Lecture 13: Analytical Modeling of Parallel Programs, part 1

Concurrent and Multicore Programming

Department of Computer Science and Engineering Yonghong Yan

yan@oakland.edu

www.secs.oakland.edu/~yan

Topics (Part 1)

- Introduction
- Principles of parallel algorithm design (Chapter 3)
- Programming on shared memory system (Chapter 7)
 - OpenMP
 - PThread, mutual exclusion, locks, synchronizations
 - Cilk/Cilkplus (To be covered after lecture 11 and 12)
- Analysis of parallel program executions (Chapter 5)
 - Performance Metrics for Parallel Systems
 - Execution Time, Overhead, Speedup, Efficiency, Cost
 - Scalability of Parallel Systems
 - Use of performance tools

Topic Overview

- Introduction
 - Performance Metrics for Parallel Systems
 - Execution Time, Overhead, Speedup, Efficiency, Cost
 - Amdahl's Law
 - Scalability of Parallel Systems
 - Isoefficiency Metric of Scalability
 - Minimum Execution Time and Minimum Cost-Optimal Execution Time
 - Asymptotic Analysis of Parallel Programs
 - Other Scalability Metrics
 - Scaled speedup, Serial fraction

Analytical Modeling: Sequential Execution Time

- The execution time of a sequential algorithm
 - Asymptotic execution time as a function of input size
 - identical on any serial platform

}

- Big-O Notation
 - O(1)
 - O(N)
 - $O(N^2)$
 - O(NlogN)

- O(N³)

int n = A.length; for (int i = 0; i < n; i++) { for (int j = 0; j < n; j++) { sum = 0; for k = 0; k < n; k++) sum = sum + A[i][k]*B[k][j]; C[i][j] = sum; }

Example: Matrix Multiplication

<--- cost = c0, 1 time <--- cost = c1, n times <--- cost = c2, n*n times <--- cost = c3, n*n times <--- cost = c4, n*n*n times <--- cost = c5, n*n*n times <--- cost = c6, n*n times

Count the number of operations

Total number of operations: = c0 + c1*n + (c2+c3+c6)*n*n + (c4+c5)*n*n*n= $O(n^3)$

Parallel Execution Time

- Parallel execution time is a function of:
 - input size
 - number of processors (machine performance)
 - communication parameters of target platform (network)
- Implications
 - must analyze parallel program for a particular target platform
 - communication characteristics can differ by more than O(1)
 - parallel program = parallel algorithm + platform

Overhead in Parallel Programs

If using two processors, shouldn't a program run twice as fast?

- Not all parts of the program are parallelized
- A number of overheads incurred when doning it in parallel

Overheads in Parallel Programs

- Interprocess interactions:
 - Communication
 - Data movement
 - Synchronization/contention
- Idling:
 - Load imbalance
 - Synchronization
 - Sync itself has overhead
 - Serial components

- computation not performed by the serial version
 - E.g. replicated computation to minimize communication.

task 0		
task 1		
task 2		
task 4		
work		-
wait	time	

Topic Overview

- Introduction
- Performance Metrics for Parallel Systems
 - Execution Time, Overhead, Speedup, Efficiency, Cost
 - Amdahl's Law
 - Scalability of Parallel Systems
 - Isoefficiency Metric of Scalability
 - Minimum Execution Time and Minimum Cost-Optimal Execution Time
 - Asymptotic Analysis of Parallel Programs
 - Other Scalability Metrics
 - Scaled speedup, Serial fraction

Performance Metrics: Execution Time

Does a parallel program run faster than its sequential version?

- Serial time: T_s
 - time elapsed between the start and end of serial execution
- Parallel time: **T**_p
 - time elapsed between first process start and last process end

Performance Metrics: Parallel Overhead

What are the cost to enable parallelism?

- T_{all} : the total time collectively spent by all the processors - $T_{all} = p T_p$ (p is the number of processors).
- *T*_{*s*} : serial execution time
- Total parallel overhead T_o
 - $T_o = T_{all} T_s$ $T_o = p T_P T_s$

Performance Metrics: Speedup

What is the benefit from increasing parallelism?

- Speedup (S): T_s / T_P
 - The ratio of the time taken to solve a problem on a single processor to the time required to solve the same problem on a parallel computer with p identical processing elements.

Performance Metrics: Example

Adding *n* numbers

- Sequential: Θ (*n*)
- Using *n* processing elements.
 - If *n* is a power of two, in log *n* steps by propagating partial sums up a logical binary tree of processors.

