Lecture 15-16: Parallel Programming
with Cilk

Concurrent and Multicore Programming

Department of Computer Science and Engineering
Yonghong Yan
yan@oakland.edu
www.secs.oakland.edu/~yan

Topics (Part 1)

* Introduction
* Principles of parallel algorithm design (Chapter 3)

®* Programming on shared memory system (Chapter 7)
— OpenMP

«@~ Cilk/Cilkplus
— PThread, mutual exclusion, locks, synchronizations

* Analysis of parallel program executions (Chapter 5)
— Performance Metrics for Parallel Systems

* Execution Time, Overhead, Speedup, Efficiency, Cost

— Scalability of Parallel Systems
— Use of performance tools

Shared Memory Systems: Multicore and
Multisocket Systems

Multi-core Processor

£ £ K CPU | | CPU | |Memory
3 4
ndividua ndividua Individual Individual
emo emo Memory Memory
| |

Router
Bus Interface
\Z) —/
l Chip Boundary
SMP - Symmetric Multiprocessor System
Main
Memory CPU CPU Memory

NUMA Architecture

Cache C

|

ache Cache /O

Threading on Shared Memory Systems

* Employ parallelism to compute on shared data
— boost performance on a fixed memory footprint (strong
scaling)
* Useful for hiding latency
— e.g. latency due to I/O, memory latency, communication
latency
* Useful for scheduling and load balancing
— especially for dynamic concurrency

* Relatively easy to program
— easier than message-passing? you be the judge!

Programming Models on Shared Memory
System

* Library-based models
— All data are shared

— Intel Threading Building Blocks, Java Concurrency,

Boost, Microsoft .Net Task Parallel Library

* Directive-based models, e.g.,(OpenMP,

— shared and private data
— pragma syntax simplifies thread creation and synchronization

®* Programming languages
— (CilkPlus)(Intel, GCC), and MIT Cilk

- m(NvmlA)

— OpenCL

Toward Standard Threading for C/C++

At last month's meeting of the C standard committee, WG14 decided to form a study

group to produce a proposal for language extensions for C to simplify lel
arogramming. This proposal is expected to combine the best ideas from and
OpenMP }wo of the most widely-used and well-established parallel language

extensions for the C language family.

As the chair of this new study group, named CPLEX (C Parallel Language Extensions), |
am announcing its organizational meeting:

June 17, 2013 10:00 AM PDT, 2 hours

Interested parties should join the group's mailing list, to which further information will be
sent:

http://www.open-std.org/mailman/listinfo/cplex

Questions can be sent to that list, and/or to me directly.

Clark Nelson Vice chair, PL22.16 (ANSI C++ standard committee)
Intel Corporation Chair, SG10 (WG21 study group for C++ feature-testing)
clark.nelson@intel.com Chair, CPLEX

(WG14 study group for C parallel language extensions)

OpenMP

|dentify static mapping and scheduling of tasks and cores
— Before tasking

No need to create thread manually

Sequential code migration to parallel code by inserting
directives

Optimization for memory and synchronization are the key
— Reduce memory contention and parallelism overhead

Users achieve both problem decomposition into tasks and
mapping tasks to hardware
— OpenMP worksharing 1:1 mapping

Outline for Cilk/Cilkplus

@™ Introduction and Basic Cilk Programming
* Cilk Work-stealing Scheduler
* Implementation Strategies
* Performance Analysis
* Scheduling Performance Analysis
* More Examples

Cilk/Cilkplus Summary

* Asimpler model for writing parallel programs
— Focusing on problem decomposition
* What computation can be performed in parallel
— Runtime perform the mapping

* Extends C/C++ with two main keywords = tasking
— spawn: invoke a function (potentially) in parallel
— sync: wait for a procedure’s spawned functions to finish

* Faithful language extension
— if Cilk/Cilkplus keywords are elided - C/C++ program
semantics
* The idea has been adopted by OpenMP with task
— omp task
— omp taskwait

