
Lecture	08:	Principles	of	Parallel	
Algorithm	Design	

Concurrent	and	Mul<core	Programming	
CSE	436/536	

Department	of	Computer	Science	and	Engineering	
Yonghong	Yan	

yan@oakland.edu	
www.secs.oakland.edu/~yan	

	

1	



Last	lecture:	Algorithms	and	Concurrency	

•  IntroducAon	to	Parallel	Algorithms		
–  Tasks	and	DecomposiAon		
–  Processes	and	Mapping		

•  DecomposiAon	Techniques		
–  Recursive	DecomposiAon	(divide-conquer)		
–  Data	DecomposiAon	(input,	output,	input+output,	intermediate)	
	

•  Terms	and	concepts	
–  Task	dependency	graph,	task	granularity,	degree	of	concurrency	
–  Task	interacAon	graph,	criAcal	path	

•  Examples:	
–  Dense	vector	addiAon,	matrix	vector	product	
–  Dense	matrix	matrix	product	
–  Database	query	
–  Quicksort,	MIN	

2	



Today’s	lecture	

•  Decomposi<on	Techniques	-	con<nued		
–  Exploratory	DecomposiAon		
–  Hybrid	DecomposiAon		

Mapping	tasks	to	processes/cores/CPU/PEs	
•  Characteris<cs	of	Tasks	and	Interac<ons		

–  Task	GeneraAon,	Granularity,	and	Context		
–  CharacterisAcs	of	Task	InteracAons		

•  Mapping	Techniques	for	Load	Balancing		
–  StaAc	and	Dynamic	Mapping		

•  Methods	for	Minimizing	Interac<on	Overheads		
•  Parallel	Algorithm	Design	Models		

3	



Exploratory	Decomposi<on		

4	

•  DecomposiAon	is	fixed/staAc	from	the	design	
–  Data	and	recursive	

•  ExploraAon	(search)	of	a	state	space	of	soluAons		
–  problem	decomposiAon	reflects	shape	of	execuAon		
–  Goes	hand-in-hand	with	its	execuAon	

•  Examples	
–  discrete	opAmizaAon,	e.g.	0/1	integer	programming	
–  theorem	proving	
–  game	playing	



Exploratory	Decomposi<on:	Example		

5	

Solve	a	15	puzzle	
•  Sequence	of	three	moves	from	state	(a)	to	final	state	(d)	

•  From	an	arbitrary	state,	must	search	for	a	soluAon	



Exploratory	Decomposi<on:	Example		

6	

Solving	a	15	puzzle	
•  Search	

–  generate	successor	states	of	the	current	state		
–  explore	each	as	an	independent	task	



Exploratory	Decomposi<on	Speedup	
Solve	a	15	puzzle	

•  The	decomposiAon	behaves	according	to	the	parallel	
formulaAon	
–  May	change	the	amount	of	work	done	

7	Execu<on	terminate	when	a	solu<on	is	found	



Specula<ve	Decomposi<on		

8	

•  Dependencies	between	tasks	are	not	known	a-priori.		
–  Impossible	to	idenAfy	independent	tasks		

•  Two	approaches	
–  ConservaAve	approaches,	which	idenAfy	independent	tasks	

only	when	they	are	guaranteed	to	not	have	dependencies	
•  May	yield	liale	concurrency	

–  OpAmisAc	approaches,	which	schedule	tasks	even	when	they	
may	potenAally	be	inter-dependent	
•  Roll-back	changes	in	case	of	an	error		



Specula<ve	Decomposi<on:	Example		

9	

	 	 	 	Discrete	event	simula<on	
•  Centralized	Ame-ordered	event	list	

–  you	get	up	àget	readyàdrive	to	workàworkàeat	lunchà	
work	some	moreàdrive	backàeat	dinneràand	sleep	

•  SimulaAon	
–  extract	next	event	in	Ame	order	
–  process	the	event		
–  if	required,	insert	new	events	into	the	event	list	

•  OpAmisAc	event	scheduling	
–  assume	outcomes	of	all	prior	events	
–  speculaAvely	process	next	event	
–  if	assumpAon	is	incorrect,	roll	back	its	effects	and	conAnue	



Specula<ve	Decomposi<on:	Example		

10	

Simula<on	of	a	network	of	nodes		
•  Simulate	network		behavior	for	various	input	and	node	delays	

–  The	input	are	dynamically	changing	
•  Thus	task	dependency	is	unknown	

•  Speculate	execuAon:	tasks’	input	
–  Correct:	parallelism	
–  Incorrect:	rollback	and	redo	



