
Lecture	14:	Mutual	Exclusion,	Locks	and	
Barrier	with	PThreads	

Concurrent	and	Mul=core	Programming	
	

Department	of	Computer	Science	and	Engineering	
Yonghong	Yan	

yan@oakland.edu	
www.secs.oakland.edu/~yan	

	

1	

Review	and	Overview		

•  Thread	basics	and	the	POSIX	Thread	API		
–  Process	vs	threads	

•  Thread	creaHon,	terminaHon	and	joining	
–  pthread_create,	pthread_join	and	pthread_exit	
–  Boxing	mulHple	arguments	in	struct	to	pass	to	thread	funcHon	

•  Thread	safety	
•  Synchroniza=on	primi=ves	in	Pthreads	

–  Mutual	exclusion,	locks	and	barrier	

2	

Data	Racing	in	a	Mul=thread	Program	
Consider:		
/* each thread to update shared variable
best_cost */ !

!
if (my_cost < best_cost) !

best_cost = my_cost;		
	

–  two	threads,		
–  the	iniHal	value	of	best_cost	is	100,		
–  the	values	of	my_cost	are	50	and	75	for	threads	t1	and	t2	
!
!

best_cost = my_cost;		
	
	
•  The	value	of	best_cost	could	be	50	or	75!		
•  The	value	75	does	not	correspond	to	any	serializaHon	of	the	two	

threads.		

3	

T1	 T2	

if (my_cost (50) < best_cost)!
 !

best_cost = my_cost;		

if (my_cost (75) < best_cost)!
!

best_cost = my_cost;		

Same	Situa=on	for	Reading/Upda=ng	a	Single	
Variable	

int	count	=	0;	
int	*	cp	=	&count;	
….		
cp++;	/	by	two	threads	*/	

4	Pictures	from	wikipedia:	h[p://en.wikipedia.org/wiki/Race_condiHon	

Why	this	happens	

Read/write	to	the	same	loca=on	by	the	two	
threads	interleaved	

5	

General	Solu=on:	Cri=cal	Sec=on	and	Mutual	
Exclusion		

•  CriHcal	secHon	=	a	segment	that	must	be	executed	by	
only	one	thread	at	any	Hme	
 !
 !
!
	

•  Mutex	locks	protect	criHcal	secHons	in	Pthreads	
–  locked	and	unlocked	
–  At	any	point	of	Hme,	only	one	thread	can	acquire	a	mutex	lock	

•  Using	mutex	locks	
–  request	lock	before	execuHng	criHcal	secHon	
–  enter	criHcal	secHon	when	lock	granted	
–  release	lock	when	leaving	criHcal	secHon	

if (my_cost < best_cost)!
 best_cost = my_cost;		

6	

Mutual	Exclusion	using	Pthread	Mutex	
int pthread_mutex_lock (pthread_mutex_t *mutex_lock); !
int pthread_mutex_unlock (pthread_mutex_t *mutex_lock); !
int pthread_mutex_init (pthread_mutex_t !*mutex_lock,!
 const pthread_mutexattr_t *lock_attr);!

pthread_mutex_t	cost_lock;		
int	main()	{		
									...		
				pthread_mutex_init(&cost_lock,	NULL);		
				pthread_create(&thhandle,	NULL,	find_best,	…)	
									...		
}		
void	*find_best(void	*list_ptr)	{		
				...		
				pthread_mutex_lock(&cost_lock);	//	enter	CS	
				if	(my_cost	<	best_cost)		
								best_cost	=	my_cost;			
				pthread_mutex_unlock(&cost_lock);	//	leave	CS	
}		

													Cri=cal	Sec=on	

pthread_mutex_lock	blocks	the	calling	
thread	if	another	thread	holds	the	lock	
	
When	pthread_mutex_lock	call	returns	
1.  Mutex	is	locked,	enter	CS	
2.  Any	other	locking	a[empt	(call	to	

thread_mutex_lock)	will	cause	the	
blocking	of	the	calling	thread	

	
When	pthread_mutex_unlock	returns	
1.  Mutex	is	unlocked,	leave	CS	
2.  One	thread	who	blocks	on	

thread_mutex_lock	call	will	acquire	
the	lock	and	enter	CS	

	
7	

Producer-Consumer	Using	Locks		
Constrains:		
•  The	producer	threads	

–  must	not	overwrite	the	shared	buffer	when	the	previous	task	
has	not	been	picked	up	by	a	consumer	thread.		

