
Lecture	15-16:	Parallel	Programming	
with	Cilk	

Concurrent	and	Mul;core	Programming	
	

Department	of	Computer	Science	and	Engineering	
Yonghong	Yan	

yan@oakland.edu	
www.secs.oakland.edu/~yan	

	

1	

Topics	(Part	1)	

•  IntroducAon	
•  Principles	of	parallel	algorithm	design	(Chapter	3)	
•  Programming	on	shared	memory	system	(Chapter	7)	

–  OpenMP	
–  Cilk/Cilkplus	
–  PThread,	mutual	exclusion,	locks,	synchroniza;ons	

•  Analysis	of	parallel	program	execuAons	(Chapter	5)	
–  Performance	Metrics	for	Parallel	Systems	

•  Execu;on	Time,	Overhead,	Speedup,	Efficiency,	Cost		
–  Scalability	of	Parallel	Systems	
–  Use	of	performance	tools	

2	

Shared	Memory	Systems:	Mul;core	and	
Mul;socket	Systems		

•  a	

3	

Threading	on	Shared	Memory	Systems	

•  Employ	parallelism	to	compute	on	shared	data	
–  boost	performance	on	a	fixed	memory	footprint	(strong	

scaling)	
•  Useful	for	hiding	latency	

–  e.g.	latency	due	to	I/O,	memory	latency,	communicaAon	
latency	

•  Useful	for	scheduling	and	load	balancing	
–  especially	for	dynamic	concurrency	

•  RelaAvely	easy	to	program	
–  easier	than	message-passing?	you	be	the	judge!	

4	

Programming	Models	on	Shared	Memory	
System	

•  Library-based	models	
–  All	data	are	shared	
–  Pthreads,	Intel	Threading	Building	Blocks,	Java	Concurrency,	

Boost,	Microso\	.Net	Task	Parallel	Library	
•  DirecAve-based	models,	e.g.,	OpenMP	

–  shared	and	private	data	
–  pragma	syntax	simplifies	thread	creaAon	and	synchronizaAon	

•  Programming	languages	
–  CilkPlus	(Intel,	GCC),	and	MIT	Cilk	
–  CUDA	(NVIDIA)	
–  OpenCL	

5	

Toward	Standard	Threading	for	C/C++	

6	

At last month's meeting of the C standard committee, WG14 decided to form a study
group to produce a proposal for language extensions for C to simplify parallel
programming. This proposal is expected to combine the best ideas from Cilk and
OpenMP, two of the most widely-used and well-established parallel language
extensions for the C language family.

As the chair of this new study group, named CPLEX (C Parallel Language Extensions), I
am announcing its organizational meeting:

June 17, 2013 10:00 AM PDT, 2 hours

Interested parties should join the group's mailing list, to which further information will be
sent:

http://www.open-std.org/mailman/listinfo/cplex

Questions can be sent to that list, and/or to me directly.
-- Clark Nelson
Intel Corporation

Vice chair, PL22.16 (ANSI C++ standard committee)
Chair, SG10 (WG21 study group for C++ feature-testing)

clark.nelson@intel.com Chair, CPLEX
(WG14 study group for C parallel language extensions)

OpenMP	

•  IdenAfy	staAc	mapping	and	scheduling	of	tasks	and	cores	
–  Before	tasking	

•  No	need	to	create	thread	manually	
•  SequenAal	code	migraAon	to	parallel	code	by	inserAng	
direcAves	

•  OpAmizaAon	for	memory	and	synchronizaAon	are	the	key	
–  Reduce	memory	contenAon	and	parallelism	overhead	

•  Users	achieve	both	problem	decomposi;on	into	tasks	and	
mapping	tasks	to	hardware	
–  OpenMP	worksharing	1:1	mapping	

7	

Outline	for	Cilk/Cilkplus	

•  IntroducAon	and	Basic	Cilk	Programming	
•  Cilk	Work-stealing	Scheduler	
•  ImplementaAon	Strategies	
•  Performance	Analysis	
•  Scheduling	Performance	Analysis	
•  More	Examples	

8	

Cilk/Cilkplus	Summary	

•  A	simpler	model	for	wriAng	parallel	programs	
–  Focusing	on	problem	decomposiAon	

• What	computaAon	can	be	performed	in	parallel	
–  RunAme	perform	the	mapping	

•  Extends	C/C++	with	two	main	keywords	à	tasking	
–  spawn:	invoke	a	funcAon	(potenAally)	in	parallel	
–  sync:	wait	for	a	procedure’s	spawned	funcAons	to	finish	

•  Faithful	language	extension	
–  if	Cilk/Cilkplus	keywords	are	elided	→	C/C++	program	

semanAcs	
•  The	idea	has	been	adopted	by	OpenMP	with	task	

–  omp	task		
–  omp	taskwait	

9	

Availability	

•  Cilk	and	Cilkplus		
–  Cilk	is	originally	developed	by	MIT	Charles	E.	Leiserson	