Specula<ve	vs	Exploratory	

•  Exploratory	decomposiAon	
–  The	output	of	mulAple	tasks	from	a	branch	is	unknown	
–  Parallel	program	perform	more,	less	or	same	amount	of	work	

as	serial	program	
•  SpeculaAve	

–  The	input	at	a	branch	leading	to	mulAple	parallel	tasks	is	
unknown		

–  Parallel	program	perform	more	or	same	amount	of	work	as	
the	serial	algorithm	

11	



Hybrid	Decomposi<ons		

12	

Use	mul<ple	decomposi<on	techniques	together	
•  One	decomposiAon	may	be	not	opAmal	for	concurrency	

–  Quicksort	recursive	decomposiAon	limits	concurrency	(Why?)	

	
•  Combined	recursive	and	data	decomposiAon	for	MIN	



Today’s	lecture	

•  DecomposiAon	Techniques	-	conAnued		
–  Exploratory	DecomposiAon		
–  Hybrid	DecomposiAon		
	
Mapping	tasks	to	processes/cores/CPU/PEs	

•  CharacterisAcs	of	Tasks	and	InteracAons		
–  Task	GeneraAon,	Granularity,	and	Context		
–  CharacterisAcs	of	Task	InteracAons		

•  Mapping	Techniques	for	Load	Balancing		
–  StaAc	and	Dynamic	Mapping		

•  Methods	for	Minimizing	InteracAon	Overheads		
•  Parallel	Algorithm	Design	Models		

13	



Characteris<cs	of	Tasks		

14	

•  Theory	
–  DecomposiAon:	to	parallelize	theoreAcally	

•  Concurrency	available	in	a	problem		
•  PracAce	

–  Task	creaAons,	interacAons	and	mapping	to	PEs.		
•  Realizing	concurrency	pracAcally	

–  CharacterisAcs	of	tasks	and	task	interacAons	
•  Impact	choice	and	performance	of	parallelism	

•  Characteris<cs	of	tasks		
–  Task	genera<on	strategies	
–  Task	sizes	(the	amount	of	work,	e.g.	FLOPs)	
–  Size	of	data	associated	with	tasks	



Task	Genera<on		

15	

•  StaAc	task	generaAon	
–  Concurrent	tasks	and	task	graph	known	a-priori	(before	execuAon)	
–  Typically	using	recursive	or	data	decomposiAon	
–  Examples	

•  Matrix	operaAons	
•  Graph	algorithms	
•  Image	processing	applicaAons	
•  Other	regularly	structured	problems	

•  Dynamic	task	generaAon	
–  ComputaAons	formulate	concurrent	tasks	and	task	graph	on	the	fly	

•  Not	explicit	a	priori,	though	high-level	rules	or	guidelines	known		
–  Typically	by	exploratory	or	speculaAve	decomposiAons.	

•  Also	possible	by	recursive	decomposiAon,	e.g.	quicksort	
–  A	classic	example:	game	playing	

•  15	puzzle	board	



Task	Sizes/Granularity		

16	

•  The	amount	of	work	à	amount	of	Ame	to	complete	
–  E.g.	FLOPs,	#memory	access	

•  Uniform:		
–  Olen	by	even	data	decomposiAon,	i.e.	regular	

•  Non-uniform	
–  Quicksort,	the	choice	of	pivot	



Size	of	Data	Associated	with	Tasks		

17	

•  May	be	small	or	large	compared	to	the	task	sizes	
–  How	relevant	to	the	input	and/or	output	data	sizes	
–  Example:	

•  size(input)	<	size(computa<on),	e.g.,	15	puzzle	
•  size(input)	=	size(computa<on)	>	size(output),	e.g.,	min	
•  size(input)	=	size(output)	<	size(computa<on),	e.g.,	sort	

•  Considering	the	efforts	to	reconstruct	the	same	task	
context	
–  small	data:	small	efforts:	task	can	easily	migrate	to	another	

process	
–  large	data:	large	efforts:	Aes	the	task	to	a	process	

•  Context	reconstrucAng	vs		communicaAng	
–  It	depends	



Characteris<cs	of	Task	Interac<ons		

•  Aspects	of	interacAons	
–  What:	shared	data	or	synchronizaAons,	and	sizes	of	the	media	
–  When:	the	Aming	
–  Who:	with	which	task(s),	and	overall	topology/paaerns	
–  Do	we	know	details	of	the	above	three	before	execuAon	
–  How:	involve	one	or	both?	