Performance Metrics: Example – cont'd

 Σⁱ denotes the sum of numbers with consecutive labels from *i* to *j*

10 15 0 1 2 3 4 5 6 7 8 9 10 11 12 13 (14) (15) (a) Initial data distribution and the first communication step (b) Second communication step (c) Third communication step (d) Fourth communication step

(d) Fourth communication step Σ_0^{15} (0) (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14) (15)

- Analysis:
 - An addition takes t_c
 - Communication takes $t_s + t_w$
 - $t_c \text{ and } (t_s + t_w) \text{ are constant}$
- Sequential and parallel time:
 - $T_{s} = \Theta (n)$ $- T_{p} = \Theta (\log n)$
- Speedup S:
 S = ⊙ (n / log n)

Performance Metrics: Speedup

- The yardstick: T_s
 - Many serial algorithms available, each with different asymptotic execution time
 - The parallelization of those algorithms varies too

Operation	Input	Output	Algorithm	Complexity
Matrix multiplication	Two <i>n×n</i> matrices		Schoolbook matrix multiplication	<i>O</i> (<i>n</i> ³)
			Strassen algorithm	<i>O</i> (<i>n</i> ^{2.807})
			Coppersmith–Winograd algorithm	<i>O</i> (<i>n</i> ^{2.376})
			Optimized CW-like algorithms ^[14] ^[15] ^[16]	<i>O</i> (<i>n</i> ^{2.373})

http://en.wikipedia.org/wiki/Computational_complexity_of_mathematical_operations

Speedup Example: Sorting

Odd-even sort "parallel bubble sort"

```
procedure bubbleSort( A : vector)
n := length( A )
do
    swapped := false
n := n - 1
    for each i in 0 to n - 1
        if A[i] > A[i + 1]
            swap(A[i], A[i + 1]); swapped := true
while (swapped)
end procedure
```

```
procedure oddEvenSort( A : vector)
n := length( A )
do
    swapped := false
    for each i in 0 to n - 1 by 2 in parallel
        if A[i] > A[i + 1]
            swap(A[i], A[i + 1]); swapped := true
        for each i in 1 to n - 1 by 2 in parallel
            if A[i] > A[i + 1]
                swap(A[i], A[i + 1]); swapped := true
            while (swapped)
end procedure
```

http://en.wikipedia.org/wiki/Sorting_algorithm

Speedup Example: Sorting – cont'd

- The serial execution time for bubblesort:150 seconds.
- Odd-even parallel bubble sort: is 40 seconds.
- The speedup: 150/40 = 3.75.
 - But is this really a fair assessment of the system?
- What if serial quicksort only took 30 seconds?
- In this case, the speedup is 30/40 = 0.75
 - A more realistic assessment
- Always consider the best sequential program as baseline
 - Not even the parallel program running with 1 PE
 - We do this in our assignment

Performance Metrics: Speedup Bounds

- Speedup, in theory, should be upper bounded by *p*
 We can only expect a *p*-fold speedup if we use *p* times as many resources.
- Theoretically, a speedup greater than *p* is possible only if each processor spends less than *T_s* / *p* time solving the problem.
 Violate the rules of using the best sequential as baseline
- Speedups:
 - Linear
 - Sublinear
 - Superlinear
- In practice, superlinear is possible

Performance Metrics: Superlinear Speedups

Parallel algorithm does less work than its serial versions

- Searching node 'S' in an unstructured tree
- Parallel with two PEs using depth-first traversal
 - PE 0 searching the left subtree expands only the shaded nodes before the solution is found by PE 1
 - PE 1 searching the right subtree

Performance Metrics: Superlinear Speedups

Resource-based superlinearity

- Parallel execution:
 - The higher aggregate cache/memory bandwidth can result in better cache-hit ratios, and therefore superlinearity.
- Example: A processor with 64KB of cache yields an 80% hit ratio. If two processors are used, since the problem size/ processor is smaller, the hit ratio goes up to 90%. Of the remaining 10% access, 8% come from local memory and 2% from remote memory.
- If DRAM access time is 100 ns, cache access time is 2 ns, and remote memory access time is 400ns, this corresponds to a speedup of 2.43!