•  hkp://supertech.csail.mit.edu/cilk/	
–  Cilkplus	is	commercialized	now	from	Intel:	cilk_spawn	and	

cilk_sync	
•  Added	cilk_for,	parallel	execuAon	of	a	for	loop	

•  Availability	
–  MIT	Cilk	
–  Intel	compilers,	GCC	4.9	

•  lennon.secs.oakland.edu	

10	

Cilk	Example	

11	

0				1				2				3					4				5				6								7						8									9						10						11						12										13								14									15									16	

hkps://en.wikipedia.org/wiki/Fibonacci_number	

Fibonacci	(MIT	Cilk)	

int fib (int n) {
if (n<2) return (n);
 else {
 int x,y;
 x = fib(n-1);
 y = fib(n-2);
 return (x+y);
 }
}

C	elision	

cilk int fib (int n) {
 if (n<2) return (n);
 else {
 int x,y;
 x = spawn fib(n-1);
 y = spawn fib(n-2);
 sync;
 return (x+y);
 }
}

Cilk	code	

A	Cilk	program’s	serial	elision	is	always	a	legal	implementaAon	
of	Cilk	semanAcs.		Cilk	provides	no	new	data	types.	

12	

cilk int fib (int n) {
 if (n<2) return (n);
 else {
 int x,y;
 x = spawn fib(n-1);
 y = spawn fib(n-2);
 sync;
 return (x+y);
 }
}

IdenAfies	a	funcAon	as	a	
Cilk	procedure,	capable	of	
being	spawned	in	parallel.	

The	named	child	Cilk	
procedure	can	execute	
in	parallel	with	the	
parent	caller.	

Control	cannot	pass	this	point	
unAl	all	spawned	children	have	
returned.	

Basic	Cilk	Keywords	

13	

cilk int fib (int n) {
 if (n<2) return (n);
 else {
 int x,y;
 x = spawn fib(n-1);
 y = spawn fib(n-2);
 sync;
 return (x+y);
 }
}

The	computa4on	dag	
unfolds	dynamically.	

Example:	fib(4)

4

3

2

2

1

1 1 0

0

Dynamic	Mul;threading	

14	

Mapping	Tasks	to	Hardware	

P	 P	 P	

Network	

…	

Memory	 I/O	

$	 $	 $	

•  Cilk	allows	the	programmer	
to	express	poten4al	
parallelism	in	an	applicaAon.	
–  Many	tasks	

•  The	Cilk	scheduler	maps	Cilk	
tasks	onto	processors	
dynamically	at	runAme	
–  A	thread	in	this	context	is	a	

PE	

15	

Outline	for	Cilk/Cilkplus	

•  IntroducAon	and	Basic	Cilk	Programming	
•  Cilk	Work-stealing	Scheduler	
•  ImplementaAon	Strategies	
•  Performance	Analysis	
•  Scheduling	Performance	Analysis	
•  More	Examples	

16	

Scheduling	Tasks	in	Cilk	

•  Lazy	parallelism	
–  Put	off	work	for	parallel	execu;on	un;l	necessary	

•  E.g.	no	need	for	parallel	execu;on	when	no	enough	PEs	
•  Work-stealing	

–  Mul;ple	PEs	share	work	(tasks)	
•  A	PE	looks	for	work	in	other	PEs	when	it	becomes	idle	

–  Any	PE	can	create	work	(tasks)	via	spawn	

17	

Cilk’s	Work-Stealing	Scheduler	

•  Each	PE	maintains	a	work	deque	of	ready	tasks,	and	it	
manipulates	the	bokom	of	the	deque	like	a	stack.	
–  Push	and	pop	

P	 P	 P	P	

Spawn!	

18	

Cilk’s	Work-Stealing	Scheduler	

•  Each	PE	maintains	a	work	deque	of	ready	tasks,	and	it	
manipulates	the	bokom	of	the	deque	like	a	stack.	
–  Push	and	pop	

P	 P	 P	P	

Spawn!	Spawn!	

19	

Cilk’s	Work-Stealing	Scheduler	

•  Each	PE	maintains	a	work	deque	of	ready	tasks,	and	it	
manipulates	the	bokom	of	the	deque	like	a	stack.	
–  Push	and	pop	

P	 P	 P	P	

Return!	

20	

Cilk’s	Work-Stealing	Scheduler	

•  Each	PE	maintains	a	work	deque	of	ready	tasks,	and	it	
manipulates	the	bokom	of	the	deque	like	a	stack.	
–  Push	and	pop	

P	 P	 P	P	

Return!	

