Lecture 14: Mutual Exclusion, Locks and
Barrier with PThreads

Concurrent and Multicore Programming

Department of Computer Science and Engineering
Yonghong Yan
yan@oakland.edu
www.secs.oakland.edu/~yan

Review and Overview

Thread basics and the POSIX Thread API
— Process vs threads

Thread creation, termination and joining
— pthread_create, pthread_join and pthread_exit
— Boxing multiple arguments in struct to pass to thread function

Thread safety

Synchronization primitives in Pthreads
— Mutual exclusion, locks and barrier

Data Racing in a Multithread Program

Consider:
/* each thread to update shared variable

best cost */

if (my_cost < best cost)
best cost = my cost;

— two threads,
— theinitial value of best cost is 100,
— the values of my cost are 50 and 75 for threads t1 and t2

if (my _cost (50) < best cost) if (my cost (75) < best cost)

best_cost = my_ cost; best_cost = my_ cost;

* Thevalue of best cost could be 50 or 75!

° Trt\e vglue 75 does not correspond to any serialization of the two
threads.

Same Situation for Reading/Updating a Single
Variable

int count =0;
int * cp = &count;

cp++; / by two threads */

Thread 1 Thread 2 Integer value Thread 1 Thread 2 Integer value
0 0
read value - 0 read value — 0
increase value 0 read value |« 0
write back - 1 increase value 0
read value |« 1 increase value 0
increase value 1 write back - 1
write back | — 2 write back | — 1

Pictures from wikipedia: http://en.wikipedia.org/wiki/Race _condition -

Why this happens

Read/write to the same location by the two
threads interleaved

Thread 1 Thread 2 Integer value
0
read value — 0
read value @« 0
increase value 0
increase value 0

write back — 1

write back || — 1

General Solution: Critical Section and Mutual
Exclusion

® Critical section = a segment that must be executed by
only one thread at any time

if (my_cost < best cost) -
best cost = my_ cost;

* Mutex locks protect critical sections in Pthreads
— locked and unlocked
— At any point of time, only one thread can acquire a mutex lock

Acquire the lock

* Using mutex locks
— request lock before executing critical section Critical
— enter critical section when lock granted Section
— release lock when leaving critical section

Release the lock

Mutual Exclusion using Pthread Mutex

int pthread mutex lock (pthread mutex t *mutex lock);
int pthread mutex_unlock (pthread mutex t *mutex lock); f/_‘\\
int pthread mutex_init (pthread mutex t *mutex lock, ',,L/'/

const pthread mutexattr t *lock attr); MUTEX
\/
pthread _mutex_t cost_lock; pthread _mutex_lock blocks the calling
int main() { thread if another thread holds the lock
pthread_mutex_init(&cost_lock, NULL); _When pthread_mutex_lock call returns

1. Mutex is locked, enter CS

2. Any other locking attempt (call to
thread_mutex_lock) will cause the
blocking of the calling thread

pthread_create(&thhandle, NULL, find_best, .,

}

void *find_best(void *list_ptr) {
pthread_mutex_lock(&cost_lock When pthread_mutex_unlock returns

if (my_cost < best_cost) 1. Mutex is unlocked, leave CS
best_cost = my_cost; 2. One thread who blocks on

pthread_mutex_unlock(&cost_lock); // leave thread_mutex_lock call will acquire
} the lock and enter CS

Critical Section

7

Producer-Consumer Using Locks
Constrains:
®* The producer threads

— must not overwrite the shared buffer when the previous task
has not been picked up by a consumer thread.

* The consumer threads

— must not pick up tasks until there is something present in the
shared data structure.

— Individual consumer thread should pick up tasks one at a time

Pobecer] [Gasuner
Contention: \ /
— Between producers ME
— Between consumers Froducer | Consumec
— Between producers and consumers ¢

\3
Ca'\shuw‘)
oducer

N

8

Producer-Consumer Using Locks

pthread_mutex t task _queue_lock;
int task_available;
main() {

task_available = 0;

}

pthread_mutex_init(&task _queue_lock, NULL);

Poducer - C_,

void *producer(void *producer_thread_data) {

while (done()) {
inserted = 0;
create_task(&my_task);
while (inserted == 0) {
pthread_mutex_lock(&task queue lock);
if (task_available == 0) {
insert_into_queue(my_task);
task available = 1; inserted = 1;

}

pthread_mutex_unlock(&task _queue_lock);

} Note the purpose of inserted and
extraced variables

Critical
Section

void *consumer(void *consumer_thread_data) {
int extracted,;

struct task my_task;
while (done()) {
extracted = 0;
while (extracted == 0) {
pthread_mutex_lock(&task queue_lock);
if (task_available == 1) {
extract_from_queue(&my_task);
task available = 0; extracted = 1;

}

pthread_mutex_unlock(&task _queue_lock);

}

process_task(my_task);

—

Three Types of Mutexes

°* Normal
— Deadlocks if a thread already has a lock and tries a second lock on it.

