Lecture 14: Analytical Modeling of
Parallel Programs, part 2

Concurrent and Multicore Programming

Department of Computer Science and Engineering
Yonghong Yan
yan@oakland.edu
www.secs.oakland.edu/~yan

Topic Overview

Review

@™ ° Scalability of Parallel Systems
— lIsoefficiency Metric of Scalability

* Minimum Execution Time and Minimum Cost-Optimal
Execution Time

* Asymptotic Analysis of Parallel Programs

* Other Scalability Metrics
— Scaled speedup, Serial fraction

Parallel Execution Time

* Parallel execution time is a function of:
— input size
— number of processors
— communication parameters of target platform

* Implications
— must analyze parallel program for a particular target platform
e communication characteristics can differ by more than O(1)
— parallel program = parallel algorithm + platform

Overhead in Parallel Programs

If using two processors, shouldn’t a program run twice as fast?
— Not all parts of the program are parallelized
— A number of overheads incurred when donig it in parallel

Execution Time —

PO []

Pl []

P2 [] []

P3 []

P4 []

P35 [| []
Pé6 []

P7 []

B Essential/Excess Computation [] Interprocessor Communication
|| 1dling

Performance Metrics: Execution Time

Does a parallel program run faster than its sequential version?
* Serial time: T,
— time elapsed between the start and end of serial execution

* Parallel time: T,
— time elapsed between first process start and last process end

800 -
/

y

8

8

Sequential

Parallel(8)

Millseconds
F &
8

8

Parallel(4)

8

8

100000 S00000 1000000 S000000
Number of elements 5

o

Performance Metrics: Speedup

What is the benefit from increasing parallelism?

* Speedup (S): T,/ T,
— The ratio of the time taken to solve a problem on a single

processor to the time required to solve the same problem on a
parallel computer with p identical processing elements.

23

2a Sun H—

15

Performance Metrics: Efficiency

* Fraction of time for which a process perform useful work

E=S/p=Ts/(p Tp)

[-

°* Bounds
— Theoretically, 0SE<1
* The larger, the better
 E=1: 0 overhead

— Practically, E > 1 if superlinear speedup is achieved

®* Previous example: adding N numbers using N PEs
— Speedup: S=0 (N /log N)
— Efficiency:E=S/N=0(N/logN)/N =0 (1/log N)
* Very low when N is big

Performance Metrics: Cost

Product of parallel execution time and number of PEs: p*T,
* The total amount of time by all PEs to solve the problem

®* Overhead: T,
— T =Tgy - Ts
— To=pTp—T;

* Cost-optimal : parallel cost = serial cost

— ~0 overhead
— E=0(1),sinceE=T,/p*T,

Topic Overview

* |Introduction

* Performance Metrics for Parallel Systems
— Execution Time, Overhead, Speedup, Efficiency, Cost

* Amdahl’s Law

@™ * Scalability of Parallel Systems
— lIsoefficiency Metric of Scalability

* Minimum Execution Time and Minimum Cost-Optimal
Execution Time

* Asymptotic Analysis of Parallel Programs

* Other Scalability Metrics
— Scaled speedup, Serial fraction

Amdahl’s Law Speedup

Amdahl's Law
A Law of Diminishing Returns

’T‘|~
-

S(N) = -

Speedup (n)

>

n processors

10

Speedup and Efficiency

Speedup (S,)

18

16

14

[
o

(0]

Efficiency of example parallel program

4 5 6 7 8 9 10 11 12 13 14 15 16
Numer of processes

smmw|deal speedup ®™===Speedup (Sp=T1/Tp) Efficiency (Sp/p)

1.00

- 0.90
- 0.80
- 0.70
- 0.60
- 0.50
- 0.40
- 0.30
- 0.20
- 0.10

0.00

Efficiency (E,)

11

Scalability of Parallel Systems

* Strong scaling:
— Scales with same problem size

* Weak scaling
— Scales with increased problem size

 http://www.mcs.anl.gov/~itf/dbpp/text/node30.html
* https://www.sharcnet.ca/help/index.php/Measuring Parallel Scaling Performance