•  The	consumer	threads	
–  must	not	pick	up	tasks	unHl	there	is	something	present	in	the	

shared	data	structure.		
–  Individual	consumer	thread	should	pick	up	tasks	one	at	a	Hme	

Conten=on:	
–  Between	producers	
–  Between	consumers	
–  Between	producers	and	consumers	

8	

Producer-Consumer	Using	Locks		
pthread_mutex_t task_queue_lock;
int task_available;
main() {

....
task_available = 0;
pthread_mutex_init(&task_queue_lock, NULL);
....

}

9	

void *producer(void *producer_thread_data) {

 while (!done()) {
 inserted = 0;
 create_task(&my_task);
 while (inserted == 0) {
 pthread_mutex_lock(&task_queue_lock);
 if (task_available == 0) {
 insert_into_queue(my_task);
 task_available = 1; inserted = 1;
 }
 pthread_mutex_unlock(&task_queue_lock);
 }
 }
}

void *consumer(void *consumer_thread_data) {
 int extracted;
 struct task my_task;
 while (!done()) {
 extracted = 0;
 while (extracted == 0) {
 pthread_mutex_lock(&task_queue_lock);
 if (task_available == 1) {
 extract_from_queue(&my_task);
 task_available = 0; extracted = 1;
 }
 pthread_mutex_unlock(&task_queue_lock);
 }
 process_task(my_task);
 }
}

	Cri=cal	
Sec=on	

Note	the	purpose	of	inserted	and	
	extraced	variables	

Three	Types	of	Mutexes		

•  Normal	
–  Deadlocks	if	a	thread	already	has	a	lock	and	tries	a	second	lock	on	it.		

•  Recursive	
–  Allows	a	single	thread	to	lock	a	mutex	as	many	Hmes	as	it	wants.		

•  It	simply	increments	a	count	on	the	number	of	locks.		
–  A	lock	is	relinquished	by	a	thread	when	the	count	becomes	zero.		

•  Error	check	
–  Reports	an	error	when	a	thread	with	a	lock	tries	to	lock	it	again	(as	

opposed	to	deadlocking	in	the	first	case,	or	granHng	the	lock,	as	in	
the	second	case).		

•  The	type	of	the	mutex	can	be	set	in	the	a[ributes	object	before	
it	is	passed	at	Hme	of	iniHalizaHon	
–  pthread_mutex_a[r_init	

10	

Overheads	of	Locking		

11	

•  Locks	enforce	serializaHon	
–  Thread	must	execute	criHcal	secHons	one	amer	another		

•  Large	criHcal	secHons	can	lead	to	significant	performance	
degradaHon.		

•  Reduce	the	blocking	overhead	associated	with	locks	using:		

 int pthread_mutex_trylock (
 pthread_mutex_t *mutex_lock);
	

–  acquire	lock	if	available	
–  return	EBUSY	if	not	available	
–  enables	a	thread	to	do	something	else	if	lock	unavailable	

	
•  pthread	trylock	typically	much	faster	than	lock	on	certain	systems	

–  It	does	not	have	to	deal	with	queues	associated	with	locks	for	mulHple	
threads	waiHng	on	the	lock.		