21	

Cilk’s	Work-Stealing	Scheduler	

•  Each	PE	maintains	a	work	deque	of	ready	tasks,	and	it	
manipulates	the	bokom	of	the	deque	like	a	stack.	
–  Push	and	pop	

P	 P	 P	P	
When	a	processor	runs	out	of	work,	it	
steals	a	task	from	the	top	of	a	random	
vicAm’s	deque.	

Steal!	

22	

hkps://en.wikipedia.org/wiki/Double-ended_queue	

Cilk’s	Work-Stealing	Scheduler	

•  Each	PE	maintains	a	work	deque	of	ready	tasks,	and	it	
manipulates	the	bokom	of	the	deque	like	a	stack.	
–  Push	and	pop	

P	 P	 P	P	
When	a	processor	runs	out	of	work,	it	
steals	a	task	from	the	top	of	a	random	
vicAm’s	deque.	

Steal!	

23	

Cilk’s	Work-Stealing	Scheduler	

•  Each	PE	maintains	a	work	deque	of	ready	tasks,	and	it	
manipulates	the	bokom	of	the	deque	like	a	stack.	
–  Push	and	pop	

P	 P	 P	P	
When	a	processor	runs	out	of	work,	it	
steals	a	task	from	the	top	of	a	random	
vicAm’s	deque.	 24	

Cilk’s	Work-Stealing	Scheduler	

•  Each	PE	maintains	a	work	deque	of	ready	tasks,	and	it	
manipulates	the	bokom	of	the	deque	like	a	stack.	
–  Push	and	pop	

P	 P	 P	P	
When	a	processor	runs	out	of	work,	it	
steals	a	task	from	the	top	of	a	random	
vicAm’s	deque.	

Spawn!	

25	

int fib (int n) {
 if (n<2) return (n);
 else {
 int x,y;

 x = _Cilk_spawn fib(n-1);

 y = _Cilk_spawn fib(n-2);

 _Cilk_sync;

 return (x+y);
 }
}

Dynamic	Mul;threading	

26	

int fib (int n) {
 if (n<2) return (n);
 else {
 int x,y;

 x = cilk_spawn fib(n-1);

 y = cilk_spawn fib(n-2);

 cilk_sync;

 return (x+y);
 }
}

Dynamic	Mul;threading	

27	

Con;nua;on	

sync	
steal
!	

Workstealing	State	on	both	Program	Stack	an	
Dequeu	

•  At	a	fork	point,	add	tasks	to	
the	tail	of	the	current	
worker’s	deque	and	execute	
the	other	task.	

•  If	idle,	steal	work	from	the	
head	of	a	random	other	
worker’s	deque.	

•  When	at	an	incomplete	join	
point,	pop	work	off	the	tail	
of	the	worker’s	own	deque	
(reverse	fork).	

•  If	worker’s	own	deque	is	
empty,	either	stall	at	join,	or	
do	a	random	steal.	

Pablo	Halpern,	2015		(CC	BY	4.0)	 28	

P0	

fib(4)	

program	stack	

P1	

program	stack	

fib(3)	

task	deque	

fib(2)	

task	deque	

fib(1)	

fib(1)	

fib(3)	

fib(0)	

fib(2)	

spawn	
spawn	

join	

Child-Stealing	

•  At	a	spawn,	the	child	task	in	pushed	onto	the	worker’s	
deque.	
–  A	task	data	structure	is	allocated	on	the	heap	
–  Everything	needed	to	run	the	child	is	stored	in	the	task	data	

structure	
–  A	pointer	to	the	task	data	structure	is	pushed	onto	the	deque	

•  The	worker	then	executes	the	fork	conAnuaAon	
immediately.	

•  An	idle	worker	can	steal	the	child	task.	
•  If	the	child	task	is	not	stolen,	it	is	run	by	the	original	worker	
when	it	reaches	the	join	point.	

•  Typically,	the	scheduler	stalls	at	the	join	point	if	there	are	
stolen	children	that	have	not	completed.	

Pablo	Halpern,	2015		(CC	BY	4.0)	 29	

Con;nua;on	Stealing	

•  At	a	spawn,	the	con3nua3on	in	pushed	onto	the	worker’s	
deque.	
–  Registers	are	saved	on	the	stack.	
–  A	pointer	to	the	current	stack	frame	is	pushed	onto	the	deque	

•  The	worker	then	executes	the	child	immediately,	as	if	it	were	a	
normal	call.	

•  An	idle	worker	can	steal	the	conAnuaAon	task.	
•  Upon	compleAng	the	child,	if	the	conAnuaAon	(parent)	has	not	

been	stolen,	the	original	worker	conAnues	as	if	returning	from	a	
normal	funcAon	call.	

•  The	join	con3nua3on	is	run	by	whichever	worker	completes	its	
task	last.	
–  Typically,	no	worker	stalls	at	the	join	point.	
–  The	worker	running	a\er	the	join	might	be	different	than	the	one	

entering	it.	

