
Lecture	09:	Programming	with	PThreads	

Concurrent	and	Mul:core	Programming	
	

Department	of	Computer	Science	and	Engineering	
Yonghong	Yan	

yan@oakland.edu	
www.secs.oakland.edu/~yan	

	

1	

Topics	(Part	1)	

•  IntroducAon	
•  Principles	of	parallel	algorithm	design	(Chapter	3)	
•  Programming	on	shared	memory	system	(Chapter	7)	

–  OpenMP	
–  PThread,	mutual	exclusion,	locks,	synchroniza:ons	
–  Cilk/Cilkplus	

•  Analysis	of	parallel	program	execuAons	(Chapter	5)	
–  Performance	Metrics	for	Parallel	Systems	

•  Execu:on	Time,	Overhead,	Speedup,	Efficiency,	Cost		
–  Scalability	of	Parallel	Systems	
–  Use	of	performance	tools	

2	

Short	Review	

•  Parallel	algorithm	design	
1.  Tasks	and	DecomposiAon	

•  Theory	and	pracAce	(axpy,	matvec	and	matmul)	
2.   Processes	and	Mapping		
3.  Minimizing	InteracAon	Overheads	

•  PracAce	on	task	and	decomposi:on	
–  AXPY,	Matrix	vector	mulAplicaAon,	matrix	matrix	
mulAplicaAon	

3	

OpenMP:	Worksharing	Constructs	

4	

for(i=0;i<N;i++) { a[i] = a[i] + b[i]; }

#pragma omp parallel shared (a, b)

{

 int id, i, Nthrds, istart, iend;
 id = omp_get_thread_num();
 Nthrds = omp_get_num_threads();
 istart = id * N / Nthrds;
 iend = (id+1) * N / Nthrds;
 for(i=istart;i<iend;i++) { a[i] = a[i] + b[i]; }

}

#pragma omp parallel shared (a, b) private (i)
#pragma omp for schedule(static)

 for(i=0;i<N;i++) { a[i] = a[i] + b[i]; }

Sequential code

OpenMP parallel
region

OpenMP parallel
region and a
worksharing for
construct

•  DirecAves	implemented	
via	code	modificaAon	and	
inserAon	of	runAme	
library	calls	

–  Basic	step	is	outlining	of	code	
in	parallel	region	

•  RunAme	library	
responsible	for	managing	
threads	

–  Scheduling	loops	
–  Scheduling	tasks	
–  ImplemenAng	

synchronizaAon	
•  ImplementaAon	effort	is	

reasonable	

OpenMP Code Translation

int main(void)
{
int a,b,c;
#pragma omp parallel \
private(c)
do_sth(a,b,c);
return 0;
}

_INT32 main()
{
int a,b,c;
/* microtask */
void __ompregion_main1()
{
_INT32 __mplocal_c;
/*shared variables are kept intact,
substitute accesses to private
variable*/
do_sth(a, b, __mplocal_c);
}
…
/*OpenMP runtime calls */
__ompc_fork(&__ompregion_main1
);
…
}

Each	compiler	has	custom	run-Ame	support.	Quality	of	the	runAme	system	has	major	
impact	on	performance.	

Standard	OpenMP	Implementa:on	

OpenMP	API	

ApplicaAon	
writer	

OpenMP	RTL	API	

Pthread	API	

Compiler	
writer	

Library	
writer	

main	()	{	
	#pragma	omp	parallel	
	prin^("Hello,world.!\n");	

main	()	{		…	
	__ompc_fork(0,	&__ompregion_main1,		

	 	reg__7);		
…	}	
void	__ompregion_main1(__ompv_gAd_a__0,		

	 						__ompv_slink_a__0)	
{…	
	prin^((const	_INT8	*)(_INT8(*)[15LL])	"Hello,world.!\n");	
}	

….	
for	(i=1;	i<	threads_to_create;	i++)		
{	return_value	=	pthread_create(

	&(__omp_level_1_pthread[i].uthread_id),		
	&__omp_pthread_aqr,		
	(pthread_entry)	__ompc_level_1_slave,		
	(void	*)((unsigned	long	int)i));		

…	

OpenMP	Implementa:on	

Execu:on	Model	
Start	

End	

N-1	threads	

Wait	on		
CondiAon	var.	