Strong Scaling

S(p) = T(1)/T(p)

E(p) = S(p)/p T(p) = T(1)/p
S(p) = T(1)/T(p) = p
for ideal parallel speedup we get: |E(P) = S(p)/p = 1 or 100%
Speedup Efficiency
ideal s
Stlpcr—ling;;uf_
g Saturation \
' Disaster
" Number of processors

Number of processors

13

Weak Scalability of Parallel Systems

Extrapolate performance

® From small problems and small systems => larger problems
on larger configurations

3 parallel algorithms for computing an n-point FFT on 64 PEs

45 [

1

1
= 1
40 I
1

35

1

:

1

1

1

1

1

1

1

- :

‘ 20 [|
:

S :
1

1

:

1

1

| | | | | | |

Inferences from small datasets or
small machines can be misleading

Binary exchange

2-D transpoSe
3-D transpose ==
|

1

0 2000 4000 6000 8000 10000 12000 14000 16000 18000
14

]

Scaling Characteristics of Parallel Programs

Efficiency: f — o — Is
p plp
Parallel overhead: T,=p T, - T
— Overhead increases as p increase

E =

Problem size:
— Given problem size, T¢ remains constant

Efficiency increases if

— The problem size increases and
— Keeping the number of PEs constant.

1

L 4 72

15

Example: Adding n Numbers on p PEs

* Addition = 1 time unit; communication = 1 time unit

n 35
TP = —+ 21ogp .~ Linear
p or
25 F
S n 20 n =512
— n =320
- on 21 N n=192
D + zlogp s ol
5 n=64
1 0 '
E 0 5 10 15 20 25 30 35 40

Speedup tends to saturate and efficiency drops

16

Scaling and Efficiency

Fixed problem size (W) f Fixed number of processors (p)
E
P 4
fixed problem size problem size increasing
PEs increasing # PEs fixed

all parallel systems scalable parallel systems

17

Scaling Characteristics of Parallel Programs

Overhead T, =f (T, p), i.e. problem size and p
— In many cases, T, grows sublinearly with respect to T,

Efficiency: E —
— Decreases as we increase p -> T, 1 | 1o
— Increases as we increase problem size (Ts) | TS

Keep efficiency constant
— Increase problem sizes and
— proportionally increasing the number of PEs

et

Scalable parallel systems

18

Scalability vs Cost-Optimality

* To maintain constant efficiency ©(1)
— Cost-optimal == E = 0(1)

* Any scalable parallel system can be made cost-optimal
— Requires appropriate choice of
* Size of the computation
* Number of PEs

19

Isoefficiency Metric of Scalability

Rate at which the problem size (T,) must increase per
additional PE (T,) to keep the efficiency fixed

* The scalability of the system E = 7
— The slower this rate, the better scalability 1 AN T_Zv
— Rate == 0: strong scaling.

* The same problem (same size) scales when increasing
number of PEs

* To formalize this rate, we define

— The problem size W = the asymptotic number of operations
associated with the best serial algorithm to solve the problem.

* The serial execution time, T, 20

Isoefficiency Metric of Scalability

* Parallel overhead: T (W,p)

. . 4 7
* Parallel execution time: Tp — W + To(W, p)
p
;
s - W
* Speedup: Tr
_ Wp
W+ T,(W,p)
. E=2
* Efficiency p
B W
- W+ T,(W,p)

1
1+ T,(W,p)/ W 21

Isoefficiency Metric of Scalability

°* To maintain constant efficiency (between 0 and 1)
1

E p—
L+ To(VV,p)/VV’
To(ufap) _ 1 —F

|44 E ~
E
W :m o(W, p).

* K=E/(1-E) is aconstant related to the desired efficiency
W =KT,(W,p).

Ratio T, / W should be
maintained at a constant value.

22

Isoefficiency Metric of Scalability

W= KT,(W,p)

Z> W = @ (p) such that efficiency is constant

* W =0 (p)is called the isoefficiency function

— Read as: what is the problem size when we have p PEs to maintain
constant efficiency?

