
Lecture	09X:	C	Func/on	Pointers	

Concurrent	and	Mul/core	Programming	
	

Department	of	Computer	Science	and	Engineering	
Yonghong	Yan	

yan@oakland.edu	
www.secs.oakland.edu/~yan	

	

1	

Pointer	Variable	Declara/ons	and	Ini/aliza/on	

•  Pointer	variables	
–  Contain	memory	addresses	as	their	values	
–  Normal	variables	contain	a	specific	value	(direct	reference)	

•  int count = 7;

–  Pointers	contain	address	of	a	variable	that	has	a	specific	value	
(indirect	reference)	

–  IndirecHon	–	referencing	a	pointer	value	
•  int	count	=	7;	
•  int	*	countPtr	=	&count;	

		
	

count

7

count
 7

countPtr

Pointer	Variable	Declara/ons	and	Ini/aliza/on	

•  Pointer	declaraHons	
–  *	used	with	pointer	variables	

int *myPtr;		
–  Declares	a	pointer	to	an	int	(pointer	of	type	int *)	
–  MulHple	pointers	require	using	a	*	before	each	variable	

declaraHon	
int *myPtr1, *myPtr2;

–  Can	declare	pointers	to	any	data	type	
–  IniHalize	pointers	to	0,	NULL,	or	an	address	

•  0	or	NULL	–	points	to	nothing	(NULL	preferred)	

Pointer	Operators 		

•  &	(address	operator)	
–  Returns	address	of	operand	
int y = 5;
int *yPtr;
yPtr = &y; // yPtr gets address of y
yPtr “points to” y

yPtr

y
5

yptr

500000 600000

y

600000 5

Address	of	y	
is	value	of	
yptr

Pointers	and	Arrays	

•  Arrays	and	pointers	closely	related	
–  Array	name	like	a	constant	pointer	
–  Pointers	can	do	array	subscripHng	operaHons	

•  Declare	an	array	b[5]	and	a	pointer	bPtr
–  To	set	them	equal	to	one	another	use:	

bPtr = b;

•  The	array	name	(b)	is	actually	the	address	of	first	element	of	
the	array	b[5]
bPtr = &b[0]

•  Explicitly	assigns	bPtr	to	address	of	first	element	of	b

Pointers	and	Arrays	

–  Element	b[3]
•  Can	be	accessed	by	*(bPtr	+	3)

– Where	n	is	the	offset.	Called	pointer/offset	notaHon	
•  Can	be	accessed	by	bptr[3]

–  Called	pointer/subscript	notaHon	
–  bPtr[3]	same	as	b[3]

•  Can	be	accessed	by	performing	pointer	arithmeHc	on	the	
array	itself	
*(b	+	3)

Pointers	to	Func/ons	

•  Pointer	to	funcHon	
–  Contains	address	of	funcHon	
–  Similar	to	how	array	name	is	address	of	first	element	
–  FuncHon	name	is	starHng	address	of	code	that	defines	

funcHon	
•  FuncHon	pointers	can	be		

–  Passed	to	funcHons	
–  Stored	in	arrays	
–  Assigned	to	other	funcHon	pointers	

Pointers	to	func/ons:	Variable	for	func/ons	

8	

•  DeclaraHon:	
returnType (*funVarName)(parameterTypes);

•  Examples:	
int (*f)(int, float);

int *(*g[])(int, float);

int *(*g[])(int, float);

pointer	to	a	funcHon	that	takes	an	
integer	argument	and	a	float	argument	

and	returns	an	integer	

pointer	to	a	funcHon	that	takes	an	integer	
argument	and	a	float	argument	and	

returns	a	pointer	to	an	integer	

An	array	of	pointers	to	funcHons	–	
Each	funcHon	takes	an	integer	argument	

and	a	float	argument	and	returns	a	
pointer	to	an	integer	

Pointers	to	func/ons:	WHY?	

9	

•  They	allow	for	a	certain	amount	of	polymorphism:		
–  “poly”	(many)	+	“morph”	(shape)	
–  A	polymorphic	language	can	handle	a	range	of	different	data	

types	(“shapes”?)	with	a	single	statement	
•  This	is	common	in	OO	languages	like	C++,	Java:	

Animal myPet;

…

myPet.makeSound();

This	method	call	will	result	in	
different	sounds,	depending	on	

whether	myPet	holds	a	Cow	object,	
an	Elephant	object,	etc.	