12	

Condi=on	Variables	for	Synchroniza=on	

A	condi=on	variable:	associated	with	a	predicate	and	a	mutex	
–  A	sync	variable	for	a	condiHon,	e.g.	mybalance	>	500	

	
•  A	thread	can	block	itself	unHl	a	condiHon	becomes	true	

–  When	blocked,	release	mutex	so	others	can	acquire	it	
•  When	a	condiHon	becomes	true,	observed	by	another	
thread,	the	condiHon	variable	is	used	to	signal	other	
threads	who	are	blocked	

•  A	condiHon	variable	always	has	a	mutex	associated	with	
it.		
–  A	thread	locks	this	mutex	and	tests	the	condiHon	

13	

Condi=on	Variables	for	Synchroniza=on	
/*	the	opaque	data	structure	*/	
pthread_cond_t!
	
/*	ini=aliza=on	and	destroying	*/	
int pthread_cond_init(pthread_cond_t *cond, !
 const pthread_condattr_t *attr); !

int pthread_cond_destroy(pthread_cond_t *cond); !
!
/*	block	and	release	lock	un=l	a	condi=on	is	true	*/	
int pthread_cond_wait(pthread_cond_t *cond, !
 pthread_mutex_t *mutex);!
int pthread_cond_timedwait(pthread_cond_t *cond, !
pthread_mutex_t *mutex, const struct timespec *wtime);!
 !
/*	signal	one	or	all	wai=ng	threads	that	condi=on	is	true	*/	
int pthread_cond_signal(pthread_cond_t *cond); !
int pthread_cond_broadcast(pthread_cond_t *cond); 	

pthread_cond_t cond_queue_empty, cond_queue_full; !
pthread_mutex_t task_queue_cond_lock; !
int task_available; !
/* other data structures here */ !
!
main() { !
/* declarations and initializations */ !
task_available = 0; !
pthread_cond_init(&cond_queue_empty, NULL); !
pthread_cond_init(&cond_queue_full, NULL); !
pthread_mutex_init(&task_queue_cond_lock, NULL); !
/* create and join producer and consumer threads */ !

} !

14	

Producer-Consumer	Using	Condi=on	Variables	

•  Two	condiHons:	
•  Queue	is	full:	(task_available	==	1)	ß	cond_queue_full	
•  Queue	is	empty:	(task_available	==	0)	ß	cond_queue_empty	

•  A	mutex	for	protecHng	accessing	the	queue	(CS):	task_queue_cond_lock	

void *producer(void *producer_thread_data) { !
int inserted; !
while (!done()) { !

create_task(); !
pthread_mutex_lock(&task_queue_cond_lock);!
 !
while (task_available == 1) !
pthread_cond_wait(&cond_queue_empty,!
 &task_queue_cond_lock);!
 !

insert_into_queue(); !
task_available = 1; CS!
!
pthread_cond_signal(&cond_queue_full);!
 !
pthread_mutex_unlock(&task_queue_cond_lock); !

} !
} !

15	

Producer-Consumer	Using	Condi=on	Variables		

Release	mutex	(unlock)	
when	blocked/wait	

Acquire	mutex	(lock)	when	
awaken	

Producer:		
1.   Wait	for	queue	to	become	empty,	no=fied	by	consumer	through	cond_queue_empty	
2.   insert	into	queue	
3.   Signal	consumer	through	cond_queue_full	

1	

2	

3	

void *consumer(void *consumer_thread_data) { !
while (!done()) { !
pthread_mutex_lock(&task_queue_cond_lock);!
 !
while (task_available == 0) !

pthread_cond_wait(&cond_queue_full, !
&task_queue_cond_lock); !
!

my_task = extract_from_queue(); !
task_available = 0; !
!
pthread_cond_signal(&cond_queue_empty);!
 !
pthread_mutex_unlock(&task_queue_cond_lock); !
process_task(my_task); !

} !
} !

