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Topic	Overview		

•  IntroducAon	
•  Performance	Metrics	for	Parallel	Systems	
–  ExecuAon	Time,	Overhead,	Speedup,	Efficiency,	Cost		
•  Amdahl’s	Law	
•  Scalability	of	Parallel	Systems	
–  Isoefficiency	Metric	of	Scalability	
•  Minimum	ExecuAon	Time	and	Minimum	Cost-OpAmal	
ExecuAon	Time		

•  AsymptoAc	Analysis	of	Parallel	Programs		
•  Other	Scalability	Metrics		
–  Scaled	speedup,	Serial	fracAon	
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Parallel	Execu0on	Time	

•  Parallel	execuAon	Ame	is	a	funcAon	of:		
–  input	size	
–  number	of	processors	
–  communica0on	parameters	of	target	plaEorm		

•  ImplicaAons	
–  must	analyze	parallel	program	for	a	parAcular	target	plaRorm	
•  communicaAon	characterisAcs	can	differ	by	more	than	O(1)	

–  parallel	program	=	parallel	algorithm	+	plaRorm		
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Overhead	in	Parallel	Programs		

If	using	two	processors,	shouldn’t	a	program	run	twice	as	fast?	
–  Not	all	parts	of	the	program	are	parallelized	
–  A	number	of	overheads	incurred	when	donig	it	in	parallel	
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Performance	Metrics:	Execu0on	Time		

Does	a	parallel	program	run	faster	than	its	sequen0al	version?	
•  Serial	Ame:	TS	
–  Ame	elapsed	between	the	start	and	end	of	serial	execuAon		
•  Parallel	Ame:	Tp	
–  Ame	elapsed	between	first	process	start	and	last	process	end	
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Performance	Metrics:	Speedup		

What	is	the	benefit	from	increasing	parallelism?		
•  Speedup	(S):	TS	/	TP	
–  The	raAo	of	the	Ame	taken	to	solve	a	problem	on	a	single	

processor	to	the	Ame	required	to	solve	the	same	problem	on	a	
parallel	computer	with	p	idenAcal	processing	elements.		
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Performance	Metrics:	Efficiency		

•  FracAon	of	Ame	for	which	a	process	perform	useful	work	

•  Bounds	
–  TheoreAcally,	0	≤	E	≤	1	
•  The	larger,	the	beSer	
•  E=1:	0	overhead	

–  PracAcally,	E	>	1	if	superlinear	speedup	is	achieved	

•  Previous	example:	adding	N	numbers	using	N	PEs	
–  Speedup:		S	=	Θ	(N	/	log	N)	
–  Efficiency:	E	=	S/N	=	Θ	(N	/	log	N)	/	N	=	Θ	(1	/	log	N)	
•  Very	low	when	N	is	big	
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Performance	Metrics:	Cost	

Product	of	parallel	execu0on	0me	and	number	of	PEs:	p*TP		
•  The	total	amount	of	Ame	by	all	PEs	to	solve	the	problem	

•  Overhead:	To	
–  To		=	Tall		-	TS		
–  To	=	p	TP	–	TS	

•  Cost-op6mal	:	parallel	cost	≅	serial	cost	
–  ~0	overhead	
–  E	=	Θ	(1),	since	E	=	TS	/	p*TP	
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Amdahl’s	Law	Speedup	
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Speedup	and	Efficiency	
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Scalability	of	Parallel	Systems	

•  Strong	scaling:		
–  Scales	with	same	problem	size	

•  Weak	scaling	
–  Scales	with	increased	problem	size	

•  hgp://www.mcs.anl.gov/~iR/dbpp/text/node30.html	
•  hgps://www.sharcnet.ca/help/index.php/Measuring_Parallel_Scaling_Performance	



Strong	Scaling	
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Weak	Scalability	of	Parallel	Systems		

Extrapolate	performance	
•  From	small	problems	and	small	systems	à	larger	problems	
on	larger	configuraAons		
	
3	parallel	algorithms	for	compu0ng	an	n-point	FFT	on	64	PEs	
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Inferences	from	small	datasets	or	
small	machines	can	be	misleading	



Scaling	Characteris0cs	of	Parallel	Programs		

•  Efficiency:		
	
•  Parallel	overhead:	To	=	p	TP	–	TS	
–  Overhead	increases	as	p	increase	

	
•  Problem	size:	
–  Given	problem	size,	TS		remains	constant	

•  Efficiency	increases	if		
–  The	problem	size	increases	and		
–  Keeping	the	number	of	PEs	constant.	
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Example:	Adding	n	Numbers	on	p	PEs			