•  The	implementaAon	concern,	implicit	or	explicit	
	
Orthogonal	classificaAon	
•  StaAc	vs.	dynamic	
•  Regular	vs.	irregular	
•  Read-only	vs.	read-write	
•  One-sided	vs.	two-sided	

18	



Characteris<cs	of	Task	Interac<ons		

•  Aspects	of	interacAons	
–  What:	shared	data	or	synchronizaAons,	and	sizes	of	the	media	
–  When:	the	Aming	
–  Who:	with	which	task(s),	and	overall	topology/paaerns	
–  Do	we	know	details	of	the	above	three	before	execuAon	
–  How:	involve	one	or	both?	

•  StaAc	interacAons	
–  Partners	and	Aming	(and	else)	are	known	a-priori	
–  RelaAvely	simpler	to	code	into	programs.		

•  Dynamic	interacAons	
–  The	Aming	or	interacAng	tasks	cannot	be	determined	a-priori.	
–  Harder	to	code,	especially	using	explicit	interacAon.	

19	



Characteris<cs	of	Task	Interac<ons		

20	

•  Aspects	of	interacAons	
–  What:	shared	data	or	synchronizaAons,	and	sizes	of	the	media	
–  When:	the	Aming	
–  Who:	with	which	task(s),	and	overall	topology/paaerns	
–  Do	we	know	details	of	the	above	three	before	execuAon	
–  How:	involve	one	or	both?	

•  Regular	interacAons	
–  Definite	paaern	of	the	interacAons	

•  E.g.	a	mesh	or	ring	
–  Can	be	exploited	for	efficient	implementaAon.		

•  Irregular	interacAons	
–  lack	well-defined	topologies	
–  Modeled	as	a	graph	



Example	of	Regular	Sta<c	Interac<on		

21	

Image	processing	algorithms:	dithering,	edge	detec<on	
•  Nearest	neighbor	interacAons	on	a	2D	mesh	



Example	of	Irregular	Sta<c	Interac<on		

22	

Sparse	matrix	vector	mul<plica<on	



Characteris<cs	of	Task	Interac<ons		

23	

•  Aspects	of	interacAons	
–  What:	 shared	 data	 or	 synchronizaAons,	 and	 sizes	 of	 the	

media	

•  Read-only	interacAons	
–  Tasks	only	read	data	items	associated	with	other	tasks		

•  Read-write	interacAons	
–  Read,	as	well	as	modify	data	items	associated	with	other	tasks.		
–  Harder	to	code	

•  Require	addiAonal	synchronizaAon	primiAves	
–  	to	avoid	read-write	and	write-write	ordering	races	

Shared	
data	

T2	T1	 write	

read	



Characteris<cs	of	Task	Interac<ons		

24	

•  Aspects	of	interacAons	
–  What:	shared	data	or	synchronizaAons,	and	sizes	of	the	media	
–  When:	the	Aming	
–  Who:	with	which	task(s),	and	overall	topology/paaerns	
–  Do	we	know	details	of	the	above	three	before	execuAon	
–  How:	involve	one	or	both?	

•  The	implementaAon	concern,	implicit	or	explicit	
	
•  One-sided	

–  iniAated	&	completed	independently	by	1	of	2	interacAng	tasks	
•  GET	and	PUT	

•  Two-sided	
–  both	tasks	coordinate	in	an	interacAon	

•  SEND	+	RECV		



Today’s	lecture	

•  DecomposiAon	Techniques	-	conAnued		
–  Exploratory	DecomposiAon		
–  Hybrid	DecomposiAon		

•  CharacterisAcs	of	Tasks	and	InteracAons		
–  Task	GeneraAon,	Granularity,	and	Context		
–  CharacterisAcs	of	Task	InteracAons		

•  Mapping	Techniques	for	Load	Balancing		
–  StaAc	and	Dynamic	Mapping		

•  Methods	for	Minimizing	InteracAon	Overheads		
•  Parallel	Algorithm	Design	Models		

25	



Mapping	Techniques		

26	

•  Parallel	algorithm	design	
– Program	decomposed	
– CharacterisAcs	of	task	and	interacAons	
idenAfied	

Assign	large	amount	of	concurrent	tasks	to	
equal	or	rela<vely	small	amount	of	processes	
for	execu<on	
•  	 Though	o^en	we	do	1:1	mapping	



Mapping	Techniques		

27	

•  Goal	of	mapping:	minimize	overheads	
–  There	is	cost	to	do	parallelism	

•  Interac<ons	and	idling(serializa<on)	

•  ContradicAng	objecAves:	interacAons	vs	idling		
–  Idling	(serializaAon)	ñ:	insufficient	parallelism	
–  InteracAons	ñ:	excessive	concurrency	

–  E.g.	Assigning	all	work	to	one	processor	trivially	
minimizes	interacAon	at	the	expense	of	significant	
idling.		