16	

Consumer:		
1.   Wait	for	queue	to	become	full,	no=fied	by	producer	through	cond_queue_full	
2.   Extract	task	from	queue		
3.   Signal	producer	through	cond_queue_empty	

Release	mutex	(unlock)	
when	blocked/wait	

Acquire	mutex	(lock)	when	
awaken	

Producer-Consumer	Using	Condi=on	Variables		

1	

2	

3	

Thread	and	Synchroniza=on	A^ributes		

•  Three	major	objects	
–  pthread_t	
–  pthread_mutex_t	
–  pthread_cond_t	

•  Default	a[ributes	when	being	created/iniHalized	
–  NULL	

•  An	a[ributes	object	is	a	data-structure	that	describes	enHty	
(thread,	mutex,	condiHon	variable)	properHes.		
–  Once	these	properHes	are	set,	the	a[ributes	object	can	be	

passed	to	the	method	iniHalizing	the	enHty.		
–  Enhances	modularity,	readability,	and	ease	of	modificaHon.		

17	

A^ributes	Objects	for	Threads		

18	

•  IniHalize	an	a[ribute	objects	using	
pthread_attr_init!

•  Individual	properHes	associated	with	the	a[ributes	
object	can	be	changed	using	the	following	funcHons:		
pthread_attr_setdetachstate, !
pthread_attr_setguardsize_np, !
pthread_attr_setstacksize, !
pthread_attr_setinheritsched,!
pthread_attr_setschedpolicy, and!
pthread_attr_setschedparam !

A^ributes	Objects	for	Mutexes		

19	

•  IniHalize	an	a[ributes	object	using	funcHon:		
pthread_mutexattr_init.		

•  pthread_mutexa^r_se^ype_np	for	seqng	the	mutex	type	
pthread_mutexa^r_se^ype_np	(pthread_mutexa^r_t	
*a^r,int	type); !

•  Specific	types:		
–  PTHREAD_MUTEX_NORMAL_NP		
–  PTHREAD_MUTEX_RECURSIVE_NP	
–  PTHREAD_MUTEX_ERRORCHECK_NP		

A^ributes	Objects	for	Condi=on	Variable	

•  IniHalize	an	a[ribute	object	using	
pthread_condattr_init	

	
•  int 	pthread_conda^r_setpshared(pthread_conda^r_t	
*ca^r,	int	pshared)	to	specifies	the	scope	of	a	condiHon	
variable	to	either	process	private	(intraprocess)	or	system	
wide	(interprocess)	via	pshared	
–  PTHREAD_PROCESS_SHARED	
–  PTHREAD_PROCESS_PRIVATE	

20	

•  Pthread	Mutex	and	Condi=on	Variables	are	two	basic	sync	
operaHons.		

•  Higher	level	constructs	can	be	built	using	basic	constructs.		
–  Read-write	locks	
–  Barriers	

•  Pthread	has	its	corresponding	implementaHon	
–  pthread_rwlock_t	
–  pthread_barrier_t	

•  We	will	discuss	our	own	implementaHons	

21	

Composite	Synchroniza=on	Constructs	

22	

Read-Write	Locks		

•  Concurrent	access	to	data	structure:	
–  Read	frequently	but	
–  Wri[en	infrequently	

•  Behavior:	
–  Concurrent	read:	A	read	request	is	granted	when	there	are	

other	reads	or	no	write	(pending	write	request).		
–  Exclusive	write:	A	write	request	is	granted	only	if	there	is	no	

write	or	pending	write	request,	or	reads.		
•  Interfaces:	

–  The	rw	lock	data	structure:	struct	mylib_rwlock_t	
–  Read	lock:	mylib_rwlock_rlock	
–  write	lock:	mylib_rwlock_wlock	
–  Unlock:	mylib_rwlock_unlock.		

•  Two	types	of	mutual	exclusions	
–  0/1	mutex	for	protecHng	access	to	write	
–  Counter	mutex	(semaphore)	for	counHng	read	access	

•  Component	sketch	
–  a	count	of	the	number	of	readers,		
–  0/1	integer	specifying	whether	a	writer	is	present,		
–  a	condiHon	variable	readers_proceed	that	is	signaled	when	readers	

can	proceed,		
–  a	condiHon	variable	writer_proceed	that	is	signaled	when	one	of	the	

writers	can	proceed,		
–  a	count	pending_writers	of	pending	writers,	and		
–  a	pthread_mutex_t	read_write_lock	associated	with	the	shared	data	

structure	

23	

Read-Write	Locks		

24	

Read-Write	Locks	

typedef struct { !
int readers; !
int writer; !
pthread_cond_t readers_proceed; !
pthread_cond_t writer_proceed; !
int pending_writers; !
pthread_mutex_t read_write_lock; !