Execute	
Micro_task	

Parallel	region1	

Execute		

Micro_task	

Parallel	region	n	

Execute	
Micro_task	

Clean	up	

signal	

signal	

M-1		
Nested	threads	

Execute	nested	
Micro_task	

Master	thread	
Level	1	slave	thread	

Reused	
Nested	slave	thread	

IniAalizaAon	

Pthread_exit()	

PThread	

•  Processing	Element	abstrac:on	for	soSware	
–  PThreads	
–  OpenMP/Cilk/others	run:me	use	PThreads	for	their	

implementa:on	

•  The	founda:on	of	parallelism	from	computer	system	

•  Topic	Overview		
–  Thread	basics	and	the	POSIX	Thread	API		
–  Thread	crea:on,	termina:on	and	joining	
–  Thread	safety	
–  Synchroniza:on	primi:ves	in	PThreads		

What	is	a	Thread	

•  OS	view	
–  An	independent	stream	of	instrucAons		
				that	can	be	scheduled	to	run	by	the	OS.	

•  Sosware	developer	view	
–  A	“procedure”	that	runs	independently	from	the	main	program	

•  Imagine	mulAple	such	procedures	of	main	run	simultaneously	and/
or	independently		

–  SequenAal	program:	a	single	stream	of	instrucAons	in	a	
program.	

–  MulA-threaded	program:	a	program	with	mulAple	streams	
•  MulAple	threads	are	needed	to	use	mulAple	cores/CPUs		

•  A	thread	is	a	virtual	representa:on	of	a	hardware	core	
9	

Thread	as	“func:on	instance”		

X																			=	

A	thread	is	a	single	stream	of	control	in	the	flow	of	a	
program:	

!
for (i = 0; i < n; i++)
 y[i] = dot_product(row(A, i),b);
	

	
	

for (i = 0; i < n; i++)
 y[i] = create_thread(dot_product(row(A, i), b));

	
•  think	of	the	thread	as	an	instance	of		
a	funcAon	that	returns	before	the	funcAon		
has	finished	execuAng.		

•  processes	contain	informaAon	about	program	resources	and	
program	execuAon	state,	including:		
–  Process	ID,	process	group	ID,	user	ID,	and	group	ID		
–  Environment,	Working	directory,	Program	instrucAons		
–  Registers,	Stack,	Heap		
–  File	descriptors,	Signal	acAons		
–  Shared	libraries,	Inter-process	communicaAon	tools	(such	as	

message	queues,	pipes,	semaphores,	or	shared	memory).		

•  When	we	run	a	program,	a	process	is	created	
–  E.g.	./a.out,	./axpy,	etc	
–  fork	()	system	call	

Processes	

•  Threads	use,	and	exist	within,	the	process	resources	
•  Scheduled	and	run	as	independent	enAAes	
•  Duplicate	only	the	bare	essenAal	resources	that	enable	
them	to	exist	as	executable	code	

Threads	

•  A	thread	maintains	its	own:	
–  Stack	pointer		
–  Registers		
–  Scheduling	properAes	(such	as	policy	

or	priority)		
–  Set	of	pending	and	blocked	signals		
–  Thread	specific	data.		

•  MulAple	threads	share	the	
process	resources	

•  A	thread	dies	if	the	process	dies	
•  "lightweight”	for	creaAng	and	

terminaAng	threads	that	for	
processes	

Threads	

POSIX	threads	(Pthreads)	

•  Threads	used	to	implement	parallelism	in	shared	
memory	mulAprocessor	systems,	such	as	SMPs		

•  Historically,	hardware	vendors	have	implemented	their	
own	proprietary	versions	of	threads	
–  Portability	a	concern	for	sosware	developers.		