Pablo	Halpern,	2015		(CC	BY	4.0)	 30	

Advantages	of	Child	stealing	over	con;nua;on	
Stealing	

Both	are	types	of	work	stealing.		ConAnuaAon	stealing	
has	a	number	of	prac;cal	advantages,	however:	
•  Child	stealing	libraries	can	be	implemented	without	
special	compiler	support;	conAnuaAon	stealing	
typically	requires	compiler	support.	

•  At	each	fork	and	spawn	point,	a	conAnuaAon	stealing	
implementaAon	might	switch	to	a	different	worker	
thread,	confusing	code	that	depends	on	thread-local	
storage.	

Pablo	Halpern,	2015		(CC	BY	4.0)	 31	

Advantages	of	con;nua;on	stealing	over	Child	
Stealing	

Conversely	conAnuaAon	stealing	has	many	theore;cal	advantages	
of	conAnuaAon	stealing:	
•  Queue	size	bounded	by	recursion	depth	&	stack	space	bound	to	

P	Ames	serial	stack	usage	vs.	unbounded	queue	size	for	child	
stealing.	

•  On	a	single	worker,	conAnuaAon	stealing	produces	idenAcal	
execuAon	to	serial	code;	child	stealing	produces	a	scrambled	
execuAon	order.	

•  Naturally	lends	itself	to	non-stalling	join	points	making	it	closer	
to	an	ideal	greedy	scheduler.	

•  Certain	features	are	easier	to	implement	efficiently	on	top	of	a	
conAnuaAon-stealing	scheduler,	for	example:	associaAve	
reducAons.	

Pablo	Halpern,	2015		(CC	BY	4.0)	 32	

Advantages	of	con;nua;on	stealing	over	Child	
Stealing	

Conversely	conAnuaAon	stealing	has	many	theore;cal	advantages	
of	child	stealing:	
•  Queue	size	bounded	by	recursion	depth	&	stack	space	bound	to	

P	Ames	serial	stack	usage	vs.	unbounded	queue	size	for	child	
stealing.	

•  On	a	single	worker,	conAnuaAon	stealing	produces	idenAcal	
execuAon	to	serial	code;	child	stealing	produces	a	scrambled	
execuAon	order.	

•  Naturally	lends	itself	to	non-stalling	join	points	making	it	closer	
to	an	ideal	greedy	scheduler.	

•  Certain	features	are	easier	to	implement	efficiently	on	top	of	a	
conAnuaAon-stealing	scheduler,	for	example:	associaAve	
reducAons.	

Pablo	Halpern,	2015		(CC	BY	4.0)	 33	

Only Monsters
Steal Children

Outline	for	Cilk/Cilkplus	

•  IntroducAon	and	Basic	Cilk	Programming	
•  Cilk	Work-stealing	Scheduler	
•  ImplementaAon	Strategies	
•  Performance	Analysis	
•  Scheduling	Performance	Analysis	
•  More	Examples	

34	

Compiling	spawn	—	Fast	Clone	

suspend	
parent	

run	child	

resume	
parent	
remotely	

cilk2c

x = spawn fib(n-1); Cilk	
source	

frame->entry = 1;
frame->n = n;
push(frame);

x = fib(n-1);

if (pop()==FAILURE) {
 frame->x = x;
 frame->join--;
 h	clean	up	&		
							return	to	scheduler	i
}

C	post-	
source	

entry
join
n
x
y

entry
join

Cilk	
deque	

frame

35	

No	synchroniza3on	overhead	in	the	fast	clone!	

Compiling	sync	—	Fast	Clone	

sync;

cilk2c

Cilk	
source	

; C	post-	
source	

SLOW	
FAST	
FAST	
FAST	
FAST	
FAST	

36	

Compiling	the	Slow	Clone	
void fib_slow(fib_frame *frame) {
 int n,x,y;
 switch (frame->entry) {
 case 1: goto L1;
 case 2: goto L2;
 case 3: goto L3;
 }
 !"
 frame->entry = 1;
 frame->n = n;
 push(frame);
 x = fib(n-1);
 if (pop()==FAILURE) {
 frame->x = x;
 frame->join--;
 h	clean	up	&		
												return	to	scheduler	i
 }

 if (0) {
 L1:;
 n = frame->n;
 }
 !"
}

entry
join
n
x
y

entry
join

Cilk	
deque	

restore	
program	
counter	

conAnue	

same	
as	fast	
clone	

restore	local	
variables	
if	resuming	

frame

37	

Project	Accounts	

•  On	orion.ec.oakland.edu	
–  Need	VPN	to	access	from	home	

•  Accont	is	the	same	as	your	neAd	
–  Password:	<first	four	lekers	of	your	neAd>1234	
–  Change	it	the	first	Ame	you	login	

•  Follow	development	setup	steps	to	clone	the	OpenMP	
runAme	repo	and	examples	repo	

38	

Outline	for	Cilk/Cilkplus	

•  IntroducAon	and	Basic	Cilk	Programming	
•  Cilk	Work-stealing	Scheduler	
•  ImplementaAon	Strategies	
•  Performance	Analysis	
•  Scheduling	Performance	Analysis	
•  More	Examples	

39	

Mul;threaded	Computa;on	

• The	dag	G	=	(V,	E)	represents	a	parallel	instrucAon	stream.	
• Each	vertex	v	of	V	represents	a	(Cilk)	task:		a	maximal	
sequence	of	instrucAons	not	containing	parallel	control	
(spawn,	sync,	return).	