®* Recursive
— Allows a single thread to lock a mutex as many times as it wants.
* It simply increments a count on the number of locks.
— Alock s relinquished by a thread when the count becomes zero.

®* Error check

— Reports an error when a thread with a lock tries to lock it again (as
opposed to deadlocking in the first case, or granting the lock, as in
the second case).

* The type of the mutex can be set in the attributes object before
it is passed at time of initialization
— pthread _mutex_attr_init

10

Overheads of Locking

®* Locks enforce serialization
— Thread must execute critical sections one after another

* large critical sections can lead to significant performance
degradation.

* Reduce the blocking overhead associated with locks using:

int pthread_mutex_trylock (
pthread mutex t *mutex_lock);

— acquire lock if available
— return EBUSY if not available

— enables a thread to do something else if lock unavailable

* pthread trylock typically much faster than lock on certain systems

— It does not have to deal with queues associated with locks for multiple
threads waiting on the lock.

11

Condition Variables for Synchronization

A condition variable: associated with a predicate and a mutex
— A sync variable for a condition, e.g. mybalance > 500

* A thread can block itself until a condition becomes true

— Wt

* Whe
thre
thre

® Acc
it.
— At

lock

\

continue
unlock

Using a Condition Variable

cond
?

v

(unlock)
sleep
(lock)

lock

Y

cond=TRUE

Y

unlock

Y

wakeup

/ ‘
__,.«/

continue

2 it
ranother
| other

ciated with

12

Condition Variables for Synchronization

/* the opaque data structure */
pthread cond t

/* initialization and destroying */
int pthread cond init(pthread cond_t *cond,
const pthread condattr_t *attr);

int pthread cond destroy(pthread cond t *cond);

/* block and release lock until a condition is true */
int pthread cond wait (pthread cond_t *cond,
pthread mutex_t *mutex);
int pthread cond timedwait (pthread cond t *cond,
pthread mutex t *mutex, const struct timespec *wtime);

/* signal one or all waiting threads that condition is true */

int pthread cond_signal (pthread cond_t *cond);

int pthread cond broadcast (pthread cond t *cond); ;
1

Producer-Consumer Using Condition Variables

pthread cond t cond queue empty, cond _queue_ full;
pthread mutex t task queue cond lock;
int task available;

/* other data structures here */

main() {
/* declarations and initializations */
task available = 0;
pthread cond init(&cond queue empty, NULL);
pthread cond init(&cond queue full, NULL);
pthread mutex init(&task queue cond lock, NULL);
/* create and join producer and consumer threads */

* Two conditions:
* Queue is full: (task_available == 1) € cond queue full
* Queue is empty: (task_available == 0) € cond queue empty

* A mutex for protecting accessing the queue (CS): task_queue_cond_lock ,

Producer-Consumer Using Condition Variables

void *producer(v01d *producer thread data) ({
int inserted;
while ('done()) {
create task();
pthread mutex lock(&task queue cond lock);

[while (task _available == Release mutex (unlock)
1 pthread cond wait(&cond_queue_ empty,| When blocked/wait
_ &task queue cond lock); |
— \ Acquire mutex (lock) when
insert into_queue|(); awaken
27 task available = 1; CS

3“E pthread cond signal(&cond queue full);

pthread mutex unlock(&task queue cond lock);

Producer:

1. Wait for queue to become empty, notified by consumer through cond_queue_empty
2. insert into queue

3. Signal consumer through cond_queue_full 15

Producer-Consumer Using Condition Variables

void *consumer (void *consumer thread data) ({
while (!done()) {

pthread mutex lock(&task queue cond lock);

— while (task _available == 0) JE— Release mutex (unlock)
1+ pthread cond wait(&cond_queue full, | Whenblocked/wait
_ &task queue cond lock); |
— — B B \ Acquire mutex (lock) when
ol my_task = extract_from_queue(); awaken
task_available = 0;

3_.[pthread cond signal(&cond queue empty);

pthread mutex unlock(&task queue cond lock);
process task(my task);

}
}

Consumer:

1. Wait for queue to become full, notified by producer through cond_queue_full
2. Extract task from queue

3. Signal producer through cond_queue_empty 16

Thread and Synchronization Attributes

* Three major objects
— pthread _t
— pthread _mutex_t
— pthread cond _t

* Default attributes when being created/initialized
— NULL

* An attributes object is a data-structure that describes entity
(thread, mutex, condition variable) properties.