- W, -W, = ©(p+1) - D (p)
* To maintain constant efficiency, how much to increase the
problem size if adding one more PE?

* jsoefficiency function determines the ease
— With which a parallel system maintain a constant efficiency
— Hence achieve speedups increasing in proportion to # PEs

23

Isoefficiency Example 1

Adding n numbers using p PEs

* Parallel overhead: T, =2p log p Tp = g+ 2log p
* W=KT,(W,p), substitute T,
— W=K*2*p*log p o n
* K *2*p*log p is the isoefficiency function p T 2logp
E = :

* The asymptotic isoefficiency function
for this parallel system is ©(p*log p)

* To have the same efficiency on p’ processors as on p

— problem size n must increase by (p’ log p’) / (p log p) when
increasing PEs from p to p’

24

Examples
by (p’ log p’) / (p log p)

Ifp=8,p' =16
16*logl6/(8*log8) = 16*4/(8*3) = 8/3 = 2.67

10M on 8 cores
10*2.67M on 16 cores

Al*x + B1*y = C1 > A2*x + A2*(B1/A1)*y = A2*(C1/A1)
A2%x + B2*y = C2

25

Isoefficiency Example 2

Add solve n linear equations on p processing elements

For Gaussian elimination, execution time = O(n3/p + n? + n log p)

Total parallel work = O(n3+ pn? + pn log p) 5 i

Overhead T, is O(pn? + pn log p)
» s

—back substitution + pivot computation

For isoefficiency, we want W=K T (W, p)] H L]

Not Used Pivot Elements Updated Elements

Expressing overhead as a function of W = n3 yields
T,= O(pW2?3 + pW'? log p)

Asymptotic isoefficiency W = K(pW?3 + pW?"3 |log p)

Want the same efficiency on p’ processors as on p
—using first term W = KpW?%3 - |W = K3p3

—using second term W = KpW"3 log p — W = K32 (p log p)3?

—first term dominates: work must increase by (p’)?/ p3
— | problem size n must increase by p’/ p 26

Cost-Optimality and Isoefficiency

* A parallel system is cost-optimal if and only if
— Parallel cost == total work , ~ /YA
« Efficiency =1 plp = OW).

* From this, we have: W+ T,(W.p) = O(W)

— i.e. work dominates U .

overhead I o(W, l),) — O(")
(W = o@(w.p)

* |f we have an isoefficiency function f(p)

— The relation W = Q(f(p)) must be satisfied to ensure the cost-
optimality of a parallel system as it is scaled up

27

Lower Bound on the Isoefficiency Function

®* For a problem consisting of W units of work
— No more than W PEs can be used cost-optimally.

* To maintain fixed efficiency
— The problem size must increase at least as fast as O(p)

* Hence, Q(p) is the asymptotic lower bound on the
isoefficiency function

— At least one additional computation item needs to be added
to maintain constant efficiency

28

Degree of Concurrency and Isoefficiency

* Degree of concurrency

— The maximum number of tasks that can be executed
simultaneously at any time in a parallel algorithm

— C(W) is the degree of concurrency of a parallel algorithm

* For a problem of size W

— No more than C(W) processing elements can be employed
effectively.

29

Degree of Concurrency and Isoefficiency:

Example

Solving a system of equation using Gaussian elimination

* N variables, W = O(n?)
— nvariables must be eliminated one after the other
— Eliminating each variable requires ©(n?) computations.

* At most ©(n?) PEs can be kept busy at any time.
* Since W = 0O(n3), the degree of concurrency C(W) = O(W?/3)

* Givenp PEs
— The problem size should be at least Q(p3/2) to use them all.