•  For	UNIX	systems,	a	standardized	C	language	threads	
programming	interface	has	been	specified	by	the	IEEE	
POSIX	1003.1c	standard.	
–  ImplementaAons	that	adhere	to	this	standard	are	referred	to	

as	POSIX	threads	

14	

The	POSIX	Thread	API		

•  Commonly	referred	to	as	Pthreads,	POSIX	has	emerged	as	the	
standard	threads	API,	supported	by	most	vendors.		
–  Implemented	with	a	pthread.h	header/include	file	and	a	thread	

library	

•  FuncAonaliAes	
–  Thread	management,	e.g.	creaAon	and	joining	
–  Thread	synchronizaAon	primiAves	

•  Mutex	
•  CondiAon	variables	
•  Reader/writer	locks	
•  Pthread	barrier	

–  Thread-specific	data		

•  The	concepts	discussed	here	are	largely	independent	of	the	API	
–  Applied	to	other	thread	APIs	(NT	threads,	Solaris	threads,	Java	

threads,	etc.)	as	well.		

PThread	API	

•  #include <pthread.h> !

•  gcc -lpthread
	

16	

•  IniAally,	main()	program	comprises	a	single,	default	thread	
–  All	other	threads	must	be	explicitly	created	

 int pthread_create(
 pthread_t *thread,
 const pthread_attr_t *attr,
 void *(*start_routine)(void *),
 void * arg);

•  thread:	An	opaque,	unique	idenAfier	for	the	new	thread	returned	by	the	subrouAne	

•  aZr:	An	opaque	aqribute	object	that	may	be	used	to	set	thread	aqributes		
You	can	specify	a	thread	aqributes	object,	or	NULL	for	the	default	values	

•  start_rou:ne:	the	C	rouAne	that	the	thread	will	execute	once	it	is	created		
•  arg:	A	single	argument	that	may	be	passed	to	start_rou+ne.	It	must	be	passed	by	

reference	as	a	pointer	cast	of	type	void.	NULL	may	be	used	if	no	argument	is	to	be	
passed.	

Thread	Crea:on	

Opaque	object:	A	leqer	is	an	opaque	object	to	the	mailman,	and	sender	and	receiver	
know	the	informaAon.	

Thread	Crea:on	

•  pthread_create	creates	a	new	thread	and	makes	it	
executable,	i.e.	run	immediately	in	theory	
–  can	be	called	any	number	of	Ames	from	anywhere	within	your	code	

•  Once	created,	threads	are	peers,	and	may	create	other	threads		
•  There	is	no	implied	hierarchy	or	dependency	between	threads	
	

18	

#include <pthread.h>
#define NUM_THREADS 5

void *PrintHello(void *thread_id) {
 long tid = (long)thread_id;
 printf("Hello World! It's me, thread #%ld!\n", tid);
 pthread_exit(NULL);
}

int main(int argc, char *argv[]) {
 pthread_t threads[NUM_THREADS];
 long t;

 for(t=0;t<NUM_THREADS;t++) {
 printf("In main: creating thread %ld\n", t);
 int rc = pthread_create(&threads[t], NULL, PrintHello, (void *)t);
 if (rc) {
 printf("ERROR; return code from pthread_create() is %d\n", rc);
 exit(-1);
 }
 }
 pthread_exit(NULL);
}

One possible output:

In main: creating thread 0
In main: creating thread 1
In main: creating thread 2
In main: creating thread 3
Hello World! It's me, thread #0!
In main: creating thread 4
Hello World! It's me, thread #1!
Hello World! It's me, thread #3!
Hello World! It's me, thread #2!
Hello World! It's me, thread #4!