•  AddiAon	=	1	Ame	unit;	communicaAon	=	1	Ame	unit	
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Speedup	tends	to	saturate	and	efficiency	drops	



Scaling	and	Efficiency	
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Scaling	Characteris0cs	of	Parallel	Programs		

•  Overhead	To	=	ƒ	(Ts,	p),	i.e.	problem	size	and	p	
–  In	many	cases,	To	grows	sublinearly	with	respect	to	Ts	
	
•  Efficiency:		
–  Decreases	as	we	increase	p	->	T0	
–  Increases	as	we	increase	problem	size	(Ts)	

•  Keep	efficiency	constant	
–  Increase	problem	sizes	and		
–  propor0onally	increasing	the	number	of	PEs	

•  Scalable	parallel	systems	
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Scalability	vs	Cost-Op0mality		

•  To	maintain	constant	efficiency	Θ(1)	
–  Cost-opAmal	==	E	=	Θ(1)	

•  Any	scalable	parallel	system	can	be	made	cost-opAmal	
–  Requires	appropriate	choice	of		
•  Size	of	the	computaAon	
•  Number	of	PEs	
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Isoefficiency	Metric	of	Scalability	

Rate	at	which	the	problem	size	(Ts)	must	increase	per	
addi0onal	PE	(T0)	to	keep	the	efficiency	fixed	

•  The	scalability	of	the	system	
–  The	slower	this	rate,	the	beger	scalability	
–  Rate	==	0:	strong	scaling.		
•  The	same	problem	(same	size)	scales	when	increasing	
number	of	PEs	

•  To	formalize	this	rate,	we	define	
–  The	problem	size	W	=	the	asymptoAc	number	of	operaAons	

associated	with	the	best	serial	algorithm	to	solve	the	problem.	
•  The	serial	execuAon	Ame,	Ts	 20	



Isoefficiency	Metric	of	Scalability		

•  Parallel	overhead:	To(W,p)	
•  Parallel	execuAon	Ame:		

•  Speedup:	

•  Efficiency	
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Isoefficiency	Metric	of	Scalability	

•  To	maintain	constant	efficiency	(between	0	and	1)	

	
•  K	=	E	/	(1	–	E)		is	a	constant	related	to	the	desired	efficiency		
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Ra0o	To	/	W	should	be	
maintained	at	a	constant	value.		



Isoefficiency	Metric	of	Scalability		

										W	=	Φ	(p)	such	that	efficiency	is	constant	

•  W	=	Φ	(p)	is	called	the	isoefficiency	func6on	
–  Read	as:	what	is	the	problem	size	when	we	have	p	PEs	to	maintain	

constant	efficiency?	
–  Wp+1	–	Wp	=		Φ	(p+1)	-	Φ	(p)	
•  To	maintain	constant	efficiency,	how	much	to	increase	the	
problem	size	if	adding	one	more	PE?	

•  isoefficiency	func6on	determines	the	ease	
–  With	which	a	parallel	system	maintain	a	constant	efficiency	
–  Hence	achieve	speedups	increasing	in	proporAon	to	#	PEs	
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Isoefficiency	Example	1	

Adding	n	numbers	using	p	PEs	
•  Parallel	overhead:	To	=	2p	log	p		
•  W	=	KT0(W,p)	,	subsAtute	T0	
–  W	=	K	*2*p*log	p	

•  K	*2*p*log	p	is	the	isoefficiency	func0on	

•  The	asymptoAc	isoefficiency	funcAon		
					for	this	parallel	system	is	Θ(p*log	p)	
•  To	have	the	same	efficiency	on	p’	processors	as	on	p	
–  problem	size	n	must	increase	by	(p’	log	p’)	/	(p	log	p)	when	

increasing	PEs	from	p	to	p’	
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Examples	

•  by	(p’	log	p’)	/	(p	log	p)		

•  If	p	=	8,	p’	=	16	
•  16*log16/(8*log8)	=	16*4/(8*3)	=	8/3	=	2.67	

•  10M		on	8	cores	
•  10*2.67M	on	16	cores	

•  A1*x	+	B1*y	=	C1	à	A2*x	+	A2*(B1/A1)*y	=	A2*(C1/A1)	
•  A2*x	+	B2*y	=	C2	
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Isoefficiency	Example	2	
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Cost-Op0mality	and	Isoefficiency		

•  A	parallel	system	is	cost-opAmal	if	and	only	if	
–  Parallel	cost	==	total	work	
•  Efficiency	=	1	

•  From	this,	we	have:		
–  i.e.	work	dominates		
				overhead	

	
•  If	we	have	an	isoefficiency	funcAon	f(p)	
–  The	relaAon	W	=	Ω(f(p))	must	be	saAsfied	to	ensure	the	cost-

opAmality	of	a	parallel	system	as	it	is	scaled	up	
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Lower	Bound	on	the	Isoefficiency	Func0on		

•  For	a	problem	consisAng	of	W	units	of	work	
–  No	more	than	W	PEs	can	be	used	cost-opAmally.		