30

-

Topic Overview

Introduction

Performance Metrics for Parallel Systems
— Execution Time, Overhead, Speedup, Efficiency, Cost

Amdahl’s Law

Scalability of Parallel Systems
— Isoefficiency Metric of Scalability

Minimum Execution Time
Asymptotic Analysis of Parallel Programs

Other Scalability Metrics
— Scaled speedup, Serial fraction

31

Minimum Execution Time

* Often, we are interested in the minimum time to solution

* To determine the minimum exe time T,”" for a given W
— Differentiating the expression for T, w.r.t. p and equate it to O

d
—Tp =0
dp P
* If pyis the value of p as determined by this equation
— Tp(p,) is the minimum parallel time " |
F1(x)
f(a+h) ________________'_C-;-""'
7 I| | R _PI
I ::;.+h

32

Minimum Execution Time: Example

Adding n numbers

Parallel execution time: Tp = 2 4 2logp.
p
Compute the derivative: i(ﬁ + 210gp) _ _iz + 2(1
op\p p p
Set the derivative = 0, solve for p: _n 2(1) =0
2
p p
The corresponding exe time: n
——+2=0
Trin = 2logn. 4
p=n/2

Note that at this point, the formulation is not cost-optimal. s

Minimum Cost-Optimal Parallel Time

* The minimum cost-optimal parallel time: Tt

* |f the isoefficiency function of a parallel system is O(f(p))

— Then a problem of size W can be solved cost-optimally if and
only if

W= Q(f(p))

* |n other words, for cost optimality, p = O(f 1(W))
* For cost-optimal systems, T,= O(W/p), therefore,

W
cost_opt
R Q(f—1<W>)'

34

Minimum Cost-Optimal Parallel Time: Example

Adding n numbers
The isoefficiency function f(p) is ©(p log p).
From this, we have p=n/logn .
At this processor count, the parallel runtime is:

Tlgost_opt _ 1ogn+ 10g (1 n)
ogn

= 2logn — loglogn.

Note that both T,m" and T,°s-°Pt for adding n numbers are

©(log n). This may not always be the case.

35

@ .

Topic Overview

Introduction

Performance Metrics for Parallel Systems
— Execution Time, Overhead, Speedup, Efficiency, Cost

Amdahl’s Law

Scalability of Parallel Systems
— Isoefficiency Metric of Scalability

Minimum Execution Time
Asymptotic Analysis of Parallel Programs

Other Scalability Metrics
— Scaled speedup, Serial fraction

36

Asymptotic Analysis of Parallel Programs

Sorting a list of n numbers.
* The fastest serial programs: ©(n log n).
* Four parallel algorithms, A1, A2, A3, and A4

Algorithm Al A2 A3 A4

p n? log n n vn

Tp 1 n Vn vnlogn
S nlogn logn Vnlogn /n

plp n? nlogn nt nlogn

37

Asymptotic Analysis of Parallel Programs

Algorithm AT A2 A3 A4

P n? log n n Vn

Tp 1 n vn Vnlogn
S nlogn logn Vnlogn /n

E 1“,%" 1 l‘i%l 1

plp n? nlogn n'® nlogn

If metric is speed (Tp), algorithm Al is the best, followed by A3, A4, and A2
In terms of efficiency (E), A2 and A4 are the best, followed by A3 and Al.

In terms of cost(pT,), algorithms A2 and A4 are cost optimal, Al and A3 are
not.

It is important to identify the analysis objectives and to use appropriate
metrics!

38

Topic Overview

Introduction

Performance Metrics for Parallel Systems
— Execution Time, Overhead, Speedup, Efficiency, Cost

Amdahl’s Law

Scalability of Parallel Systems
— Isoefficiency Metric of Scalability

Minimum Execution Time
Asymptotic Analysis of Parallel Programs

@@ Other Scalability Metrics

— Scaled speedup, Serial fraction

39

Other Scalability Metrics

* A number of other metrics have been proposed, dictated
by specific needs of applications.
— For real-time applications, the objective is to scale up a system
to accomplish a task in a specified time bound.

— In memory constrained environments, metrics operate at the
limit of memory and estimate performance under this
problem growth rate.

40

Other Scalability Metrics: Scaled Speedup

* Speedup obtained when the problem size is increased
linearly with the number of processing elements.
— Per-PE problem size the same

* |f scaled speedup is close to linear, the system is considered
scalable.
— Weak scaling

* |f the isoefficiency is near linear, scaled speedup curve is
close to linear as well.

