	operands	

VFMSUBPD MulFply	and	subtract	four	packed	double-precision	operands	

VCMPxx Compare	four	packed	double-precision	operands	for	EQ, 
NEQ, LT, LTE, GT, GE…	

VMOVAPD Move	aligned	four	packed	double-precision	operands	

VBROADCASTSD Broadcast	one	double-precision	operand	to	four	locaFons	in	a	
256-bit	register	



Intel	Xeon	Phi	Processor	

•  First	generaFon	of	Intel	MIC	(Many	Integrated	Cores)	architecture	

•  60	cores	/	1.0	GHz	
•  512-bit	wide	vector	engine	
•  32	Kb	L1	I/D	cache,		
•  512	Kb	L2	cache	(per	core)	
•  Up	to	1	TFLOPS	double-precision	performance	
•  8	Gb	GDDR5	memory	and	320	Gb/s	bandwidth	
•  Standard	PCIe	x16	form	factor	
	





Mul;ple	Instruc;ons	Mul;ple	Data	(I)	

•  Each	processor	has	its	own	instrucFon	stream	and	input	
data	

•  Very	general	case		
–  every	other	scenario	can	be	mapped	to	MIMD	

•  Further	breakdown	of	MIMD	usually	based	on	the	memory	
organizaFon	
–  Shared	memory	systems	
–  Distributed	memory	systems	



Vector	Processors	

•  Vector	processors	abstract	operaFons	on	vectors,	e.g.	
replace	the	following	loop	

	

	by	
	
	
•  Some	languages	offer	high-level	support	for	these	
operaFons	(e.g.	Fortran90	or	newer)	

	for (i=0; i<n; i++) { 
  a[i] = b[i] + c[i]; 

 } 

	a = b + c;  ADDV.D V10, V8, V6 
  



Main	concepts	

•  Advantages	of	vector	instrucFons	
–  A	single	instrucFon	specifies	a	great	deal	of	work	
–  Since	each	loop	iteraFon	must	not	contain	data	dependence	

to	other	loop	iteraFons	
•  No	need	to	check	for	data	hazards	between	loop	iteraFons	
•  Only	one	check	required	between	two	vector	instrucFons	
•  Loop	branches	eliminated	



Basic	vector	architecture	

•  A	modern	vector	processor	contains	
–  Regular,	pipelined	scalar	units	
–  Regular	scalar	registers	
–  Vector	units	–	(inventors	of	pipelining!	)	
–  Vector	register:	can	hold	a	fixed	number	of	entries	(e.g.	64)	
–  Vector	load-store	units	



Comparison	MIPS	code	vs.	vector	code	

Example:	Y=aX+Y for	64	elements	

 L.D  F0, a      /* load scalar a*/ 
 DADDIU R4, Rx, #512  /* last address */ 

L: L.D  F2, 0(Rx)   /* load X(i) */ 
 MUL.D  F2, F2, F0   /* calc. a times X(i)*/ 
 L.D  F4, 0(Ry)   /* load Y(i) */ 
 ADD.D  F4, F4, F2   /* aX(I) + Y(i) */ 
 S.D  F4, 0(Ry)   /* store Y(i) */ 
 DADDIU Rx, Rx, #8   /* increment X*/ 
 DADDIU Ry, Ry, #8   /* increment Y */ 
 DSUBU  R20, R4, Rx  /* compute bound */ 
 BNEZ  R20, L 



Comparison	MIPS	code	vs.	vector	code	(II)	

Example:	Y=aX+Y for	64	elements	

 L.D  F0, a      /* load scalar a*/ 
  LV   V1, 0(Rx)   /* load vector X */ 
 MULVS.D  V2, V1, F0  /* vector scalar mult*/ 
 LV   V3, 0(Ry)   /* load vector Y */ 
 ADDV.D V4, V2, V3   /* vector add */ 
 SV   V4, 0(Ry)   /* store vector Y */ 
  



Overhead	

•  Start-up	overhead	of	a	pipeline:	how	many	cycles	does	it	
take	to	fill	the	pipeline	before	the	first	result	is	available?	

Unit Start-up 
Load/store 12 
Multiply 7 
Add 6 

Convoy Starting time First result Last result 

LV 1 12 12+n-1 

MULVS   LV 12+n 12+n+11 23+n+n-1 

ADDV 23+2n 23+2n+5 28+2n+n-1 

SV 28+3n 28+3n+11 39+3n+n-1 



Vector	length	control	

•  What	happens	if	the	length	is	not	matching	the	length	of	
the	vector	registers?	