Example	1:	pthread_create	

•  pthread_exit	is	used	to	explicitly	exit	a	thread	
	

–  Called	aser	a	thread	has	completed	its	work	and	is	no	longer	
required	to	exist	

•  If	main()finishes	before	the	threads	it	has	created	
–  If	exits	with	pthread_exit(),	the	other	threads	will	conAnue	to	

execute	

–  Otherwise,	they	will	be	automaAcally	terminated	when	
main()finishes	

•  The	programmer	may	opAonally	specify	a	terminaAon	
status,	which	is	stored	as	a	void	pointer	for	any	thread	that	
may	join	the	calling	thread	

•  Cleanup:	the	pthread_exit()rouAne	does	not	close	
files		
–  Any	files	opened	inside	the	thread	will	remain	open	aser	the	thread	

is	terminated	

Termina:ng	Threads	

Thread	AZribute	
 int pthread_create(
 pthread_t *thread,
 const pthread_attr_t *attr,
 void *(*start_routine)(void *),
 void * arg);		

•  Aqribute	contains	details	about	
–  whether	scheduling	policy	is	inherited	or	explicit	
–  scheduling	policy,	scheduling	priority	
–  stack	size,	stack	guard	region	size	

•  pthread_attr_init	and	pthread_attr_destroy	are	used	
to	iniAalize/destroy	the	thread	aqribute	object	

•  Other	rouAnes	are	then	used	to	query/set	specific	aqributes	in	the	
thread	aqribute	object	

21	

•  The	pthread_create()	rouAne	permits	the	programmer	to	
pass	one	argument	to	the	thread	start	rouAne	

•  For	cases	where	mulAple	arguments	must	be	passed:	
–  Create	a	structure	which	contains	all	of	the	arguments	
–  Then	pass	a	pointer	to	the	object	of	that	structure	in	the	

pthread_create()rouAne.		
–  All	arguments	must	be	passed	by	reference	and	cast	to	(void	*)	

•  Make	sure	that	all	passed	data	is	thread	safe:	data	racing	
–  it	can	not	be	changed	by	other	threads	

–  It	can	be	changed	in	a	determinant	way	
•  Thread	coordinaAon	

Passing	Arguments	to	Threads	

#include <pthread.h>
#define NUM_THREADS 8

struct thread_data {
 int thread_id;
 char *message;
};

struct thread_data thread_data_array[NUM_THREADS];

void *PrintHello(void *threadarg) {
 int taskid;
 char *hello_msg;

 sleep(1);
 struct thread_data *my_data = (struct thread_data *) threadarg;
 taskid = my_data->thread_id;
 hello_msg = my_data->message;
 printf("Thread %d: %s\n", taskid, hello_msg);
 pthread_exit(NULL);
}

Example	2:	Argument	Passing	

int main(int argc, char *argv[]) {
 pthread_t threads[NUM_THREADS];
 int t;
 char *messages[NUM_THREADS];
 messages[0] = "English: Hello World!";
 messages[1] = "French: Bonjour, le monde!";
 messages[2] = "Spanish: Hola al mundo";
 messages[3] = "Klingon: Nuq neH!";
 messages[4] = "German: Guten Tag, Welt!";
 messages[5] = "Russian: Zdravstvytye, mir!";
 messages[6] = "Japan: Sekai e konnichiwa!";
 messages[7] = "Latin: Orbis, te saluto!";

 for(t=0;t<NUM_THREADS;t++) {
 struct thread_data * thread_arg = &thread_data_array[t];
 thread_arg->thread_id = t;
 thread_arg->message = messages[t];
 pthread_create(&threads[t], NULL, PrintHello, (void *) thread_arg);
 }
 pthread_exit(NULL);
}

Example	2:	Argument	Passing	

Thread	3:	Klingon:	Nuq	neH!	
Thread	0:	English:	Hello	World!	
Thread	1:	French:	Bonjour,	le	monde!	
Thread	2:	Spanish:	Hola	al	mundo	
Thread	5:	Russian:	Zdravstvytye,	mir!	
Thread	4:	German:	Guten	Tag,	Welt!	
Thread	6:	Japan:	Sekai	e	konnichiwa!	
Thread	7:	LaAn:	Orbis,	te	saluto!	

