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Topics	(Part	1)	

•  IntroducAon	
•  Principles	of	parallel	algorithm	design	(Chapter	3)	
•  Programming	on	shared	memory	system	(Chapter	7)	
–  OpenMP	
–  PThread,	mutual	exclusion,	locks,	synchroniza0ons	
–  Cilk/Cilkplus	(To	be	covered	a4er	lecture	11	and	12)	
•  Analysis	of	parallel	program	execuAons	(Chapter	5)	
–  Performance	Metrics	for	Parallel	Systems	
•  Execu0on	Time,	Overhead,	Speedup,	Efficiency,	Cost		

–  Scalability	of	Parallel	Systems	
–  Use	of	performance	tools	
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Topic	Overview		

•  Introduc0on	
•  Performance	Metrics	for	Parallel	Systems	
–  Execu0on	Time,	Overhead,	Speedup,	Efficiency,	Cost		
•  Amdahl’s	Law	
•  Scalability	of	Parallel	Systems	
–  Isoefficiency	Metric	of	Scalability	
•  Minimum	ExecuAon	Time	and	Minimum	Cost-OpAmal	
ExecuAon	Time		

•  AsymptoAc	Analysis	of	Parallel	Programs		
•  Other	Scalability	Metrics		
–  Scaled	speedup,	Serial	fracAon	
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Analy0cal	Modeling:	Sequen0al	Execu0on	Time	

•  The	execuAon	Ame	of	a	sequenAal	algorithm	
–  AsymptoAc	execuAon	Ame	as	a	func0on	of	input	size	
•  iden0cal	on	any	serial	plaNorm	

•  Big-O	NotaAon	
–  O(1)	
–  O(N)	
–  O(N2)	
–  O(NlogN)	
–  O(N3)	
–  …	
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Parallel	Execu0on	Time	

•  Parallel	execuAon	Ame	is	a	funcAon	of:		
–  input	size	
–  number	of	processors	(machine	performance)	
–  communica0on	parameters	of	target	plaNorm	(network)	

•  ImplicaAons	
–  must	analyze	parallel	program	for	a	parAcular	target	plaYorm	
•  communicaAon	characterisAcs	can	differ	by	more	than	O(1)	

–  parallel	program	=	parallel	algorithm	+	plaNorm		
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Overhead	in	Parallel	Programs		

If	using	two	processors,	shouldn’t	a	program	run	twice	as	fast?	
–  Not	all	parts	of	the	program	are	parallelized	
–  A	number	of	overheads	incurred	when	doning	it	in	parallel	
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Overheads	in	Parallel	Programs		

•  Interprocess	interacAons:	
–  CommunicaAon	
•  Data	movement	

–  SynchronizaAon/contenAon	

•  Idling:		
–  Load	imbalance	
–  SynchronizaAon	
•  Sync	itself	has	overhead		

–  Serial	components		

•  Excess	computaAon	
–  computaAon	not	performed	by	the	serial	version	
•  E.g.	replicated	computaAon	to	minimize	communicaAon.		
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Performance	Metrics:	Execu0on	Time		

Does	a	parallel	program	run	faster	than	its	sequen0al	version?	
•  Serial	Ame:	TS	
–  Ame	elapsed	between	the	start	and	end	of	serial	execuAon		
•  Parallel	Ame:	Tp	
–  Ame	elapsed	between	first	process	start	and	last	process	end	

9	



Performance	Metrics:	Parallel	Overhead		

What	are	the	cost	to	enable	parallelism?	
	
•  Tall	:	the	total	Ame	collecAvely	spent	by	all	the	processors	
–  Tall	=	p	TP			(p	is	the	number	of	processors).		

•  TS	:	serial	execuAon	Ame	

•  Total	parallel	overhead	To	
–  To		=	Tall		-	TS		
–  To	=	p	TP	–	TS	

overhead	
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Performance	Metrics:	Speedup		

What	is	the	benefit	from	increasing	parallelism?		
•  Speedup	(S):	TS	/	TP	
–  The	raAo	of	the	Ame	taken	to	solve	a	problem	on	a	single	

processor	to	the	Ame	required	to	solve	the	same	problem	on	a	
parallel	computer	with	p	idenAcal	processing	elements.		
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Performance	Metrics:	Example		

Adding	n	numbers		
•  SequenAal:	Θ	(n)	
•  Using	n	processing	elements.		
–  If	n	is	a	power	of	two,	in	log	n	steps	by	propagaAng	parAal	

sums	up	a	logical	binary	tree	of	processors.		
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Performance	Metrics:	Example	–	cont’d	
•  Σji	denotes	the	sum	of	

numbers	with	consecuAve	
labels	from	i	to	j	

•  Analysis:		
–  An	addiAon	takes	tc	
–  CommunicaAon	takes	ts	+	tw	
–  tc	and	(ts	+	tw)	are	constant	