• Every	edge	e	of	E	is	either	a	spawn	edge,	a	return	edge,	or	
a	con4nue	edge.	

spawn	edge	
return	edge	

con4nue	edge	

ini4al	task	 final	task	

40	

Algorithmic	Complexity	Analysis	

TP	=	execuAon	Ame	on	P	processors	
	 •  ComputaAon	graph	abstracAon:	

–  node	=	arbitrary	sequenAal	
computaAon	

–  edge	=	dependence	(successor	
node	can	only	execute	a\er	
predecessor	node	has	completed)	

–  Directed	Acyclic	Graph	(DAG)	
•  Processor	abstracAon:	

–  P	idenAcal	processors	
–  each	processor	executes	one	node	

at	a	Ame	
41	

TP	=	execuAon	Ame	on	P	processors	

Algorithmic	Complexity	Analysis	

42	

TP	=	execuAon	Ame	on	P	processors	

T1	=	work	

Algorithmic	Complexity	Analysis	

43	

TP	=	execuAon	Ame	on	P	processors	

T1		=	work	
	T∞	=	span*	

*	Also	called	cri4cal-path	length	
or	computa4onal	depth.	

Algorithmic	Complexity	Analysis	

44	

TP	=	execuAon	Ame	on	P	processors	

T1	=	work	

LOWER	BOUNDS	
• TP	>=	T1/P	
• TP	>=	T∞	

*	Also	called	cri4cal-path	length	
or	computa4onal	depth.	

		T∞	=	span*	

Algorithmic	Complexity	Analysis	

45	

Defini4on:	T1/TP	=	speedup	on	P	processors.	

If	T1/TP 	=	Θ(P),	we	have	linear	speedup;	
	=	P,	we	have	perfect	linear	speedup;	
	>	P,	we	have	superlinear	speedup,	which	

is	not	possible	in	our	model,	because	of	the	lower	
bound	TP	>=	T1/P.	

Speedup	

46	

Parallelism	and	Parallel	Slackness	

47	

•  We	have	the	lower	bound	TP	>= T∞	and	TP	>=	T1/P	

•  The	maximum	possible	speedup	given	T∞	and	T1,	i.e.	the	
parallelism	
–  Independent	of	P,	only	depend	on	the	graph	

																					P	=	T1/T∞	

•  Parallel	slackness	(Efficiency)	as	the	raAo	

																	(T1/T∞)/P	
	

–  The	larger	the		efficiency,	the	less		
					the	impact	of	T∞	on	performance	

Example:	fib(4)

Assume	for	simplicity	that	each	Cilk	task	in	fib()	
takes	unit	3me	to	execute.	

Span:	T∞	=	8	

3	 4	

5	

6	

1	

2	 7	

8	

Work:	T1	=	17	

Parallelism:	T0/T∞	=	2.125	

Using	many	more	
than	2	processors	
makes	liGle	sense.	

48	

void vadd (real *A, real *B, int n){
 int i; for (i=0; i<n; i++) A[i]+=B[i];
}

C	

Parallelizing	Vector	Addi;on	

49	

C	

C	
 if (n<=BASE) {
 int i; for (i=0; i<n; i++) A[i]+=B[i];
 } else {

void vadd (real *A, real *B, int n){

vadd (A, B, n/2);
vadd (A+n/2, B+n/2, n-n/2);

 }
}

Paralleliza;on	strategy:		
1.  Convert	loops	to	recursion.	

void vadd (real *A, real *B, int n){
 int i; for (i=0; i<n; i++) A[i]+=B[i];
}

Parallelizing	Vector	Addi;on	

50	

 if (n<=BASE) {
 int i; for (i=0; i<n; i++) A[i]+=B[i];
 } else {

C	

Paralleliza;on	strategy:		
1.  Convert	loops	to	recursion.	
2.  Insert	Cilk	keywords.	

void vadd (real *A, real *B, int n){ cilk

spawn vadd (A, B, n/2);
vadd (A+n/2, B+n/2, n-n/2); spawn

Side	benefit:		
divide	and	conquer	is	
generally	good	for	caches!	