Wait	for	Thread	Termina:on	

		Suspend	execu:on	of	calling	thread	un:l	thread	terminates	
#include <pthread.h>
int pthread_join(

 pthread_t thread,
 void **value_ptr);	
•  thread:	the	joining	thread	
•  value_ptr:	ptr	to	locaAon	for	return	code	a	terminaAng	thread	passes	to	

pthread_exit		

•  It	is	a	logical	error	to	aqempt	simultaneous	mulAple	joins	on	the	same	thread	25	

#include <pthread.h>
#define NUM_THREADS 4

void *BusyWork(void *t) {
 int i;
 long tid = (long)t;
 double result=0.0;

 printf("Thread %ld starting...\n",tid);

 for (i=0; i<1000000; i++) {
 result = result + sin(i) * tan(i);
 }

 printf("Thread %ld done. Result = %e\n",tid, result);
 pthread_exit((void*) t);
}

Example	3:	Pthread	Joining	

int main (int argc, char *argv[])
{
 pthread_t thread[NUM_THREADS];
 pthread_attr_t attr;
 long t;
 void *status;

 /* Initialize and set thread detached attribute */
 pthread_attr_init(&attr);
 pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_JOINABLE);

 for(t=0; t<NUM_THREADS; t++) {
 printf("Main: creating thread %ld\n", t);
 pthread_create(&thread[t], &attr, BusyWork, (void *)t);
 }
 /* Free attribute and wait for the other threads */
 pthread_attr_destroy(&attr);
 for(t=0; t<NUM_THREADS; t++) {
 pthread_join(thread[t], &status);
 printf(“Main: joined with thread %ld, status: %ld\n", t, (long)status);
 }
 printf("Main: program completed. Exiting.\n");
 pthread_exit(NULL);
}

Example	3:	Pthread	joining	
Main:	creaAng	thread	0	
Main:	creaAng	thread	1	
Thread	0	starAng...	
Main:	creaAng	thread	2	
Thread	1	starAng...	
Main:	creaAng	thread	3	
Thread	2	starAng...	
Thread	3	starAng...	
Thread	1	done.	Result	=	-3.153838e+06	
Thread	0	done.	Result	=	-3.153838e+06	
Main:	joined	with	thread	0,	status:	0	
Main:	joined	with	thread	1,	status:	1	
Thread	2	done.	Result	=	-3.153838e+06	
Main:	joined	with	thread	2,	status:	2	
Thread	3	done.	Result	=	-3.153838e+06	
Main:	joined	with	thread	3,	status:	3	
Main:	program	completed.	ExiAng.	

•  All	threads	have	access	to	the	same	global,	shared	memory		
•  Threads	also	have	their	own	private	data		
•  Programmers	are	responsible	for	synchronizing	access	

(protecAng)	globally	shared	data.	

Shared	Memory	and	Threads	

Thread	Consequences	

29	

•  Shared	State!	
–  Accidental	changes	to	global	variables	can	be	fatal.	
–  Changes	made	by	one	thread	to	shared	system	resources	(such	as	

closing	a	file)	will	be	seen	by	all	other	threads	
–  Two	pointers	having	the	same	value	point	to	the	same	data	
–  Reading	and	wriAng	to	the	same	memory	locaAons	is	possible	
–  Therefore	requires	explicit	synchronizaAon	by	the	programmer	

•  Many	library	funcAons	are	not	thread-safe	
–  Library	FuncAons	that	return	pointers	to	staAc	internal	memory.	E.g.	

gethostbyname()	
•  Lack	of	robustness		

–  Crash	in	one	thread	will	crash	the	enAre	process	

•  Thread-safeness:	in	a	nutshell,	refers	an	applicaAon's	ability	to	
execute	mulAple	threads	simultaneously	without	"clobbering"	
shared	data	or	creaAng	"race"	condiAons	
	

•  Example:		an	applicaAon	creates	several	threads,	each	of	which	
makes	a	call	to	the	same	library	rouAne:		
–  This	library	rouAne	accesses/modifies	a	global	structure	or	

locaAon	in	memory.		
–  As	each	thread	calls	this	rouAne	it	is	possible	that	they	may	try	

to	modify	this	global	structure/memory	locaAon	at	the	same	
Ame.		

–  If	the	rouAne	does	not	employ	some	sort	of	synchronizaAon	
constructs	to	prevent	data	corrupAon,	then	it	is	not	thread-
safe.		