Example:	searching	a	singly-linked	list	

10	

typedef struct IntNode {

 int value; struct IntNode *next;

} INTNODE;

INTNODE *search_list(INTNODE *node, int const key) {

 while (!node) {

 if (node->value == key) break;

 node = node->next;

 }

 return node;

}

OK,	but	it	only	works	for	nodes	containing	integer	data.	
If	you	want	a	list	of	strings,	you’ll	need	to	define	a	new	type	

and	new	funcHon.	

A	more	abstract	no/on	of	“node”	

11	

typedef struct Node {

 void *value; struct Node *next;

} NODE;

void construct_node(NODE *node, void *value, NODE *next) {

 node->value = value; node->next = next;

}

NODE *new_node(void *value, NODE *next) {

 NODE *node = (NODE *)malloc(sizeof(NODE));

 construct_node(node, value, next);

 return node;

}

void*	is	compaHble	with	any	pointer	type.	
So,	this	member	can	hold	(a	pointer	to)	any	value!	

A	more	abstract	no/on	of	“search	list”	

12	

•  What	is	it	that	makes	the	old	search_list	only	work	for	
integers?	
–  The	key	parameter	is	of	type	int
–  The	==	operator	is	used	to	compare	int	values	–	
	but	==	will	not	work	for	many	types	(e.g.	structs,	strings)	

•  A	soluHon:	pass	in	an	addiHonal	argument	–	
	a	comparison	funcHon!	
–  Programmer	must	supply	a	comparison	funcHon	that’s	

appropriate	for	the	data	type	being	stored	in	the	nodes	
–  This	funcHon	argument	is	called	a	callback	func/on:	

•  Caller	passes	in	a	pointer	to	a	funcHon	
•  Callee	then	“calls	back”	to	the	caller-supplied	funcHon	

Abstract	“search	list”	with	callback	func/on	

13	

NODE *search_list(NODE *node, void const *key,

 int (*compare)(void const *, void const *)) {

 while (node) {

 if (!compare(node->value, key)) break;

 node = node->next;

 }

 return node;

}

AssumpHon:	compare	returns	zero	if	its	
parameter	values	are	equal;	nonzero	

otherwise	

Using	callback	func/ons	

14	

•  If	our	nodes	hold	strings,	we	have	a	compare	funcHon	
already	defined:	strcmp	or	strncmpy

#include <string.h>

…

match = search_list(root, "key", &strcmp);

Note:	you	may	get	a	warning,	since	strcmp	is	not	strictly	of	the	right	type:	
its	parameters	are	of	type	char *	rather	than	void *

&	is	opHonal	here	–	
compiler	will	implicitly	take	the	address	

Using	callback	func/ons	

15	

•  If	our	nodes	hold	other	kinds	of	data,	we	may	need	to	“roll	
our	own”	compare	funcHon	

int compare_ints(void const *a, void const *b) {

 const int ia = *(int *)a, ib = *(int *)b;

 return ia != ib;

}

…

match = search_list(root, key, &compare_ints);

Jump	tables	

16	

•  In	some	cases,	a	nice	alternaHve	to	long,	repeHHve	switch	
statements,	like	this:	

double add(double, double);

double sub(double, double);

double mul(double, double);

double div(double, double);

switch(oper) {

case ADD: result = add(op1, op2); break;

case SUB: result = sub(op1, op2); break;

case MUL: result = mul(op1, op2); break;

case DIV: result = div(op1, op2); break;

}

Jump	tables	

17	

•  Jump	table	alternaHve:	

double add(double, double);

double sub(double, double);

double mul(double, double);

double div(double, double);

double (*oper_func[])(double, double) = {

 add, sub, mul, div

};

result = oper_func[oper](op1, op2);

Array	of	pointers	to	funcHons.	
Each	funcHon	takes	two	doubles	

and	returns	a	double

Pointers	to	func/ons:	safety	concerns	

18	

•  What	if	uniniHalized	funcHon	pointer	value	is	accessed?	
–  Safest	outcome:	memory	error,	and	program	is	terminated	
–  But	what	if	the	“garbage”	value	is	a	valid	address?	

• Worst	case:	address	contains	program	instrucHon	–	
	execuHon	conHnues,	with	random	results	

•  Hard	to	trace	the	cause	of	the	erroneous	behavior	

References	

19	

•  The	FuncHon	Pointer	Tutorials.	
hqp://www.newty.de/fpt/index.html		