Availability

* Cilk and Cilkplus
— Cilk is originally developed by MIT Charles E. Leiserson
* http://supertech.csail.mit.edu/cilk/
— Cilkplus is commercialized now from Intel: cilk_spawn and
cilk_sync
* Added cilk_for, parallel execution of a for loop
* Availability
— MIT Cilk
— Intel compilers, GCC 4.9

* |ennon.secs.oakland.edu

10

Cilk Example

Fibonacci sequence
01}\3/4\5/6\78 9 10 11 12 13 14 15 16

0+1+1+2+3+5+8+13 21 34 55 89 144 233 377 610 987
N T T T -

e Computing Fibonacci recursively

int fib(int n) {
if (n < 2) return n;
else {
int n1, n2;
n1 = fib(n-1);
n2 = fib(n-2);
return (n1 + n2);
}
}

https://en.wikipedia.org/wiki/Fibonacci_number

11

Fibonacci (MIT Cilk)

int fib (int n) {
if (n<2) return (n);
else {

int x,y;
x = fib(n-1);
y = fib(n-2) ;
return (x+y);
}
}

cilk int fib (int n) {

if (n<2) return (n);
else {
int x,y;
x = spawn fib(n-1);
y = spawn fib(n-2) ;
sync;
return (x+y);

A Cilk program’s serial elision is always a legal implementation
of Cilk semantics. Cilk provides no new data types.

12

Basic Cilk Keywords

/\;

cilk int fib (int n) {

if (n<2) return (n);
else {

int x,y;

x = spawn fib(n-1) ;

y = spawn fib(n-2) ;
sync; ;\.
return (x+y);

Control cannot pass this point
until all spawned children have
returned.

Identifies a function as a

Cilk procedure, capable of

being spawned in parallel

The named child Cilk
procedure can execute
in parallel with the
Kparent caller.

/

13

Dynamic Multithreading

cilk int f£fib (int n) {
if (n<2) return (n);
else {
int x,y;
x = spawn fib(n-1);
y = spawn fib(n-2) ;
sync;
return (x+y);

Example: £ib (4)

AN
f" (X>)
oy % & 6
ﬂ 0 The computation dag
unfolds dynamically.

4

Mapping Tasks to Hardware

* Cilk allows the programmer
to express potential
parallelism in an application.

— Many tasks

* The Cilk scheduler maps Cilk
tasks onto processors ‘
dynamically at runtime

— A thread in this context is a ‘ 6
PE

Network

15

Outline for Cilk/Cilkplus

Introduction and Basic Cilk Programming

@ Cilk Work-stealing Scheduler

Implementation Strategies
Performance Analysis
Scheduling Performance Analysis

More Examples

16

Scheduling Tasks in Cilk

* Lazy parallelism
— Put off work for parallel execution until necessary
* E.g. no need for parallel execution when no enough PEs

* Work-stealing
— Multiple PEs share work (tasks)
* A PE looks for work in other PEs when it becomes idle
— Any PE can create work (tasks) via spawn

(Possible Execution:
thread 1 begins
thread 2 steals from 1
thread 3 steals from 1
etc...

.

Cilk’s Work-Stealing Scheduler

* Each PE maintains a work deque of ready tasks, and it
manipulates the bottom of the deque like a stack.

— Push and pop

18

Cilk’s Work-Stealing Scheduler

* Each PE maintains a work deque of ready tasks, and it
manipulates the bottom of the deque like a stack.

— Push and pop

19

Cilk’s Work-Stealing Scheduler

* Each PE maintains a work deque of ready tasks, and it
manipulates the bottom of the deque like a stack.
— Push and pop

20

Cilk’s Work-Stealing Scheduler

* Each PE maintains a work deque of ready tasks, and it
manipulates the bottom of the deque like a stack.
— Push and pop

21

Cilk’s Work-Stealing Scheduler

* Each PE maintains a work deque of ready tasks, and it
manipulates the bottom of the deque like a stack.

— Push and pop https://en.wikipedia.org/wiki/Double-ended _queue

When a processor runs out of work, it "
steals a task from the top of a random I RS
victim’s deque.