•  SequenAal	and	parallel	Ame:	
–  TS	=	Θ	(n)	
–  TP	=	Θ	(log	n)	

•  Speedup	S:		
–  S	=	Θ	(n	/	log	n)	
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Performance	Metrics:	Speedup		

•  The	yards0ck:	Ts	
–  Many	serial	algorithms	available,	each	with	different	

asymptoAc	execuAon	Ame	
–  The	parallelizaAon	of	those	algorithms	varies	too	

hfp://en.wikipedia.org/wiki/ComputaAonal_complexity_of_mathemaAcal_operaAons	
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Speedup	Example:	Sor0ng	

15	hfp://en.wikipedia.org/wiki/SorAng_algorithm	



•  The	serial	execuAon	Ame	for	bubblesort:150	seconds.		
•  Odd-even	parallel	bubble	sort:	is	40	seconds.		
•  The	speedup:	150/40	=	3.75.		
–  But	is	this	really	a	fair	assessment	of	the	system?		

•  What	if	serial	quicksort	only	took	30	seconds?	
•  In	this	case,	the	speedup	is	30/40	=	0.75	
–  A	more	realisAc	assessment	

•  Always	consider	the	best	sequen0al	program	as	baseline	
–  Not	even	the	parallel	program	running	with	1	PE	
• We	do	this	in	our	assignment	

Speedup	Example:	Sor0ng	–	cont’d	

16	



Performance	Metrics:	Speedup	Bounds		

•  Speedup,	in	theory,	should	be	upper	bounded	by	p	
–  We	can	only	expect	a	p-fold	speedup	if	we	use	p	Ames	as	

many	resources.		

•  TheoreAcally,	a	speedup	greater	
				than	p	is	possible	only	if	each		
				processor	spends	less	than		
				TS	/	p	Ame	solving	the	problem.	
–  Violate	the	rules	of	using		
					the	best	sequenAal	as	baseline	

•  Speedups:		
–  Linear	
–  Sublinear	
–  Superlinear	

•  In	pracBce,	superlinear	is	possible	
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Performance	Metrics:	Superlinear	Speedups		

Parallel	algorithm	does	less	work	than	its	serial	versions	
•  Searching	node	‘S’	in	an	unstructured	tree	
•  Parallel	with	two	PEs	using	depth-first	traversal	
–  PE	0	searching	the	lem	subtree	expands	only	the	shaded	nodes	

before	the	soluAon	is	found	by	PE	1	
–  PE	1	searching	the	right	subtree	
•  Serial	algorithm	expands		
				the	enAre	tree	
–  Does	more	work	than		
					the	parallel	algorithm.		
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Performance	Metrics:	Superlinear	Speedups	

Resource-based	superlinearity	
•  Parallel	execuAon:		
–  The	higher	aggregate	cache/memory	bandwidth	can	result	in	

befer	cache-hit	raAos,	and	therefore	superlinearity.		

•  Example:	A	processor	with	64KB	of	cache	yields	an	80%	hit	
raAo.	If	two	processors	are	used,	since	the	problem	size/
processor	is	smaller,	the	hit	raAo	goes	up	to	90%.	Of	the	
remaining	10%	access,	8%	come	from	local	memory	and	2%	
from	remote	memory.		

•  If	DRAM	access	Ame	is	100	ns,	cache	access	Ame	is	2	ns,	
and	remote	memory	access	Ame	is	400ns,	this	corresponds	
to	a	speedup	of	2.43!		
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Performance	Metrics:	Efficiency		

•  FracAon	of	Ame	for	which	a	process	perform	useful	work	

•  Bounds	
–  TheoreAcally,	0	≤	E	≤	1	
•  The	larger,	the	be`er	
•  E=1:	0	overhead	

–  PracAcally,	E	>	1	if	superlinear	speedup	is	achieved	

•  Previous	example:	adding	N	numbers	using	N	PEs	
–  Speedup:		S	=	Θ	(N	/	log	N)	
–  Efficiency:	E	=	S/N	=	Θ	(N	/	log	N)	/	N	=	Θ	(1	/	log	N)	
•  Very	low	when	N	is	big	
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Example:	Edge	Detec0on	

	
•  Apply	3x3	template	to	each	pixel	of	the	images	
–  Stencil	computaAon	

•  Serial	performance:	TS=	9tc	n2		
–  Each	pixel	has	9	mulAply-add	(MA)	
•  Each	MA	takes	constant	tc	Ame	

–  An	n	x	n	image	for	n2	pixels	

21	hfp://en.wikipedia.org/wiki/Edge_detecAon	



Edge	Detec0on:	Parallel	Version	

•  ParAAons	the	image	equally	into	
					verAcal	segments,	each	with	n2	/	p	pixels.	
		