} mylib_rwlock_t; !
!
void mylib_rwlock_init (mylib_rwlock_t *l) { !
l->readers=0; l->writer=0; l->pending_writers=0; !
pthread_mutex_init(&(l->read_write_lock), NULL); !
pthread_cond_init(&(l->readers_proceed), NULL); !
pthread_cond_init(&(l->writer_proceed), NULL); !

} !

	

Read-Write	Locks		

void mylib_rwlock_rlock(mylib_rwlock_t *l) { !
pthread_mutex_lock(&(l->read_write_lock)); !
!
while ((l->pending_writers > 0) || (l->writer > 0)) !

pthread_cond_wait(&(l->readers_proceed), !
&(l->read_write_lock)); !
!

l->readers ++; !
!
pthread_mutex_unlock(&(l->read_write_lock)); !

} !

25	

Reader	lock:		
1.   if	there	is	a	write	or	pending	writers,	perform	condi=on	wait,	
2.   else	increment	count	of	readers	and	grant	read	lock	

1	

2	

Read-Write	Locks		
void mylib_rwlock_wlock(mylib_rwlock_t *l) { !
pthread_mutex_lock(&(1->read_write_lock)); !
1->pending_writers ++; !
!
while ((1->writer > 0) || (1->readers > 0)) { !

pthread_cond_wait(&(1->writer_proceed), !
 &(1->read_write_lock));!

} !
!

1->pending_writers --; !
1->writer ++; !
!
pthread_mutex_unlock(&(1->read_write_lock)); !

} !

26	

Writer	lock:		
1.   If	there	are	readers	or	writers,	increment	pending	writers	

count	and	wait.		
2.   On	being	woken,	decrement	pending	writers	count	and	

increment	writer	count		

1	

2	

Read-Write	Locks		

void mylib_rwlock_unlock(mylib_rwlock_t *l) { !
 pthread_mutex_lock(&(1->read_write_lock)); !
 if (1->writer > 0) /* only writer */!
 1->writer = 0; !

 else if (1->readers > 0) /* only reader */!
 1->readers --; !

 pthread_mutex_unlock(&(1->read_write_lock)); !
!
 if ((1->readers == 0) && (1->pending_writers > 0)) !
 pthread_cond_signal(&(1->writer_proceed)); !

 else if (1->readers > 0) !
 pthread_cond_broadcast(&(1->readers_proceed)); !

} !

27	

Reader/Writer	unlock:		
1.   If	there	is	a	write	lock	then	unlock	
2.   If	there	are	read	locks,	decrement	count	of	read	locks.		
3.   If	the	read	count	becomes	0	and	there	is	a	pending	writer,	no=fy	writer		
4.   Otherwise	if	there	are	pending	readers,	let	them	all	go	through		

1	

2	

3	

4	

Barrier	

•  A	barrier	holds	one	or	mulHple	threads	unHl	all	
threads	parHcipaHng	in	the	barrier	have	reached	the	
barrier	point		

	

28	

Barrier	

•  Needs	a	counter,	a	mutex	and	a	condi=on	variable	
–  The	counter	keeps	track	of	the	number	of	threads	that	have	

reached	the	barrier.		
•  If	the	count	is	less	than	the	total	number	of	threads,	the	
threads	execute	a	condiHon	wait.		

–  The	last	thread	entering	(master)	wakes	up	all	the	threads	
using	a	condiHon	broadcast.	

29	

typedef struct {!
 int count;!
pthread_mutex_t count_lock;!
pthread_cond_t ok_to_proceed;!