22

Cilk’s Work-Stealing Scheduler

* Each PE maintains a work deque of ready tasks, and it
manipulates the bottom of the deque like a stack.
— Push and pop

When a processor runs out of work, it "
steals a task from the top of a random I RS
victim’s deque.

23

Cilk’s Work-Stealing Scheduler

* Each PE maintains a work deque of ready tasks, and it
manipulates the bottom of the deque like a stack.
— Push and pop

When a processor runs out of work, it "
steals a task from the top of a random I RS
victim’s deque.

24

Cilk’s Work-Stealing Scheduler

* Each PE maintains a work deque of ready tasks, and it
manipulates the bottom of the deque like a stack.
— Push and pop

When a processor runs out of work, it ‘

steals a task from the top of a random . ./ RN
victim’s deque.

25

Dynamic Multithreading

int £fib (int n) {
if (n<2) return (n);
else {
int x,y;
x = Cilk spawn fib(n-1);
y = Cilk spawn fib(n-2);
_Cilk sync;

return (x+y);

}

}

26

Dynamic Multithreading

int £fib (int n) {
if (n<2) return (n);
else {
int x,y;

x = cilk spawn fib(n-1);

y = exdtk—spawn fib(n>2);
cilk sync;
}

AN

o .
Continuation

27

Workstealing State on both Program Stack an
Dequeu

program stack

fib(2)
fib(0)

spawn E I

task’ 2que
fil 3)
fib(1)

e

QAN

N
o

program stack

fib(3)

fib(1)

_4 spawn

task' 2que

fib(2)

Pablo Halpern, 2015 (CC BY 4.0)

At a fork point, add tasks to
the tail of the current
worker’s deque and execute
the other task.

If idle, steal work from the
of a random other
worker’s deque.

When at an incomplete join
point, pop work off the
of the worker’s own deque

If worker’s own deque is
empty, either stall at join, or
do a random steal.

28

Child-Stealing

* At aspawn, the child task in pushed onto the worker’s
deque.

— A task data structure is allocated on the heap

— Everything needed to run the child is stored in the task data
structure

— A pointer to the task data structure is pushed onto the deque

* The worker then executes the fork continuation
immediately.

* An idle worker can steal the child task.

* If the child task is not stolen, it is run by the original worker
when it reaches the join point.

* Typically, the scheduler stalls at the join point if there are
stolen children that have not completed.

Pablo Halpern, 2015 (CC BY 4.0) 29

Continuation Stealing

* At aspawn, the continuation in pushed onto the worker’s
deque.
— Registers are saved on the stack.
— A pointer to the current stack frame is pushed onto the deque

* The worker then executes the child immediately, as if it were a
normal call.

* Anidle worker can steal the continuation task.

* Upon completing the child, if the continuation (parent) has not
been stolen, the original worker continues as if returning from a
normal function call.

* The join continuation is run by whichever worker completes its
task last.

— Typically, no worker stalls at the join point.

— The worker running after the join might be different than the one
entering it.

Pablo Halpern, 2015 (CC BY 4.0) 30

Advantages of Child stealing over continuation

Stealing

Both are types of work stealing. Continuation stealing
has a number of practical advantages, however:

* Child stealing libraries can be implemented without
special compiler support; continuation stealing
typically requires compiler support.

* At each fork and spawn point, a continuation stealing
implementation might switch to a different worker
thread, confusing code that depends on thread-local
storage.

Pablo Halpern, 2015 (CC BY 4.0) 31

Advantages of continuation stealing over Child
Stealing

Conversely continuation stealing has many theoretical advantages
of continuation stealing:

®* Queue size bounded by recursion depth & stack space bound to
P times serial stack usage vs. unbounded queue size for child
stealing.

®* On asingle worker, continuation stealing produces identical
execution to serial code; child stealing produces a scrambled
execution order.

* Naturally lends itself to non-stalling join points making it closer
to an ideal greedy scheduler.

* Certain features are easier to implement efficiently on top of a
continuation-stealing scheduler, for example: associative
reductions.