* If the aggregate memory grows linearly in p, scaled
speedup increases problem size to fill memory.

* Alternately, the size of the problem is increased subject to
an upper-bound on parallel execution time.

41

Scaled Speedup: Example

n x n matrix vector multiplication
* Serial execution time: t_.n?

ton®

te n’ > T ts logp + 2t,2

* Parallel Efficiency: S =
w\/_

* Total memory requirement of this algorithm is ©(n?) .

42

Scaled Speedup: Example

Consider the case of memory-constrained scaling.

* We have m= 0(n?) = O(p).
* Memory constrained scaled speedup is given by

) lcC X P
tc%ﬂ +tslogp + tyw/c X p
S"=0(,/p)

* This is not a particularly scalable system

43

Scaled Speedup: Example (continued)

Consider the case of time-constrained scaling.

We have T, = O(n?) .
Since this is constrained to be constant, n’= O(p) .

Note that in this case, time-constrained speedup is identical
to memory constrained speedup.

This is not surprising, since the memory and time
complexity of the operation are identical.
— 0O(n?)

44

Scaled Speedup: Example

n x n matrix multiplicati

* The serial execution time: t.n3.
* The parallel execution time: Tp = t.—

3

on

3

+ tslogp + 2ty
p

* Speedup: g _ ten
t. n® > T ts logp + 2t,2

w\f

’I’L2

%

45

Scaled Speedup: Example (continued)

Consider memory-constrained scaled speedup.
* We have memory complexity m= ©(n?) = O(p), or n*=cxp.

* At this growth rate, scaled speedup S is given by:

te(c x p)*°
S = —— = O(p)
tLLp + 1, logp—l—‘?tw_\/_

* Note that this is scalable.

46

Scaled Speedup: Example (continued)

Consider time-constrained scaled speedup.
* We have T,= O(1) =0(n*/ p),orn3®=cxp .

* Time-constrained speedup §” is given by:

QI teC X p _ O(p5/6)

cxp o (cxp)?/3
te D +tslogp+~tw NG

* Memory constrained scaling yields better performance.

47

Serial Fraction f

* |If a computation can be divided into a totally parallel and a
totally serial component,, we have:

W = Tse'r =+ Tpar-

* From this, we have,

T, ar
TP — Tse'r + p_‘
p

W/ o Tser
p

TP — Tser =+

48

Serial Fraction f

* The serial fraction f of a parallel program is defined as:

TSGT

f==2=

* Therefore, we have:

W— fxW
p

Tp = fx W+

Serial Fraction

* Since S=W/T,, we have

1 1—f
s=f+—
* From this, we have:
‘ 1/S—1/p
- 1-1/p

* If fincreases with the number of processors, this is an

indicator of rising overhead, and thus an indicator of poor
scalability.

50

Serial Fraction: Example

Consider the problem of examining the serial component of
the matrix-vector product.

2
tc %"‘ts log p4-twn
f)

L ten”
="

We have:

tsplogp + tynp 1
f = Hlonp
ten? p—1

f o~ tslogp + tyn
t.n?
Here, the denominator is the serial execution time and the
numerator is the overhead.

51

References

* Adapted from slides “Principles of Parallel Algorithm
Design” by Ananth Grama

* “Analytical Modeling of Parallel Systems”, Chapter 5 in
Ananth Grama, Anshul Gupta, George Karypis, and Vipin
Kumar, Introduction to Parallel Computing'’, “ Addison
Wesley, 2003.

®* Grama, Ananth Y.; Gupta, A.; Kumar, V., "Isoefficiency:
measuring the scalability of parallel algorithms and
architectures," in Parallel & Distributed Technology:
Systems & Applications, IEEE, vol.1, no.3, pp.12-21, Aug.
1993, doi: 10.1109/88.242438, http://ieeexplore.ieee.org/
stamp/stamp.jsp?tp=&arnumber=242438&isnumber=6234

52