— Once these properties are set, the attributes object can be
passed to the method initializing the entity.

— Enhances modularity, readability, and ease of modification.

17

Attributes Objects for Threads

* |nitialize an attribute objects using
pthread attr init

* Individual properties associated with the attributes

object can be changed using the following functions:

pthread attr setdetachstate,
pthread attr setguardsize np,
pthread attr setstacksize,
pthread attr setinheritsched,
pthread attr setschedpolicy, and
pthread attr setschedparam

18

Attributes Objects for Mutexes

* |nitialize an attributes object using function:
pthread mutexattr_ init.

* pthread_mutexattr_settype np for setting the mutex type
pthread _mutexattr_settype np (pthread_mutexattr_t
*attr,int type);

* Specific types:

— PTHREAD_MUTEX _NORMAL NP

— PTHREAD_MUTEX_RECURSIVE_NP
— PTHREAD_MUTEX_ERRORCHECK_NP

19

Attributes Objects for Condition Variable

* Initialize an attribute object using
pthread condattr_init

* int pthread_condattr_setpshared(pthread_condattr _t
*cattr, int pshared) to specifies the scope of a condition
variable to either process private (intraprocess) or system
wide (interprocess) via pshared
— PTHREAD_PROCESS_SHARED
— PTHREAD_PROCESS PRIVATE

20

Composite Synchronization Constructs

* Pthread Mutex and Condition Variables are two basic sync
operations.

* Higher level constructs can be built using basic constructs.
— Read-write locks
— Barriers

* Pthread has its corresponding implementation
— pthread_rwlock t
— pthread_barrier _t

* We will discuss our own implementations

21

®* Concurrent access to data structure:
— Read frequently but ~ Stared Oaia

— Written infrequently /

Read-Write Locks

* Behavior:
— Concurrent read: A read request is granted when there are

other reads or no write (pending write request).

=

—_—

X

Reader

Reader

Reader

— Exclusive write: A write request is granted only if there is no

write or pending write request, or reads.

* |Interfaces:

The rw lock data structure: structmylib rwlock t
Read lock: mylib_rwlock_rlock

write lock: mylib_rwlock_wlock

Unlock: mylib_rwlock_unlock.

22

Read-Write Locks

* Two types of mutual exclusions

0/1 mutex for protecting access to write
Counter mutex (semaphore) for counting read access

* Component sketch

a count of the number of readers,
0/1 integer specifying whether a writer is present,

a condition variable readers_proceed that is signaled when readers
can proceed,

a condition variable writer _proceed that is signaled when one of the
writers can proceed,

a count pending_writers of pending writers, and
a pthread_mutex_t read_write_lock associated with the shared data

structure [ﬂ BT G
‘\ mutex /'
o
(o) B X P .
stop_writers Reader

Read-Write Locks

typedef struct {
int readers;
int writer;
pthread cond t readers proceed;
pthread cond t writer proceed;
int pending writers;
pthread mutex t read write lock;

} mylib rwlock t;

void mylib rwlock init (mylib rwlock t *1) {
l->readers=0; l->writer=0; l->pending writers=0;
pthread mutex init(&(l->read write lock), NULL);
pthread cond init(&(l->readers proceed), NULL);
pthread cond init(&(l->writer proceed), NULL);

}

24

Read-Write Locks

void mylib rwlock rlock(mylib rwlock t *1) {
pthread mutex lock(&(l->read write lock));

while ((l->pending writers > 0) || (l->writer > 0))
1 pthread cond wait (& (l->readers proceed),

&(l->read_write_lock));

2{ l->readers ++;

pthread mutex unlock(&(l->read write lock));

Reader lock:
1. if there is a write or pending writers, perform condition wait,

2. else increment count of readers and grant read lock

25

Read-Write Locks

void mylib rwlock wlock(mylib rwlock t *1) {
pthread mutex lock(&(l->read write lock));
l1->pending writers ++;

while ((1->writer > 0) || (1->readers > 0)) {

1 pthread cond wait(&(l->writer proceed),

&(1l->read _write lock));

-}

l->pending writers --;
l->writer ++;

pthread mutex unlock(&(l->read write lock));

}

Writer lock:

1. If there are readers or writers, increment pending writers
count and wait.

2. On being woken, decrement pending writers count and
increment writer count

Read-Write Locks

void mylib rwlock unlock(mylib rwlock t *1) {
pthread mutex lock(&(l->read write lock));
if (1->writer > 0) /* only writer */

14 l->writer = 0;
else if (l->readers > 0) /* only reader */
2+ l1->readers --;

pthread mutex unlock(&(l->read write lock));

3 if ((1->readers == 0) && (l->pending writers > 0))
pthread cond signal (& (l1->writer proceed));

4 else if (1->readers > 0)
pthread cond_ broadcast (& (l1l->readers_proceed)) ;

}

Reader/Writer unlock:

1. If thereis a write lock then unlock

2. If there are read locks, decrement count of read locks.

3. If the read count becomes 0 and there is a pending writer, notify writer
4.

Otherwise if there are pending readers, let them all go through .