Pablo Halpern, 2015 (CC BY 4.0) 32

Advantages of continuation stealing over Child

Stealing

Conversely continuation stealing has many theoretical advantages
of child stealing:

ion depth & stack space bound to
ded queue size for child

®* Queue size bounded b
P times serial stack
stealing.

s produces identical
oduces a scrambled

®* Onasingle wg
execution to
execution or

* Naturally len oints making it closer

to anideal gr

t efficiently on top of a
ample: associative

®* Certain featuré
continuation-st
reductions.

Only Monsters
‘Steal Childre

Pablo Halpern, 2015 (CC BY

33

Outline for Cilk/Cilkplus

* Introduction and Basic Cilk Programming
* Cilk Work-stealing Scheduler
@ Implementation Strategies
* Performance Analysis
* Scheduling Performance Analysis
* More Examples

34

Compiling spawn — Fast Clone

Cilk frame

x = spawn fib(n-1); entry

source ..
join

cilk2c n

X

frame->entry = 1; =
frame->n = n; Sgigﬁ?d entry
push (frame) ; P join

x = £ib(n-1); - run child ,

C post- N Cilk
frame->x = X, resume
frame->join--; arent
h clean up & . i Eemotely
return to scheduler |

} J

35

Compiling sync — Fast Clone

Cilk

sync;
source

cilk2c
C post- ,
source ’

SLOW

FAST

FAST

FAST

FAST

FAST

No synchronization overhead in the fast clone!

36

Compiling the Slow Clone

void fib slow(fib frame *frame) ({
int n,x,vy;

switch (frame->entry) { frame
case 1: goto L1; restore e_nt_ry
case 2: goto L2; program join
<}::ase 3: goto L3; counter n
frame—>éntry =1, ®
frame->n = n; Y
push(fra(lme;-); came
x = fib(n-1);
i / entr
1ff(pop()>==FAILURE) { > as fast . . S
rame->x = X, oln
frame->join--; clone J
h clean up &
return to scheduler i Cilk
}
| restore local deque
£ 0 } variables
} :
- continue

Project Accounts

® On orion.ec.oakland.edu
— Need VPN to access from home

* Accont is the same as your netid

— Password: <first four letters of your netid>1234
— Change it the first time you login

* Follow development setup steps to clone the OpenMP
runtime repo and examples repo

38

Outline for Cilk/Cilkplus

* Introduction and Basic Cilk Programming
* Cilk Work-stealing Scheduler
* Implementation Strategies
@ Performance Analysis
* Scheduling Performance Analysis
* More Examples

39

Multithreaded Computation

initial task final task

N\
continue edge

t d
spawn edgeg @/@\ return eage

e The dag G = (V, E) represents a parallel instruction stream.

e Each vertex v of V represents a (Cilk) task: a maximal
sequence of instructions not containing parallel control
(spawn, sync, return).

e Every edge e of E is either a spawn edge, a return edge, or
a continue edge. 40

Algorithmic Complexity Analysis

T, = execution time on P processors

* Computation graph abstraction:

— node = arbitrary sequential
computation

— edge = dependence (successor
node can only execute after
predecessor node has completed)

— Directed Acyclic Graph (DAG)

®* Processor abstraction:
— P identical processors

— each processor executes one node

PROC,| = |PROC,., o

41

Algorithmic Complexity Analysis

T, = execution time on P processors

42

Algorithmic Complexity Analysis
T, = execution time on P processors

T, = work

43

Algorithmic Complexity Analysis

T, = execution time on P processors

T, = work

—
g
I

span*

* Also called critical-path length
or computational depth.

44

Algorithmic Complexity Analysis

T, = execution time on P processors

T, = work
T, =span*
a N
LOWER BOUNDS
°[,>= T1/ P
o[, >=1T
__F = /
*Also called critical-path length

or computational depth.

45

Speedup
Definition: T,/T, = speedup on P processors.

If T./T, =©O(P), we have linear speedup;
= P, we have perfect linear speedup;
> P, we have superlinear speedup, which

IS not possible in our model, because of the lower
bound 7, >=T,/P.