 }
}

sync;

C	ilk	

void vadd (real *A, real *B, int n){
 int i; for (i=0; i<n; i++) A[i]+=B[i];
}

Parallelizing	Vector	Addi;on	

51	

Vector	Addi;on	
cilk void vadd (real *A, real *B, int n){
 if (n<=BASE) {
 int i; for (i=0; i<n; i++) A[i]+=B[i];
 } else {
 spawn vadd (A, B, n/2);
 spawn vadd (A+n/2, B+n/2, n-n/2);
 sync;
 }
}

52	

Work:	T1	=			?	
Span:	T∞	=	 ?	
Parallelism:	T1/T∞	=	 ?	 Θ(n/log	n)	

Θ(n)	

Vector	Addi;on	Analysis	
To	add	two	vectors	of	length	n,	where	BASE	=	Θ(1):	

Θ(log	n)	

BASE	 53	

Outline	for	Cilk/Cilkplus	

•  IntroducAon	and	Basic	Cilk	Programming	
•  Cilk	Work-stealing	Scheduler	
•  ImplementaAon	Strategies	
•  Performance	Analysis	
•  Scheduling	Performance	Analysis	
•  More	Examples	

54	

Analysis:	Greedy	Scheduling	

IDEA:	Do	as	much	as	possible	on	every	step.	

Defini4on:	A	task	is	ready	if	all	its	
predecessors	have	executed.	

55	

Greedy	Scheduling	

IDEA:	Do	as	much	as	possible	on	every	step.	

Complete	step		
•  >=	P	tasks	ready.	
•  Run	any	P.	

Defini4on:	A	task	is	ready	if	all	its	
predecessors	have	executed.	 P	=	3	

56	

Greedy	Scheduling	

IDEA:	Do	as	much	as	possible	on	every	step.	

Complete	step		
•  >=	P	tasks	ready.	
•  Run	any	on	P.	

Incomplete	step		
•  <	P	tasks	ready.	
•  Run	all	of	them.	

Defini4on:	A	task	is	ready	if	all	its	
predecessors	have	executed.	 P	=	3	

57	

Theorem	[Graham	’68	&	Brent	’75].	Any	
greedy	scheduler	achieves	

TP	≤	T1/P	+	T∞	

Greedy-Scheduling	Theorem	

Proof.	
•  #	complete	steps	<=	T1/P,	since	each	
complete	step	performs	P	work.	

•  #	incomplete	steps	<=	T∞,	since	each	
incomplete	step	reduces	the	span	of	
the	unexecuted	dag	by	1.	

P	=	3	

58	

Performance	of	Work-Stealing	

Theorem:	On	P	processors,	Cilk’s	work-
stealing	scheduler	achieves	an	expected	
running	Ame	of	
	

TP	=	T1/P	+	O(T∞)	

work	term	 CriAcal	path	term	

59	

Cri;cal	Path	Overhead	

•  CriAcal	path	overhead	=	smallest	constant	C∞	such	that	

60	

Work	Overhead	

•  You		

61	

C	
state	saving	
frame	allocaAon		
stealing	protocol	

MIPS	R10000	

UltraSPARC	I	

Pen3um	Pro	

Alpha	21164	

T1/TS	Benchmark:	fib	on	one	processor.	
0	

27ns	

1	 2	 3	 4	 5	 6	 7	

78ns	

113ns	

115ns	

The	average	cost	of	a	spawn	in	Cilk-5	is	only	2–6	Ames	the	cost	of	an	ordinary	C	
funcAon	call,	depending	on	the	pla�orm.	

Breakdown	of	Work	Overhead	

62	

Outline	for	Cilk/Cilkplus	

•  IntroducAon	and	Basic	Cilk	Programming	
•  Cilk	Work-stealing	Scheduler	
•  ImplementaAon	Strategies	
•  Performance	Analysis	
•  Scheduling	Performance	Analysis	
•  More	Examples	

63	

Square-Matrix	Mul;plica;on	

c11	 c12	 #	 c1n	
c21	 c22	 #	 c2n	

!	 !	 $!	
cn1	 cn2	 #	 cnn	

a11	 a12	 #" a1n	
a21	 a22	 #" a2n	

!" !" $" !"
an1	 an2	 #" ann	

b11	 b12	 #" b1n	
b21	 b22	 #" b2n	

!" !" $" !"
bn1	 bn2	 #" bnn	

=	 X	

C	 A	 B	

cij	=	∑	
k	=	1	

n	

aik	bkj	

Assume	for	simplicity	that	n	=	2k.	

Recursive	Matrix	Mul;plica;on	

8	mulAplicaAons	of	(n/2)	x	(n/2)	matrices.	
1	addiAon	of	n	x	n	matrices.	