Barrier

* A barrier holds one or multiple threads until all
threads participating in the barrier have reached the

barrier point

TO Tl T2

Time

Wait

--barrier

28

Barrier

* Needs a counter, a mutex and a condition variable
— The counter keeps track of the number of threads that have

reached the barrier.
e |If the countis less than the total number of threads, the
threads execute a condition wait.
— The last thread entering (master) wakes up all the threads
using a condition broadcast.

typedef struct { TO T1 T2

int count;
pthread mutex t count lock;

Wa
pthread cond t ok to proceed; _:,/”' ;7
} mylib barrier t; 1

Time
|
I

\

-------------- --bar
void mylib barrier init(mylib barrier t *b) ({ i I
b->count = 0; Y
pthread mutex init(&(b->count lock), NULL);
pthread cond init(&(b->ok to proceed), NULL); 29

Barriers

}

'{: b->count ++;
— if (b->count == num_threads) {
- b->count = 0;
pthread cond broadcast (& (b->0k_to_proceed));
- } else
’ while (pthread cond wait (& (b->ok to proceed),
& (b->count_1lock)) != 0);

pthread mutex unlock (& (b->count_lock));

Time

TO

void mylib barrier (mylib_barrier t *b, int num_threads) {
pthread mutex lock (& (b->count_lock));

Barrier

1. Each thread increments the counter and check whether all reach

2. The thread (master) who detect that all reaches signal others to proceed

3.

If not all reach, the thread waits

30

Flat/Linear vs Tree/Log Barrier

* Linear/Flat barrier.
— O(n) for n thread

— Assingle master to collect information of all threads and notify them to

continue

* Tree/Log barrier
— Organize threads in a tree logically

— Multiple submaster to collect and notify
— Runtime grows as O(log p).

T T2 T3 T4

R

. T; SIgP SubMaster SubMaster(sigT7
si sigT3 sig T8
T3 sig T4 \)24/ g

Master sig\T4 Root SubMaster SubMasters in the same tier
Receive signals sequentially g

igTs / receive signals in parallel

ZSubMaster SubMaster%

SRR AR .

50

45

40

35

30

25

Time (seconds)

20

15

10

Barrier

Log Barrier
Linear Barrier

é

1000, 32 procsz
1000, 32 pro:f,s

el

60 80
Number of threads

100

120

140

Execution time of 1000 sequential and logarithmic barriers as a function of
number of threads on a 32 processor SGI Origin 2000.

32

References

Adapted from slides “Programming Shared Address Space
Platforms” by Ananth Grama. Bradford Nichols, Dick Buttlar,
Jacqueline Proulx Farrell.

“Pthreads Programming: A POSIX Standard for Better
Multiprocessing.” O'Reilly Media, 1996.

Chapter 7. “Introduction to Parallel Computing” by Ananth
Grama, Anshul Gupta, George Karypis, and Vipin Kumar. Addison
Wesley, 2003

Other pthread topics

— int pthread _key create(pthread key t *key, void (*destroy)(void *))
— int pthread_setspecific(pthread key t key, const void *value)

— void *pthread_getspecific(pthread key_t key)

33

Alleviating Locking Overhead (Example)

/* Finding k matches in a list */
void *find entries(void *start pointer) {

}

/* This is the thread function */

struct database record *next record;

int count;

current pointer = start pointer;

do {
next record = find next entry(current pointer);
count = output record(next record);

} while (count < requested number of records);

int output record(struct database record *record ptr) ({

int count;

pthread mutex lock(&output count lock);

output count ++;

count = output count;

pthread mutex unlock(&output count lock);

if (count <= requested number of records)
print record(record ptr);

return (count);

34

Alleviating Locking Overhead (Example)
— /¥ rewritten output record runction =/

int output record(struct database record
*record ptr) { B
int count;
int lock status;
lock status=pthread mutex trylock(&output count lock);

if (lock status == EBUSY) {
insert into local list(record ptr);
return(0);

} else {

count = output count;

output count += number on local list + 1;

pthread mutex unlock(&output count lock);

print records(record ptr, local list,
requested number of records - count);

return(count + number on local list + 1);

35