•  To	maintain	fixed	efficiency		
–  The	problem	size	must	increase	at	least	as	fast	as	Θ(p)	

•  Hence,	Ω(p)		is	the	asymptoAc	lower	bound	on	the	
isoefficiency	funcAon	
–  At	least	one	addiAonal	computaAon	item	needs	to	be	added	

to	maintain	constant	efficiency	
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Degree	of	Concurrency	and	Isoefficiency	

•  Degree	of	concurrency	
–  The	maximum	number	of	tasks	that	can	be	executed	

simultaneously	at	any	Ame	in	a	parallel	algorithm	
–  	C(W)		is	the	degree	of	concurrency	of	a	parallel	algorithm	
•  For	a	problem	of	size	W	
–  No	more	than	C(W)	processing	elements	can	be	employed	

effecAvely.		
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Degree	of	Concurrency	and	Isoefficiency:	
Example	

Solving	a	system	of	equa0on	using	Gaussian	elimina0on	
•  N	variables,	W	=	Θ(n3)	
–  n	variables	must	be	eliminated	one	aser	the	other	
–  EliminaAng	each	variable	requires	Θ(n2)	computaAons.		
•  At	most	Θ(n2)	PEs	can	be	kept	busy	at	any	Ame.		

•  Since	W	=	Θ(n3),	the	degree	of	concurrency	C(W)	=	Θ(W2/3)	

•  Given	p		PEs	
–  The	problem	size	should	be	at	least	Ω(p3/2)	to	use	them	all.		
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Minimum	Execu0on	Time	

•  Osen,	we	are	interested	in	the	minimum	Ame	to	soluAon	
•  To	determine	the	minimum	exe	Ame	TPmin		for	a	given	W	
–  DifferenAaAng	the	expression	for	TP	w.r.t.	p	and	equate	it	to	0	

	
	
•  If	p0	is	the	value	of	p	as	determined	by	this	equaAon	
–  TP(p0)	is	the	minimum	parallel	Ame	
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Minimum	Execu0on	Time:	Example	

Adding	n	numbers		
•  Parallel	execuAon	Ame:		

•  Compute	the	derivaAve:		

•  Set	the	derivaAve	=	0,	solve	for	p:	

•  The	corresponding	exe	Ame:			
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Note	that	at	this	point,	the	formulaAon	is	not	cost-opAmal.		



Minimum	Cost-Op0mal	Parallel	Time		

•  The	minimum	cost-opAmal	parallel	Ame:	TPcost_opt		
•  If	the	isoefficiency	funcAon	of	a	parallel	system	is	Θ(f(p))		
–  Then	a	problem	of	size	W	can	be	solved	cost-opAmally	if	and	

only	if		

	
•  In	other	words,	for	cost	opAmality,		p	=	O(f	-1(W))		
•  For	cost-opAmal	systems,	TP	=	Θ(W/p)	,	therefore,		
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Minimum	Cost-Op0mal	Parallel	Time:	Example	

Adding	n	numbers		
•  The	isoefficiency	funcAon	f(p)	is	Θ(p	log	p).	
•  From	this,	we	have	p	≈	n	/log	n	.		
•  At	this	processor	count,	the	parallel	runAme	is:	

•  Note	that	both	TPmin	and	TPcost_opt	for	adding	n	numbers	are		
					Θ(log	n).	This	may	not	always	be	the	case.		
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Asympto0c	Analysis	of	Parallel	Programs		

Sor0ng	a	list	of	n		numbers.		
•  The	fastest	serial	programs:	Θ(n	log	n).		
•  Four	parallel	algorithms,	A1,	A2,	A3,	and	A4	
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Asympto0c	Analysis	of	Parallel	Programs		
Sor0ng	a	list	of	n		numbers.		

•  If	metric	is	speed	(TP),	algorithm	A1	is	the	best,	followed	by	A3,	A4,	and	A2	
•  In	terms	of	efficiency	(E),	A2	and	A4	are	the	best,	followed	by	A3	and	A1.		
•  In	terms	of	cost(pTp),	algorithms	A2	and	A4	are	cost	opAmal,	A1	and	A3	are	

not.		