Divide	and	conquer	—	

C11	 C12	

C21	 C22	
=	 X	

A11	 A12	

A21	 A22	

B11	 B12	

B21	 B22	

=	 +	

A11B11	 A11B12	

A21B11	 A21B12	

A12B21	 A12B22	

A22B21	 A22B22	

Matrix	Mul;plica;on	

cilk void MultA(*C, *A, *B, n) {
 // C = C + A * B
 h	base	case	&	par44on	matrices	i
 spawn MultA(C11,A11,B11,n/2);		
 spawn MultA(C12,A11,B12,n/2);		
 spawn MultA(C22,A21,B12,n/2);		
 spawn MultA(C21,A21,B11,n/2);		
 sync;
 spawn MultA(C21,A22,B21,n/2); 	
 spawn MultA(C22,A22,B22,n/2);		
 spawn MultA(C12,A12,B22,n/2);		
 spawn MultA(C11,A12,B21,n/2);	
 sync;
 return;
}

Work	of	Mul;ply	

T1(n)	=		?	Θ(n3)	Work:	

cilk void MultA(*C, *A, *B, n) {
 // C = C + A * B
 h	base	case	&	par44on	matrices	i
 spawn MultA(C11,A11,B11,n/2);		
 spawn MultA(C12,A11,B12,n/2);		
 spawn MultA(C22,A21,B12,n/2);		
 spawn MultA(C21,A21,B11,n/2);		
 sync;
 spawn MultA(C21,A22,B21,n/2); 	
 spawn MultA(C22,A22,B22,n/2);		
 spawn MultA(C12,A12,B22,n/2);		
 spawn MultA(C11,A12,B21,n/2);	
 sync;
 return;
}

cilk void MultA(*C, *A, *B, n) {
 // C = C + A * B
 h	base	case	&	par44on	matrices	i
 spawn MultA(C11,A11,B11,n/2);		
 spawn MultA(C12,A11,B12,n/2);		
 spawn MultA(C22,A21,B12,n/2);		
 spawn MultA(C21,A21,B11,n/2);		
 sync;
 spawn MultA(C21,A22,B21,n/2); 	
 spawn MultA(C22,A22,B22,n/2);		
 spawn MultA(C12,A12,B22,n/2);		
 spawn MultA(C11,A12,B21,n/2);	
 sync;
 return;
}

cilk void MultA(*C, *A, *B, n) {
 // C = C + A * B
 h	base	case	&	par44on	matrices	i
 spawn MultA(C11,A11,B11,n/2);		
 spawn MultA(C12,A11,B12,n/2);		
 spawn MultA(C22,A21,B12,n/2);		
 spawn MultA(C21,A21,B11,n/2);		
 sync;
 spawn MultA(C21,A22,B21,n/2); 	
 spawn MultA(C22,A22,B22,n/2);		
 spawn MultA(C12,A12,B22,n/2);		
 spawn MultA(C11,A12,B21,n/2);	
 sync;
 return;
}

=	Θ(n)	
	T∞(n)	= 			?	

Span	of	Mul;ply	

Span:	 2	T∞	(n/2)	+	Θ(1)	

maximum	

maximum	

Parallelism:	=	T1/T∞	=	Θ(n3)	/	Θ(n)	=	Θ(n2)	

3	 12	 19	 46	

4	 14	 21	 23	

19	3	

4	

12	

14	 21	 23	

46	

Merging	Two	Sorted	Arrays	
void Merge(int *C, int *A, int *B, int na, int nb) {
 while (na>0 && nb>0) {
 if (*A <= *B) {
 *C++ = *A++; na--;
 } else {
 *C++ = *B++; nb--;
 }
 }
 while (na>0) {
 *C++ = *A++; na--;
 }
 while (nb>0) {
 *C++ = *B++; nb--;
 }
}

Time	to	merge	n	
elements	=			?		Θ(n).	

cilk void MergeSort(int *B, int *A, int n) {
 if (n==1) {
 B[0] = A[0];
 } else {
 int *C;
 C = (int*) Cilk_alloca(n*sizeof(int));
 spawn MergeSort(C, A, n/2);
 spawn MergeSort(C+n/2, A+n/2, n-n/2);
 sync;
 Merge(B, C, C+n/2, n/2, n-n/2);
 }
}

Merge	Sort	

14	46	19	 3	 12	 33	 4	 21	

4	 33	19	 46	 14	3	 12	 21	

46	 33	3	 12	 19	 4	 14	 21	

46	14	3	 4	 12	 19	 21	 33	

merge	

merge	

merge	

	 	= 	Θ(n	lg	n)	
	T1(n)	= 				?	2	T1(n/2)	+	Θ(n)	

Work	of	Merge	Sort	

Work:	

cilk void MergeSort(int *B, int *A, int n) {
 if (n==1) {
 B[0] = A[0];
 } else {
 int *C;
 C = (int*) Cilk_alloca(n*sizeof(int));
 spawn MergeSort(C, A, n/2);
 spawn MergeSort(C+n/2, A+n/2, n-n/2);
 sync;
 Merge(B, C, C+n/2, n/2, n-n/2);
 }
}