Performance Metrics: Efficiency

• Fraction of time for which a process perform useful work

$$E = S / p = T_S / (p T_P)$$

- Bounds
 - Theoretically, $0 \le E \le 1$
 - The larger, the better
 - E=1: 0 overhead
 - Practically, E > 1 if superlinear speedup is achieved
- Previous example: adding N numbers using N PEs
 - Speedup: S = Θ (N / log N)
 - Efficiency: $E = S/N = \Theta (N / \log N) / N = \Theta (1 / \log N)$
 - Very low when N is big

Example: Edge Detection

- Apply 3x3 template to each pixel of the images
 - Stencil computation
- Serial performance: $T_s = 9t_c n^2$
 - Each pixel has 9 multiply-add (MA)
 - Each MA takes constant **t**_c time
 - An $\mathbf{n} \times \mathbf{n}$ image for \mathbf{n}^2 pixels

http://en.wikipedia.org/wiki/Edge_detection

-1	0	1
-2	0	2
-1	0	1

-1	-2	1
0	0	0
-1	2	1

21 (b)

Edge Detection: Parallel Version

- Partitions the image equally into vertical segments, each with n² / p pixels.
- Computation by each PE: $T_s = 9 t_c n^2 / p$
- Communications by each PE: 2(t_s + t_wn)
 - The boundary of each segment is **2n** pixels
 - Two boundaries: left and right
 - Each boundary exchange takes t_s + t_wn
- Parallel performance: $T_P = 9t_c \frac{n^2}{p} + 2(t_s + t_w n)$

Edge Detection: Parallel Speedup and Efficiency

- Serial performance: $T_s = 9t_c n^2$
- Parallel performance: $T_P = 9t_c \frac{n^2}{p} + 2(t_s + t_w n)$
- Speedup: $S = T_s/T_p$

$$S = \frac{9t_c n^2}{9t_c \frac{n^2}{p} + 2(t_s + t_w n)}$$

Efficiency: E = S/p

$$E = \frac{1}{1 + \frac{2p(t_s + t_w n)}{9t_c n^2}}$$

Performance Metrics: Cost

Product of parallel execution time and number of PEs: p^*T_p

- The total amount of time by all PEs to solve the problem
- Cost-optimal : parallel cost ≅ serial cost
 - ~0 overhead
 - E = O(1), since $E = T_S / p^* T_P$

Adding n numbers on n PEs

- Serial performance: T_s = Θ(n)
- Parallel performance: T_P = Θ(log n)
- Cost: *p T_P* = Θ(*n* log *n*)
- Optimal or not:
 - $E = n/n^* \log n = \Theta(1/\log n)$
 - Not cost-optimal.
- Why not optimal
 - Waste of CPU cycles after step 1
 - Only core 0 is doing all the useful work in logN times

Cost: Impact of Non-Cost-Optimality

- A parallel sorting algorithm uses n PEs to sort a list: $(\log n)^2$
- Serial sorting: *n* log *n*
- Speedup S = n / log n , Efficiency E = 1 / log n
- Cost: $p T_p = n (\log n)^2$
 - Not cost optimal by a factor of *log n*.
- If p < n, assigning n tasks to p PEs: $T_p = n (\log n)^2 / p$.
- Speedup: S = (n log n) / (n (log n)² / p) = p / log n.
- For a given $p, n \uparrow \rightarrow s \lor$
 - Speedup decreases as we increase problem sizes
- Observation:
 - Non-cost-optimality introduce significant cost (overhead)
 - Cost-optimality is important in practice

Effect of Granularity on Performance

- Scaling down a parallel program
 - Reduce the number of PEs than the max possible
 - Increase granularity \rightarrow Improve parallel efficiency
 - Naïve scaling-down
 - consider each original processor as virtual PEs
 - map virtual PEs to scaled-down number of PEs
- Impacts:
 - # PE decreases by a factor of n / p
 - computation for each PE increases by a factor of n / p
 - communication cost depends upon what the VPEs do

Sum *n* Numbers on *p* PEs

- P < N
- P and n are power of 2
- Use parallel algorithm for n (virtual) PEs
 - Assign each PE to n / p virtual Pes
- Simulation: Adding 16 numbers on 4 PEs

Sum Reduction: 1

Sum Reduction: 2

Sum Reduction: 3

Final result

Sum Reduction Example

- Each of the *p* PEs is now assigned *n* / *p* virtual PEs.
- The first log p of the log n steps of the original algorithm are simulated in (n / p) log p steps on p PEs
- Subsequent log n log p steps do not require any communication
 - Local processing
- The overall parallel execution time: Θ ((n / p) log p).
- The cost is Θ (*n* log *p*)
 - Asymptotically higher than the sequential time $\Theta(n)$
- Therefore, the parallel system is not cost-optimal.

Cost-optimal Way of Scaling Down: 1

- Each PE locally adds its *n / p* numbers in time Θ (*n / p*)
- The *p* partial sums on *p* PEs can be added in time Θ(*log p*).