•  It	is	important	to	idenAfy	the	analysis	objecAves	and	to	use	appropriate	
metrics!		
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Other	Scalability	Metrics		

•  A	number	of	other	metrics	have	been	proposed,	dictated	
by	specific	needs	of	applicaAons.		
–  For	real-Ame	applicaAons,	the	objecAve	is	to	scale	up	a	system	

to	accomplish	a	task	in	a	specified	Ame	bound.		
–  In	memory	constrained	environments,	metrics	operate	at	the	

limit	of	memory	and	esAmate	performance	under	this	
problem	growth	rate.		
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Other	Scalability	Metrics:	Scaled	Speedup		

•  Speedup	obtained	when	the	problem	size	is	increased	
linearly	with	the	number	of	processing	elements.		
–  Per-PE	problem	size	the	same	

•  If	scaled	speedup	is	close	to	linear,	the	system	is	considered	
scalable.		
–  Weak	scaling	
•  If	the	isoefficiency	is	near	linear,	scaled	speedup	curve	is	
close	to	linear	as	well.		

•  If	the	aggregate	memory	grows	linearly	in	p,	scaled	
speedup	increases	problem	size	to	fill	memory.		

•  Alternately,	the	size	of	the	problem	is	increased	subject	to	
an	upper-bound	on	parallel	execuAon	Ame.		
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Scaled	Speedup:	Example		

n	x	n	matrix	vector	mul0plica0on	
•  Serial	execuAon	Ame:	tcn2		

•  Parallel	Efficiency:	

•  Total	memory	requirement	of	this	algorithm	is	Θ(n2)	.		
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Scaled	Speedup:	Example		

	Consider	the	case	of	memory-constrained	scaling.		
	
•  We	have		m=	Θ(n2)	=	Θ(p).		
•  Memory	constrained	scaled	speedup	is	given	by		

			

	
•  This	is	not	a	parAcularly	scalable	system	
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Scaled	Speedup:	Example	(con0nued)		

			Consider	the	case	of	Ame-constrained	scaling.		
	
•  We	have	TP	=	O(n2)	.		
•  Since	this	is	constrained	to	be	constant,	n2=	O(p)	.		

•  Note	that	in	this	case,	Ame-constrained	speedup	is	idenAcal	
to	memory	constrained	speedup.		

•  This	is	not	surprising,	since	the	memory	and	Ame	
complexity	of	the	operaAon	are	idenAcal.		
–  O(n2)	
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Scaled	Speedup:	Example		

n	x	n	matrix	mul0plica0on	

•  The	serial	execuAon	Ame:	tcn3.		
•  The	parallel	execuAon	Ame:		

•  Speedup:		
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Scaled	Speedup:	Example	(con0nued)		

			Consider	memory-constrained	scaled	speedup.		
•  We	have	memory	complexity	m=	Θ(n2)	=	Θ(p),	or		n2=c	x	p	.	
	
•  At	this	growth	rate,	scaled	speedup	S’		is	given	by:		

	
•  Note	that	this	is	scalable.		
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Scaled	Speedup:	Example	(con0nued)		

			Consider	Ame-constrained	scaled	speedup.		
	
•  We	have	TP	=		O(1)	=	O(n3	/	p)	,	or	n3=c	x	p	.		

•  Time-constrained	speedup	S’’		is	given	by:		

			
	
•  Memory	constrained	scaling	yields	beger	performance.		
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Serial	Frac0on	f	

•  If	a	computaAon	can	be	divided	into	a	totally	parallel	and	a	
totally	serial	component,,	we	have:		

	
•  From	this,	we	have,		
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Serial	Frac0on	f	

•  The	serial	fracAon	f	of	a	parallel	program	is	defined	as:	
		
	
	
•  Therefore,	we	have:		
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Serial	Frac0on		

•  Since		S	=	W	/	TP	,	we	have		

	
•  From	this,	we	have:	

•  If	f	increases	with	the	number	of	processors,	this	is	an	
indicator	of	rising	overhead,	and	thus	an	indicator	of	poor	
scalability.		
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Serial	Frac0on:	Example		

	Consider	the	problem	of	examining	the	serial	component	of	
the	matrix-vector	product.		

	We	have:		
	
	
	
	
	Here,	the	denominator	is	the	serial	execuAon	Ame	and	the	
numerator	is	the	overhead.		
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