Mapping	Techniques	for	Minimum	Idling		

28	

•  ExecuAon:	alternaAng	stages	of	computaAon	and	interacAon	

•  Mapping	must	simultaneously	minimize	idling	and	load	balance	
–  Idling	means	not	doing	useful	work	
–  Load	balance:	doing	the	same	amount	of	work	

•  Merely	balancing	load	does	not	minimize	idling	

A	poor	mapping,	
50%	waste	



Mapping	Techniques	for	Minimum	Idling	

Sta<c	or	dynamic	mapping	
•  StaAc	Mapping	

–  Tasks	are	mapped	to	processes	a-prior		
–  Need	a	good	esAmate	of	task	sizes	
–  OpAmal	mapping	may	be	NP	complete	

•  Dynamic	Mapping	
–  Tasks	are	mapped	to	processes	at	runAme	
–  Because:	

•  Tasks	are	generated	at	runAme	
•  Their	sizes	are	not	known.		

•  Other	factors	determining	the	choice	of	mapping	techniques	
–  the	size	of	data	associated	with	a	task	
–  the	characterisAcs	of	inter-task	interacAons	
–  even	the	programming	models	and	target	architectures	

	 29	



Schemes	for	Sta<c	Mapping		

•  Mappings	based	on	data	decomposiAon	
–  Mostly	1-1	mapping	

•  Mappings	based	on	task	graph	parAAoning		
•  Hybrid	mappings	

30	



Mappings	Based	on	Data	Par<<oning		

31	

•  ParAAon	the	computaAon	using	a	combinaAon	of		
–  Data	decomposiAon	
–  The	``owner-computes''	rule	

Example:	1-D	block	distribu5on	of	2-D	dense	matrix		
	 	 	 	 	1-1	mapping	of	task/data	and	process	



Block	Array	Distribu<on	Schemes		

32	

Mul<-dimensional	Block	distribu<on	
		

In	general,	higher	dimension	decomposiAon	allows	the	use	of	larger	#	of	processes.		



Block	Array	Distribu<on	Schemes:	Examples		

Mul<plying	two	dense	matrices:	A	*	B	=	C		
•  ParAAon	the	output	matrix	C	using	a	block	decomposiAon		

–  Load	balance:	Each	task	compute	the	same	number	of	
elements	of	C	
•  Note:	each	element	of	C	corresponds	to	a	single	dot	product	

–  The	choice	of	precise	decomposiAon:	1-D	(row/col)	or	2-D	
•  Determined	by	the	associated	communicaAon	overhead	

33	



Block	Distribu<on	and	Data	Sharing	for	Dense	
Matrix	Mul<plica<on	

34	

																		X																										=	

							A									X												B												=														C	

P0	
P1	
P2	
P3	

																		X																										=	

							A									X												B												=														C	

P0	P1	P2	P3	

	
•  Row-based	1-D	

•  Column-based	1-D	

•  Row/Col-based	2-D	



Cyclic	and	Block	Cyclic	Distribu<ons		

•  Consider	a	block	distribuAon	for	LU	decomposiAon	(Gaussian	
EliminaAon)	
–  The	amount	of	computa<on	per	data	item	varies	
–  Block	decomposi<on	would	lead	to	significant	load	imbalance	

35	



LU	Factoriza<on	of	a	Dense	Matrix		

1: 

2: 

3: 

4: 

5: 

6: 

7: 

8: 

9: 

10: 

11: 

12: 

13: 

14: 

 

36	

A	decomposiAon	of	LU	factorizaAon	into	14	tasks	



Block	Distribu<on	for	LU		

No<ce	the	significant	load	imbalance	

37	



Block	Cyclic	Distribu<ons		

•  VariaAon	of	the	block	distribuAon	scheme	
–  ParAAon	an	array	into	many	more	blocks	(i.e.	tasks)	than	the	

number	of	available	processes.		
–  Blocks	are	assigned	to	processes	in	a	round-robin	manner	so	

that	each	process	gets	several	non-adjacent	blocks.		
–  N-1	mapping	of	tasks	to	processes	

•  Used	to	alleviate	the	load-imbalance	and	idling	problems.		