46

Parallelism and Parallel Slackness

°* We have the lowerbound 7,>=T_and T,>=T,/P

* The maximum possible speedup given T and T, i.e. the
parallelism
— Independent of P, only depend on the graph

P=T,/T.

* Parallel slackness (Efficiency) as the rat

(To/T.)/P

— The larger the efficiency, the less
the impact of T_, on performance

Example: £ib (4)

Assume for simplicity that each Cilk task in £ib ()

takes unit time to execute.

Work: T, = 17
Span: T__=38

Parallelism: T,/T_, = 2.125

/

A

Using many more
than 2 processors
makes little sense.

\

/

48

Parallelizing Vector Addition

void vadd (real *A, real *B, int n) {
int i; for (i=0; i<n; i++) A[i]+=B[i];
}

Parallelizing Vector Addition

void vadd (real *A, real *B, int n) {
C int i; for (i=0; i<n; i++) A[i]+=B[i];
}

void vadd (real *A, real *B, int n) {
(: if (n<=BASE) {

int i; for (i=0; i<n; i++) A[i]+=B[i];
} else {

vadd (A, B, n/2);

vadd (A+n/2, B+n/2, n-n/2);

Parallelization strategy:
1. Convert loops to recursion.

Parallelizing Vector Addition

void vadd (real *A, real *B, int n) {
C int i; for (i=0; i<n; i++) A[i]+=B[i];
}

. vold vadd (real *A, real *B, int n) {
Cilk if (n<=BASE) {
int i; for (i=0; i<n; i++) A[i]+=B[i];
} else {
vaddn (A, B, n/2);
vpddn (A+n/2, B+n/2, n-n/2);
} Sync;

}

Parallelization strategy: | SR —
1. Convert loops to recursion. | divide and conquer is
2 Insert Cilk keywords generally good for caches!

51

Vector Addition

cilk wvoid wvadd
if (n<=BASE)
int i; for
} else {
spawn vadd
spawn vadd
sync;

(real *A, real *B, int n) {

{
(1=0; i<n; i++) A[i]+=B[i];

(A, B, n/2);
(A+n/2, B+n/2, n-n/2);

Vector Addition Analysis
To add two vectors of length n, where BASE = ©O(1):

Work: T, = ? O(n)
Span: T_= ? O(log n)
Parallelism: T /T = ? O(n/log n)

RAARANX

BASE 53

Outline for Cilk/Cilkplus

* Introduction and Basic Cilk Programming
* Cilk Work-stealing Scheduler
* Implementation Strategies
* Performance Analysis
@@ Scheduling Performance Analysis
* More Examples

54

Analysis: Greedy Scheduling

IDEA: Do as much as possible on every step.

Definition: A task is ready if all its
predecessors have

Greedy Scheduling

IDEA: Do as much as possible on every step.

Definition: A task is ready if all its
predecessors have

Complete step
e >= P tasks ready.
* Run any P.

Greedy Scheduling
IDEA: Do as much as possible on every step.

Definition: A task is ready if all its
predecessors have

Complete step
e >= P tasks ready.
e RunanyonP.

Incomplete step
e < P tasks ready.
e Run all of them.

Greedy-Scheduling Theorem

Theorem [Graham 68 & Brent ~ 75]. Any
greedy scheduler achieves
T,<T,/P+T,

Proof.
e # complete steps <= T,/P, since each
complete step performs P work.
* # incomplete steps <=T_, since each
incomplete step reduces the span of
the unexecuted dag by 1.

58

Performance of Work-Stealing
Theorem: On P processors, Cilk’s work-
stealing scheduler achieves an expected
running time of

T,=T,/P+0O(T.,)

work term Critical path term

59

Critical Path Overhead

* Critical path overhead = smallest constant C_, such that

T —
1 = =
T <—+c,T, Let P=T,T.,
P parallelism = max
T 1_) speedup on
Tp < Lt |T. =|—+c_|T. 00 Processors
T P P
Parallel slackness assumption
5 1,
P/P>>c,_ thus > >>c_ T,
T “critical path overhead has
T =L linear speedup little effect on performance

rpp when sufficient parallel

slackness exists” o

Work Overhead

work overhead

o
Il
NN

“Minimize work overhead (c,)

at the expense of a larger
T critical path overhead (c..),

_s
7;) = p + o, because work overhead
has a more direct impact
on performance”