•  ComputaAon	by	each	PE:	TS	=	9	tcn2	/	p	

•  CommunicaAons	by	each	PE:	2(ts	+	twn)		
–  The	boundary	of	each	segment	is	2n	pixels	
•  Two	boundaries:	lem	and	right	

–  Each	boundary	exchange	takes	ts	+	twn	

•  Parallel	performance:		
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Edge	Detec0on:	Parallel	Speedup	and	Efficiency	

•  Serial	performance:	TS=	9tc	n2		

•  Parallel	performance:		
	
•  Speedup:	S	=	Ts/Tp	

•  Efficiency:	E	=	S/p	
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Performance	Metrics:	Cost	

Product	of	parallel	execu0on	0me	and	number	of	PEs:	p*TP		
•  The	total	amount	of	Ame	by	all	PEs	to	solve	the	problem	

•  Cost-op(mal	:	parallel	cost	≅	serial	cost	
–  ~0	overhead	
–  E	=	Θ	(1),	since	E	=	TS	/	p*TP	
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Cost:	An	Example	

Adding	n	numbers	on	n	PEs	
•  Serial	performance:	TS	=	Θ(n)	
•  Parallel	performance:	TP	=	Θ(log	n)	
•  Cost:	p	TP	=	Θ(n	log	n)	
•  OpAmal	or	not:		
–  E	=	n/n*	log	n	=	Θ(1/log	n)	
–  Not	cost-op0mal.		
	
•  Why	not	op0mal	
–  Waste	of	CPU	cycles	amer	step	1	
•  Only	core	0	is	doing	all	the	useful	work	in	logN	Ames	

log	n	
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•  A	parallel	sorAng	algorithm	uses	n	PEs	to	sort	a	list:	(log	n)2	
•  Serial	sorAng:	n	log	n	
•  Speedup	S	=	n	/	log	n	,	Efficiency	E	=	1	/	log	n	
•  Cost:	p	TP		=	n	(log	n)2	
–  Not	cost	opAmal	by	a	factor	of	log	n.		

•  If	p	<	n,	assigning	n	tasks	to	p	PEs:	TP	=	n	(log	n)2	/	p	.	
•  Speedup:	S	=	(n	log	n)	/	(n	(log	n)2	/	p	)	=	p	/	log	n.		
•  For	a	given	p,	n	éàS	ê 
–  Speedup	decreases	as	we	increase	problem	sizes	
•  ObservaAon:	
–  Non-cost-opAmality	introduce	significant	cost	(overhead)	
–  Cost-opAmality	is	important	in	pracAce	

Cost:	Impact	of	Non-Cost-Op0mality		
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Effect	of	Granularity	on	Performance	 		

•  Scaling	down	a	parallel	program	
–  Reduce	the	number	of	PEs	than	the	max	possible	
–  Increase	granularity	à	Improve	parallel	efficiency	
–  Naïve	scaling-down	
•  consider	each	original	processor	as	virtual	PEs	
•  map	virtual	PEs	to	scaled-down	number	of	PEs	

•  Impacts:	
–  #	PE	decreases	by	a	factor	of	n	/	p	
–  computaAon	for	each	PE	increases	by	a	factor	of	n	/	p	
–  communicaAon	cost	depends	upon	what	the	VPEs	do	
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Sum	n	Numbers	on	p	PEs	

•  P	<	N	
•  P	and	n	are	power	of	2	

•  Use	parallel	algorithm	for	n	(virtual)	PEs	
–  Assign	each	PE	to	n	/	p	virtual	Pes	

•  SimulaAon:	Adding	16	numbers	on	4	PEs	
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Sum	Reduc0on:	1	
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Sum	Reduc0on:	2	
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Sum	Reduc0on:	3	

31	



Sum	Reduc0on	Example		
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•  Each	of	the	p	PEs	is	now	assigned	n	/	p	virtual	PEs.		
•  The	first	log	p	of	the	log	n	steps	of	the	original	algorithm	
are	simulated	in	(n	/	p)	log	p	steps	on	p	PEs	

•  Subsequent	log	n	-	log	p	steps	do	not	require	any	
communicaAon	
–  Local	processing	
•  The	overall	parallel	execuAon	Ame:	Θ	(	(n	/	p)	log	p).		
•  The	cost	is	Θ	(n	log	p)	
–  AsymptoAcally	higher	than	the	sequenAal	Ame	Θ	(n)	

•  Therefore,	the	parallel	system	is	not	cost-op0mal.		