Thread-safeness	

Thread-safeness	

	The	implica:on	to	users	of	external	library	rou:nes:	
	

•  If	you	aren't	100%	certain	the	rouAne	is	thread-safe,	then	you	
take	your	chances	with	problems	that	could	arise.		

•  Recommenda:on	
–  Be	careful	if	your	applicaAon	uses	libraries	or	other	objects	that	

don't	explicitly	guarantee	thread-safeness.	
–  When	in	doubt,	assume	that	they	are	not	thread-safe	unAl	

proven	otherwise	
–  This	can	be	done	by	"serializing"	the	calls	to	the	uncertain	

rouAne,	etc.		

Thread-safeness	

Example	4:	Data	Racing	

33	

#include <pthread.h>
#define NUM_THREADS 5

void *PrintHello(void *thread_id) { /* thread func */
 long tid = *((long*)thread_id);
 printf("Hello World! It's me, thread #%ld!\n", tid);
 pthread_exit(NULL);
}

int main(int argc, char *argv[]) {
 pthread_t threads[NUM_THREADS];
 long t;
 for(t=0;t<NUM_THREADS;t++) {
 printf("In main: creating thread %ld\n", t);
 int rc = pthread_create(&threads[t], NULL, PrintHello, (void *)&t);
 if (rc) {
 printf("ERROR; return code from pthread_create() is %d\n", rc);
 exit(-1);
 }
 }
 pthread_exit(NULL);
}

In	main:	creaAng	thread	0	
In	main:	creaAng	thread	1	
In	main:	creaAng	thread	2	
In	main:	creaAng	thread	3	
Hello	World!	It's	me,	thread	#3!	
Hello	World!	It's	me,	thread	#3!	
Hello	World!	It's	me,	thread	#3!	
In	main:	creaAng	thread	4	
Hello	World!	It's	me,	thread	#4!	
Hello	World!	It's	me,	thread	#5!	
	

•  The	primary	moAvaAon	
–  To	realize	potenAal	program	performance	gains	

•  Compared	to	the	cost	of	creaAng	and	managing	a	process	
–  A	thread	can	be	created	with	much	less	OS	overhead	

•  Managing	threads	requires	fewer	system	resources	than	
managing	processes	

•  All	threads	within	a	process	share	the	same	address	space	

•  Inter-thread	communicaAon	is	more	efficient	and,	in	many	
cases,	easier	to	use	than	inter-process	communicaAon		

Why	Pthreads	(not	processes)?	

•  Timing	results	for	the	fork()	subrouAne	and	the	
pthreads_create()	subrouAne	
–  Timings	reflect	50,000	process/thread	creaAons	
–  units	are	in	seconds	
–  no	opAmizaAon	flags		

pthread_create	vs	fork	

•  PotenAal	performance	gains	and	pracAcal	advantages	over	non-
threaded	applicaAons:		

–  Overlapping	CPU	work	with	I/O	
•  For	example,	a	program	may	have	secAons	where	it	is	performing	a	long	
I/O	operaAon	

•  While	one	thread	is	waiAng	for	an	I/O	system	call	to	complete,	CPU	
intensive	work	can	be	performed	by	other	threads.	

•  Priority/real-Ame	scheduling		
–  Tasks	which	are	more	important	can	be	scheduled	to	supersede	or	

interrupt	lower	priority	tasks.		

•  Asynchronous	event	handling		
–  Tasks	which	service	events	of	indeterminate	frequency	and	duraAon	can	be	

interleaved	
–  For	example,	a	web	server	can	both	transfer	data	from	previous	requests	

and	manage	the	arrival	of	new	requests.		

	

Why	pthreads	

AXPY	with	PThreads	

•  y	=	α·x	+	y	
–  x	and	y	are	vectors	of	size	N	

•  In	C,	x[N],	y[N]	
–  α	is	scalar	

•  DecomposiAon	and	mapping	to	pthreads	

37	

A	task	will	be	mapped	to	a	
pthread	

AXPY	with	PThreads	

38	