} mylib_barrier_t;!
!
void mylib_barrier_init(mylib_barrier_t *b) {!
b->count = 0;!
pthread_mutex_init(&(b->count_lock), NULL);!
pthread_cond_init(&(b->ok_to_proceed), NULL);!

}!

Barriers		

void mylib_barrier (mylib_barrier_t *b, int num_threads) {!
pthread_mutex_lock(&(b->count_lock));!
!
b->count ++;!
if (b->count == num_threads) {!

b->count = 0;!
pthread_cond_broadcast(&(b->ok_to_proceed));!

} else!
while (pthread_cond_wait(&(b->ok_to_proceed),!
&(b->count_lock)) != 0);!
!

pthread_mutex_unlock(&(b->count_lock));!
}!

30	

Barrier	
1.   Each	thread	increments	the	counter	and	check	whether	all	reach	
2.   The	thread	(master)	who	detect	that	all	reaches	signal	others	to	proceed	
3.   If	not	all	reach,	the	thread	waits	

1	

2	

3	

Flat/Linear	vs	Tree/Log	Barrier	

31	

•  Linear/Flat	barrier.	
–  O(n)	for	n	thread	
–  A	single	master	to	collect	informaHon	of	all	threads	and	noHfy	them	to	

conHnue	
•  Tree/Log	barrier	

–  Organize	threads	in	a	tree	logically	
–  MulHple	submaster	to	collect	and	noHfy	
–  RunHme	grows	as	O(log	p).	

Barrier	

•  ExecuHon	Hme	of	1000	sequenHal	and	logarithmic	barriers	as	a	funcHon	of	
number	of	threads	on	a	32	processor	SGI	Origin	2000.	

32	

References	

•  Adapted	from	slides	“Programming	Shared	Address	Space	
Plaxorms”	by	Ananth	Grama.	Bradford	Nichols,	Dick	Bu[lar,	
Jacqueline	Proulx	Farrell.		

•  “Pthreads	Programming:	A	POSIX	Standard	for	Be[er	
MulHprocessing.”	O'Reilly	Media,	1996.	

•  Chapter	7.	“IntroducHon	to	Parallel	CompuHng”	by	Ananth	
Grama,	Anshul	Gupta,	George	Karypis,	and	Vipin	Kumar.	Addison	
Wesley,	2003	

•  Other	pthread	topics	
–  	int	pthread_key_create(pthread_key_t	*key,	void	(*destroy)(void	*))	
–  	int	pthread_setspecific(pthread_key_t	key,	const	void	*value)	
–  	void	*pthread_getspecific(pthread_key_t	key)	

33	

Allevia=ng	Locking	Overhead	(Example)		
/* Finding k matches in a list */ !
void *find_entries(void *start_pointer) { !
/* This is the thread function */ !
struct database_record *next_record; !
int count; !
current_pointer = start_pointer; !
do { !

next_record = find_next_entry(current_pointer); !
count = output_record(next_record); !

} while (count < requested_number_of_records); !
} !
int output_record(struct database_record *record_ptr) { !
int count; !
pthread_mutex_lock(&output_count_lock); !
output_count ++; !
count = output_count; !
pthread_mutex_unlock(&output_count_lock); !
if (count <= requested_number_of_records) !

print_record(record_ptr); !
return (count); !

} ! 34	

Allevia=ng	Locking	Overhead	(Example)		
/* rewritten output_record function */ !
int output_record(struct database_record

*record_ptr) { !
int count; !
int lock_status; !
lock_status=pthread_mutex_trylock(&output_count_lock); !
if (lock_status == EBUSY) { !

insert_into_local_list(record_ptr); !
return(0); !

} else { !
count = output_count; !
output_count += number_on_local_list + 1; !
pthread_mutex_unlock(&output_count_lock); !
print_records(record_ptr, local_list, !

requested_number_of_records - count); !
return(count + number_on_local_list + 1); !

} !
} !

35	