Cost-op0mal	Way	of	Scaling	Down:	1	

•  Each	PE	locally	adds	its	n	/	p	numbers	in	Ame	Θ	(n	/	p)	
•  The	p	parAal	sums	on	p	PEs	can	be	added	in	Ame	Θ(log	p).	
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Cost-op0mal	Way	of	Scaling	Down:	2	

•  Parallel	execuAon	Ame:		

•  Parallel	cost:												p	*	Tp	=		

•  Cost	op0mal	as	long	as		
–  f	=	Ω	(g):	f	dominate	g	in	some	limit	
–  E.g.	adding	10,000,000	(n)	number	using	14	PEs	
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Amdahl’s	Law	

•  Amdahl's	argument	

36	

• 		The	word	“law”	is	omen	used	by	computer	scienAsts	when	it	is	an	observed	phenomena	
(e.g,	Moore’s	Law)	and	not	a	theorem	that	has	been	proven	in	a	strict	sense.	

Gene	Amdahl,	"Validity	of	the	single	processor	approach	to	achieving	large-scale	
compuAng	capabiliAes",	AFIPS	Conference	Proceedings,	30:483-485,	1967.	



Using	Amdahl’s	Law	
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Amdahl’s	Law	for	Parallelism	

•  The	enhanced	fracAon	F	is	through	parallelism,	perfect	
parallelism	with	linear	speedup	
–  	The	speedup	for	F	is	N	for	N	processors	
•  Overall	speedup	

•  Speedup	upper	bound	(when	N	à∞	):		
–  1-F:	the	sequenAal	porAon	of	a	program	
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Amdahl’s	Law	for	Parallelism	
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Amdahl’s	Law	Usefulness	

•  Amdahl’s	law	is	valid	for	tradiAonal	problems	and	has	several	
useful	interpretaAons.	

•  Some	textbooks	show	how	Amdahl’s	law	can	be	used	to	
increase	the	efficient	of	parallel	algorithms		
–  E=(1/((1-F)+F/N))/N	=	1/(N(1-F)+F)	
•  If	we	increase	N,	and	the	problem	size	in	certain	rate(so	F	
increased),	we	can	sAll	keep	E	constant	

•  Amdahl’s	law	shows	that	efforts	required	to	further	reduce	the	
fracAon	of	the	code	that	is	sequenAal	may	pay	off	in	large	
performance	gains.	

•  Hardware	that	achieves	even	a	small	decrease	in	the	percent	of	
things	executed	sequenAally	may	be	considerably	more	efficient.	

40	



Amdahl’s	Law	for	Parallelism	

•  However:	for	long	Ame,	Amdahl’s	law	was	viewed	as	a	
fatal	flaw	to	the	usefulness	of	parallelism	
–  Focuses	a	parAcular	algorithm	and	problem	sizes,	and	does	

not	consider	that	other	algorithms	with	more	parallelism	may	
exist,	or	scalability	issues	

–  Amdahl’s	law	applies	only	to	“standard”	problems	were	
superlinearity	can	not	occur	

–  Gustafon’s	Law:	The	proporAon	of	the	computaAons	that	are	
sequenAal	normally	decreases	as	the	problem	size	increases.	

•  Currently,	it	is	generally	accepted	by	parallel	compuAng	
professionals	that	Amdahl’s	law	is	not	a	serious	limit	
the	benefit	and	future	of	parallel	compuAng.	

41	
Compilers	and	More:	Is	Amdahl’s	Law	SAll	Relevant?	Michael	Wolfe,	
hfp://www.hpcwire.com/2015/01/22/compilers-amdahls-law-sAll-relevant/,	01/22/2015	
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Project	Ideas	and	Teams	

•  Performance	measurement	and	analysis	based	on	PAPI	
performance	counters	
–  how	OpenMP	schedule	loop	chunks	
–  how	OpenMP	schedule	tasks	
•  ApplicaAon	development	combining	the	use	of	different	
programming	model	(OpenMP,	MPI	and	GPU)	
–  ArAficial	intelligence	and	deep	learning	applicaAon	
–  Computer	vision	
–  ScienAfic	simulaAon	
•  New	parallel	programming	experiments:	Chapel	
•  New	compuAng	paradigm:	neuromophic		
•  Other	topics	

43	