Cost-optimal Way of Scaling Down: 2

• Parallel execution time: $T_P = \Theta(n/p + \log p),$

• Parallel cost: $p * T_p = \Theta(n + p \log p)$

• Cost optimal as long as $n = \Omega(p \log p)$

 $-f = \Omega(g)$: f dominate g in some limit

- E.g. adding 10,000,000 (n) number using 14 PEs

Topic Overview

- Introduction
- Performance Metrics for Parallel Systems
 - Execution Time, Overhead, Speedup, Efficiency, Cost
- Amdahl's Law
 - Scalability of Parallel Systems
 - Isoefficiency Metric of Scalability
 - Minimum Execution Time and Minimum Cost-Optimal Execution Time
 - Asymptotic Analysis of Parallel Programs
 - Other Scalability Metrics
 - Scaled speedup, Serial fraction

Amdahl's Law

Amdahl's law for overall speedup

Overall Speedup =
$$\frac{1}{(1-F) + \frac{F}{S}}$$

F = The fraction enhanced

S = The speedup of the enhanced fraction

• The word "law" is often used by computer scientists when it is an observed phenomena (e.g, Moore's Law) and not a theorem that has been proven in a strict sense.

Gene Amdahl, "Validity of the single processor approach to achieving large-scale computing capabilities", AFIPS Conference Proceedings, 30:483-485, 1967.

Using Amdahl's Law

Overall speedup if we make 90% of a program run 10 times faster.

F = 0.9 S = 10
Overall Speedup =
$$\frac{1}{(1-0.9) + \frac{0.9}{10}} = \frac{1}{0.1 + 0.09} = 5.26$$

Overall speedup if we make 80% of a program run 20% faster.

F = 0.8 S = 1.2
Overall Speedup =
$$\frac{1}{(1-0.8) + \frac{0.8}{1.2}} = \frac{1}{0.2 + 0.66} = 1.153$$

Amdahl's Law for Parallelism

- The enhanced fraction F is through parallelism, perfect parallelism with linear speedup
 - The speedup for F is N for N processors
- Overall speedup

$$S(N) = \frac{T_s}{T_p} = \frac{T_s}{(1-F) * T_s} + \frac{F * T_s}{N} = \frac{1}{1-F + \frac{F}{N}}$$

- Speedup upper bound (when $N \rightarrow \infty$): $S(N) \leq \frac{1}{1-F}$
 - 1-F: the sequential portion of a program

Amdahl's Law for Parallelism

Amdahl's Law Usefulness

- Amdahl's law is valid for traditional problems and has several useful interpretations.
- Some textbooks show how Amdahl's law can be used to increase the efficient of parallel algorithms
 - E = (1/((1-F)+F/N))/N = 1/(N(1-F)+F)
 - If we increase N, and the problem size in certain rate(so F increased), we can still keep E constant
- Amdahl's law shows that efforts required to further reduce the fraction of the code that is sequential may pay off in large performance gains.
- Hardware that achieves even a small decrease in the percent of things executed sequentially may be considerably more efficient.

Amdahl's Law for Parallelism

- However: for long time, Amdahl's law was viewed as a fatal flaw to the usefulness of parallelism
 - Focuses a particular algorithm and problem sizes, and does not consider that other algorithms with more parallelism may exist, or scalability issues
 - Amdahl's law applies only to "standard" problems were superlinearity can not occur
 - **Gustafon's Law:** The proportion of the computations that are sequential normally decreases as the problem size increases.
- Currently, it is generally accepted by parallel computing professionals that Amdahl's law is not a serious limit the benefit and future of parallel computing.

Compilers and More: Is Amdahl's Law Still Relevant? Michael Wolfe, http://www.hpcwire.com/2015/01/22/compilers-amdahls-law-still-relevant/, 01/22/2045

References

- Adapted from slides "Principles of Parallel Algorithm Design" by Ananth Grama
- "Analytical Modeling of Parallel Systems", Chapter 5 in Ananth Grama, Anshul Gupta, George Karypis, and Vipin Kumar, Introduction to Parallel Computing", "Addison Wesley, 2003.

Project Ideas and Teams

- Performance measurement and analysis based on PAPI performance counters
 - how OpenMP schedule loop chunks
 - how OpenMP schedule tasks
- Application development combining the use of different programming model (OpenMP, MPI and GPU)
 - Artificial intelligence and deep learning application
 - Computer vision
 - Scientific simulation
- New parallel programming experiments: Chapel
- New computing paradigm: neuromophic
- Other topics