1
Tp =~ C F assuming parallel slackness

You can reduce C1 by increasing
the granularity of parallel work 61

Breakdown of Work Overhead

C

state savin
MIPS R10000 |115ns - L e anocgaﬁon

- | stealing protocol

UltraSPARC T |113ns m

I I I I I I
0 1 2 3

4
Benchmark: £ib on one processor. T1/ TS

The average cost of a spawn in Cilk-5 is only 2—6 times the cost of an ordinary C

function call, depending on the platform.
62

Outline for Cilk/Cilkplus

* Introduction and Basic Cilk Programming
* Cilk Work-stealing Scheduler

* Implementation Strategies

* Performance Analysis

* Scheduling Performance Analysis

@™ More Examples

63

C11 Cip -
Cry Cpp -

Square-Matrix Multiplication

\

Cln

C2n

r

\

ap 415 -

Gy, Gy, -

anl an2

A

\

aln

aZn

nn)

X

r

/ n
Cij = Eaik by;
k=1
\

~

/

Assume for simplicity that n = 2*.

Recursive Matrix Multiplication

Divide and conquer —

r D

Cll C12

C21 C22 y

\.

8 multiplications of (n/2) x (n/2) matrices.

A21 A22 y

AllBll A11312

N A21Bll A21312 y

1 addition of n X n matrices.

BZl BZZJ

A12821 AlZBZZ

\ AZZBZI AZZBZZ y

Matrix Multiplication

cilk void MultA(*C, *A, *B, n) {
// C=C+ A * B
h base case & partition matrices i
spawn MultA(Cl1l,All1,B1l1,n/2);
spawn MultA(Cl2,All1,B12,n/2);
spawn MultA(C22,A21,B12,n/2);
spawn MultA(C21,A21,B11,n/2);
sync;
spawn MultA(C21,A22,B21,n/2);
spawn MultA (C22,A22,B22,n/2);
spawn MultA(Cl2,Al12,B22,n/2);
spawn MultA(Cl1l,Al2,B21,n/2);
sync;
return;

Work of Multiply

cilk void MultA(*C, *A, *B, n) {
// C=C+ A * B
h base case & partition matrices i
spawn MultA(Cl1l,All1,B1l1,n/2);
spawn MultA(Cl2,All1,B12,n/2);
spawn MultA (C22,A21,B12,n/2);
spawn MultA(C21,A21,B11,n/2);
sync;
spawn MultA(C21,A22,B21,n/2);
spawn MultA (C22,A22,B22,n/2);
spawn MultA(Cl2,Al12,B22,n/2);
spawn MultA(Cl1l,Al2,B21,n/2);
sync;
return;

Work: T,(n) = ©(n3)

Span of Multiply

cilk void MultA(*C, *A, *B, n) {
// C=C+ A *B

~ h base case & partition matrices i

maximum |

_spawn MultA(C21,A21,Bl1l,n/2);
sync;
_

maximum |

_spawn MultA(Cl1l1,Al12,B21,n/2);
sync;
return;

}
Span: T..(n)=2T_(n/2) + ©(1)

= O(n)
Parallelism: =T,/T_ = ©(n>) / ©(n) = O(n?)

Merging Two Sorted Arrays

void Merge (int *C, int *A, int *B, int na, int nb) {
while (na>0 && nb>0) {
if (*A <= *B) {
*C++ = *A++; na--;

} else {
*C++ = *B++; nb--; :
} - Time to merge n
}
while (na>0) { elements = O(n).