•  A	vector-length	register	(VLR)	contains	the	number	of	
elements	used	within	a	vector	register	

•  Strip	mining:	split	a	large	loop	into	loops	less	or	equal	the	
maximum	vector	length	(MVL)	



Vector	length	control	(II)	

low =0; 

VL  = (n mod MVL); 

for (j=0; j < n/MVL; j++ ) { 

 for (i=low; i < low + VL; i++ ) { 

       Y(i) = a * X(i) + Y(i); 

 } 

 low += VL; 

 VL   = MVL; 

} 



Vector	stride	

•  Memory	on	typically	organized	in	mulFple	banks	
–  Allow	for	independent	management	of	different	memory	

addresses	
–  Memory	bank	Fme	an	order	of	magnitude	larger	than	CPU	

clock	cycle	
•  Example:	assume	8	memory	banks	and	6	cycles	of	memory	
bank	Fme	to	deliver	a	data	item	
–  Overlapping	of	mulFple	data	requests	by	the	hardware	



Vector	stride	(II)	

•  What	happens	if	the	code	does	not	access	subsequent	
elements	of	the	vector	

–  Vector	load	‘compacts’	the	data	items	in	the	vector	register	
(gather)	
•  No	affect	on	the	execuFon	of	the	loop	
•  You	might	however	use	only	a	subset	of	the	memory	banks	-
>	longer	load	Fme	

• Worst	case:	stride	is	a	mulFple	of	the	number	of	memory	
banks	

	for (i=0; i<n; i+=2) { 
  a[i] = b[i] + c[i]; 

 } 



Chaining	

•  Example:	
	MULV.D  V1, V2, V3 
 ADDV.D  V4, V1, V5 

•  Second	instrucFon	has	a	data	dependence	on	the	first	
instrucFon:	two	convoys	required	

•  Once	the	element	V1(i)	is	has	been	calculated,	the	second	
instrucFon	could	calculate	V4(i)		
–  no	need	to	wait	unFl	all	elements	of	V1	are	available	
–  could	work	similarly	as	forwarding	in	pipelining	
–  Technique	is	called	chaining	



Chaining	(II)	

•  Recent	implementaFons	use	flexible	chaining	
–  Vector	register	file	has	to	be	accessible	by	mulFple	vector	

units	simultaneously	
•  Chaining	allows	operaFons	to	proceed	in	parallel	on	
separate	elements	of	vectors	
–  OperaFons	can	be	scheduled	in	the	same	convoy	
–  Reduces	the	number	of	chimes	
–  Does	not	reduce	the	startup-overhead	



Chaining	(III)	

•  Example:	chained	and	unchained	version	of	the	ADDV.D	
and	MULV.D	shown	previously	for	64	elements	
–  Start-up	latency	for	the	FP	MUL	vector	unit:	7cycles	
–  Start-up	latency	for	FP	ADD	vector	unit:	6	cycles	

•  Unchained	version:	
7	+	63	+	6	+	63	=	139	cycles	

•  Chained	version:	
7	+	6	+	63	=	76	cycles	
		

7	 63	 6	 63	
MULV	 ADDV	

7	 63	
MULV	

6	 63	
ADDV	



Condi;onal	execu;on	

•  Consider	the	following	loop	
  for (i=0; i< N; i++ ) { 

     if ( A(i) != 0 ) { 

   A(i) = A(i) – B(i); 

     } 

  } 

•  Loop	can	usually	not	been	vectorized	because	of	the	
condiFonal	statement	

•  Vector-mask	control:	boolean	vector	of	length	MLV	to	
control	whether	an	instrucFon	is	executed	or	not	
–  Per	element	of	the	vector	



Condi;onal	execu;on	(II)	

LV    V1, Ra  /* load vector A into V1 */ 

LV    V2, Rb  /* load vector B into V2 */ 

L.D   F0, #0  /* set F0 to zero */ 

SNEVS.D  V1, F0  /* set VM(i)=1 if V1(i)!=F0 */ 

SUBV.D  V1, V1, V2  /* sub using vector mask*/ 

CVM     /* clear vector mask to 1 */ 

SV   V1, Ra  /* store V1 */ 



Support	for	sparse	matrices	

•  Access	of	non-zero	elements	in	a	sparse	matrix	oZen	
described	by		
A(K(i)) = A(K(i)) + C (M(i)) 
–  K(i)	and	M(i)	describe	which	elements	of	A	and	C	are	non-zero	
–  Number	of	non-zero	elements	have	to	match,	locaFon	not	

necessarily	
•  Gather-operaFon:	take	an	index	vector	and	fetch	the	
according	elements	using	a	base-address	
–  Mapping	from	a	non-conFguous	to	a	conFguous	

representaFon	
•  Scater-operaFon:	inverse	of	the	gather	operaFon	



Support	for	sparse	matrices	(II)	

LV   Vk, Rk  /* load index vector K into V1 */ 
LVI  Va, (Ra+Vk) /* Load vector indexed A(K(i)) */   
LV   Vm, Rm  /* load index vector M into V2 */ 
LVI  Vc, (Rc+Vm) /* Load vector indexed C(M(i)) */ 
ADDV.D Va, Va, Vc /* set VM(i)=1 if V1(i)!=F0 */ 
SVI  Va, (Ra+Vk) /* store vector indexed A(K(i)) */ 

•  Note:		
–  Compiler	needs	the	explicit	hint,	that	each	element	of	K	is	

poinFng	to	a	disFnct	element	of	A	
–  Hardware	alternaFve:	a	hash	table	keeping	track	of	the	

address	acquired	
•  Start	of	a	new	vector	iteraFon	(convoy)	as	soon	as	an	
address	appears	the	second	Fme	