	T∞(n)	= 				?	T∞	(n/2)	+	Θ(n)	

Span	of	Merge	Sort	

Span:	
	 	= 	Θ(n)	

cilk void MergeSort(int *B, int *A, int n) {
 if (n==1) {
 B[0] = A[0];
 } else {
 int *C;
 C = (int*) Cilk_alloca(n*sizeof(int));
 spawn MergeSort(C, A, n/2);
 spawn MergeSort(C+n/2, A+n/2, n-n/2);
 sync;
 Merge(B, C, C+n/2, n/2, n-n/2);
 }
}

Parallelism:	
T1(n)	

T∞	(n)	
=	Θ(lg	n)	

Tableau	Construc;on	

A[i,	j]	=	f	(A[i,	j–1],	A[i–1,	j],	A[i–1,	j–1]).	
Problem:	Fill	in	an	n	x	n	tableau	A,	where	

Dynamic	
programming	
• Longest	common	
subsequence	

• Edit	distance	
• Time	warping	

00	 01	 02	 03	 04	 05	 06	 07	

10	 11	 12	 13	 14	 15	 16	 17	

20	 21	 22	 23	 24	 25	 26	 27	

30	 31	 32	 33	 34	 35	 36	 37	

40	 41	 42	 43	 44	 45	 46	 47	

50	 51	 52	 53	 54	 55	 56	 57	

60	 61	 62	 63	 64	 65	 66	 67	

70	 71	 72	 73	 74	 75	 76	 77	
Work:	Θ(n2).	

n	

n	

spawn I;
sync;
spawn II;
spawn III;
sync;
spawn IV;
sync;

I II

III IV

Cilk	code	

Recursive	Construc;on	

n	

n	

Work:	T1(n)	=			?	4T1(n/2)	+	Θ(1)	

spawn I;
sync;
spawn II;
spawn III;
sync;
spawn IV;
sync;

I II

III IV

Cilk	code	

Recursive	Construc;on	

=	Θ(n2)	

Span:	T∞	(n)	=			?	

n	

n	

spawn I;
sync;
spawn II;
spawn III;
sync;
spawn IV;
sync;

I II

III IV

Cilk	code	

Recursive	Construc;on	

3T∞	(n/2)	+	Θ(1)	 =	Θ(nlg3)	

Parallelism:	
T1(n)	

T∞	(n)	
 ≈ Θ(n0.42)	

n	
spawn I;
sync;
spawn II;
spawn III;
sync;
spawn IV;
spawn V;
spawn VI
sync;
spawn VII;
spawn VIII;
sync;
spawn IX;
sync;

A	More-Parallel	Construc;on	

I II

III

IV

V

VI

VII

VIII IX

n	

n	
spawn I;
sync;
spawn II;
spawn III;
sync;
spawn IV;
spawn V;
spawn VI
sync;
spawn VII;
spawn VIII;
sync;
spawn IX;
sync;

A	More-Parallel	Construc;on	

I II

III

IV

V

VI

VII

VIII IX

n	

Work:	T1(n)	=			?	9T1(n/3)	+	Θ(1)	

=	Θ(n2)	

n	
spawn I;
sync;
spawn II;
spawn III;
sync;
spawn IV;
spawn V;
spawn VI
sync;
spawn VII;
spawn VIII;
sync;
spawn IX;
sync;

A	More-Parallel	Construc;on	

I II

III

IV

V

VI

VII

VIII IX

n	

Span:	T∞	(n)	=			?	5T∞	(n/3)	+	Θ(1)	=	Θ(nlog35)	

Analysis	of	Revised	Construc;on	

Work:	T1(n)	=	Θ(n2)	

Span:	T∞	(n)	=	Θ(nlog35)	

≈ Θ(n1.46)	

Parallelism:	
T1(n)	

T∞	(n)	
≈ Θ(n0.54)	

More	parallel	by	a	factor	of	
Θ(n0.54)/Θ(n0.42)	=	Θ(n0.12)	.	

References	

•  “IntroducAon	to	Parallel	CompuAng”	by	Ananth	Grama,	
Anshul	Gupta,	George	Karypis,	and	Vipin	Kumar.	Addison	
Wesley,	2003	

•  Charles	E.	Leiserson.	Cilk	LECTURE	1.	SupercompuAng	
Technologies	Research	Group.	Computer	Science	and	
ArAficial	Intelligence	Laboratory.	hkp://bit.ly/mit-cilk-lec1	

•  Charles	Leiserson,	Bradley	Kuzmaul,	Michael	Bender,	and	
Hua-wen	Jing.	MIT	6.895	lecture	notes	-	Theory	of	Parallel	
Systems.	hkp://bit.ly/mit-6895-fall03	

•  Intel	Cilk++	Programmer’s	Guide.	Document	#	
322581-001US.	

81	