*C++ = *A++; na--;

}
while (nb>0) {

*C++ = *B++; nb--;
}

}

Merge Sort

cilk void MergeSort(int *B, int *A, int n) ({

if (n==1) {
B[0] = A[O];
} else {
int *C;

C = (int*) Cilk alloca(n*sizeof (int));
spawn MergeSort(C, A, n/2);

spawn MergeSort(C+n/2, A+n/2, n-n/2);
sync;

Merge (B, C, C+n/2, n/2, n-n/2);

Work of Merge Sort

cilk void MergeSort(int *B, int *A, int n) ({
if (n==1) {
B[0] = A[O0];
} else {
int *C;
C = (int*) Cilk alloca(n*sizeof (int));
spawn MergeSort(C, A, n/2);
spawn MergeSort(C+n/2, A+n/2, n-n/2);
sync;
Merge (B, C, C+n/2, n/2, n-n/2);

Work: T,(n)= 2T,n/2)+O(n)
= O(nlgn)

Span of Merge Sort

cilk void MergeSort(int *B, int *A, int n) ({

if (n==1) {
B[O0] = A[O];
} else {
int *C;

C = (int*) Cilk alloca(n*sizeof (int)) ;
spawn MergeSort(C, A, n/2);

spawn MergeSort (C+n/2, A+n/2, n-n/2);
sync;

Merge (B, C, C+n/2, n/2, n-n/2);

Span: T..(n)= T_(n/2) + ©(n)
= O(n)
T,(n)
Parallelism: = O(lg n)

T..(n)

Tableau Construction

Problem: Fill in an n x n tableau A, where

A[Il .I] =f (A[I) ./_1]) A[I_ll ./]1 A[I_ll .I_l])

Dynamic
programming

e Longest common
subsequence

e Edit distance
* Time warping

Work: ©(n?).

Recursive Construction

n

>

II

ITT

IV

Cilk code

spawn I;
sync;
spawn I1I;
spawn I11II;
sync;
spawn 1V;
sync;

Recursive Construction

n

>

Cilk code

I II spawn I;
sync;
spawn I1I;

spawn I11II;
sync;

ITI IV spawn 1V;
sync;

Work: T,(n) = 4T,(n/2) + ©(1)
= O(n?)

Recursive Construction

n

>

Cilk code

s II spawn I;
sync;
spawn I1I;

spawn III;
sync;

III IV spawn 1IV;
sync;

Span: T (n)=3T.(n/2) + ©(1) =0O(n's3)

: T,(n)
Parallelism: =~ @(n°42)
T_.(n)

A More-Parallel Construction

A spawn 1;

i sync;
spawn I1I;
I II IV spawn I1I1I;
sync;
spawn 1IV;
spawn V;
spawn VI
sync;

ITT

V1

spawn IX;
- sync;

A More-Parallel Construction

A spawn 1;

i sync;
spawn I1I;
I II IV spawn I1I1I;
sync;
spawn 1IV;
spawn V;
spawn VI

sinc I

spawn IX;
- sync;

ITT

V1

Work: T,(n) = 9T,(n/3) + ©(1)
= O(n?)

A More-Parallel Construction

ITT

V1

IV

spawn I;
sync;
spawn II;
spawn III;
sync;
spawn IV;
spawn V;
spawn VI

sinc I

spawn IX;
sync;

Span: T_(n)=5T_(n/3) + ©(1) = ®(n'°e3>)

Analysis of Revised Construction
Work: T,(n) = ©(n?)

Span: T, (n) = ©(n'°e3>)
~ ©(n146)

: T,(n)
Parallelism: ~ ©(n5%)
T..(n)

More parallel by a factor of
@(n0.54)/@(n0.42) — @(no.lz) .

References

“Introduction to Parallel Computing” by Ananth Grama,
Anshul Gupta, George Karypis, and Vipin Kumar. Addison
Wesley, 2003

Charles E. Leiserson. Cilk LECTURE 1. Supercomputing
Technologies Research Group. Computer Science and
Artificial Intelligence Laboratory. http://bit.ly/mit-cilk-lecl

Charles Leiserson, Bradley Kuzmaul, Michael Bender, and
Hua-wen Jing. MIT 6.895 lecture notes - Theory of Parallel
Systems. http://bit.ly/mit-6895-fall03

Intel Cilk++ Programmer’s Guide. Document #
322581-001US.

81