38	



Block-Cyclic	Distribu<on	for	Gaussian	
Elimina<on		

39	

•  AcAve	submatrix	shrinks	as	eliminaAon	progresses	
•  Assigning	blocks	in	a	block-cyclic	fashion	

–  Each	PEs	receives	blocks	from	different	parts	of	the	matrix	
–  In	one	batch	of	mapping,	the	PE	doing	the	most	will	most	

likely	receive	the	least	in	the	next	batch	



Block-Cyclic	Distribu<on		

•  A	cyclic	distribuAon:	a	special	case	with	block	size	=	1		
•  A	block	distribuAon:	a	special	case	with	block	size	=	n/p	
•  n	is	the	dimension	of	the	matrix	and	p	is	the	#of	processes.		

40	



Block	Par<<oning	and	Random	Mapping	

Sparse	matrix	computa<ons	
•  Load	imbalance	using	block-cyclic	parAAoning/mapping	

–  more	non-zero	blocks	to	diagonal	processes	P0,	P5,	P10,	and	
P15	than	others	

–  P12	gets	nothing	

41	



Block	Par<<oning	and	Random	Mapping	

42	



Graph	Par<<oning	Based	Data	Decomposi<on		

•  Array-based	parAAoning	and	staAc	mapping	
–  Regular	domain,	i.e.	rectangular,	mostly	dense	matrix	
–  Structured	and	regular	interacAon	paaerns		
–  Quite	effecAve	in	balancing	the	computaAons	and	minimizing	

the	interacAons		

•  Irregular	domain	
–  Spars	matrix-related	
–  Numerical	simulaAons	of	physical	phenomena		

•  Car,	water/blood	flow,	geographic	
•  ParAAon	the	irregular	domain	so	as	to	

–  Assign	equal	number	of	nodes	to	each	process	
–  Minimizing	edge	count	of	the	parAAon.		

43	



Par<<oning	the	Graph	of	Lake	Superior		

Random	ParAAoning	

ParAAoning	for	minimum	edge-cut.	

44	

•  Each	mesh	point	has	the	
same	amount	of	
computaAon	
–  Easy	for	load	balancing	

•  Minimize	edges	
•  OpAmal	parAAon	is	an	
NP-complete		
–  Use	heurisAcs		



Mappings	Based	on	Task	Pari<oning		

•  Schemes	for	StaAc	Mapping		
–  Mappings	based	on	data	parAAoning	

•  Mostly	1-1	mapping	
–  Mappings	based	on	task	graph	parAAoning		
–  Hybrid	mappings	

•  Data	parAAoning	
–  Data	decomposiAon	and	then	1-1	mapping	of	tasks	to	PEs	

	
Par<<oning	a	given	task-dependency	graph	across	processes		
•  An	opAmal	mapping	for	a	general	task-dependency	graph	

–  NP-complete	problem.		
•  Excellent	heurisAcs	exist	for	structured	graphs.		

45	



Mapping	a	Binary	Tree	Dependency	Graph	

46	

Mapping	dependency	graph	of	quicksort	to		
processes	in	a	hypercube	

•  Hypercube:	n-dimensional	analogue	of	a	square	and	a	cube	
–  node	numbers	that	differ	in	1	bit	are	adjacent		

	



Mapping	a	Sparse	Graph		

Sparse	matrix	vector	mul<plica<on	
Using	data	parAAoning	

47	



Mapping	a	Sparse	Graph		

Sparse	matrix	vector	mul<plica<on	
Using	task	graph	parAAoning	

48	

13	items	to	
communicate	

Process	0	 0,4,5,8	

Process	1	 1,2,3,7	

Process	2	 6,9,10,11	



Hierarchical/Hybrid	Mappings		

•  A	single	mapping	is	inadequate.		
–  E.g.	task	graph	mapping	of	the	binary	tree	(quicksort)	cannot	

use	a	large	number	of	processors.		
•  Hierarchical	mapping	

–  Task	graph	mapping	at	the	top	level	
–  Data	parAAoning	within	each	level.		

49	



Today’s	lecture	

•  DecomposiAon	Techniques	-	conAnued		
–  Exploratory	DecomposiAon		
–  Hybrid	DecomposiAon		

•  CharacterisAcs	of	Tasks	and	InteracAons		
–  Task	GeneraAon,	Granularity,	and	Context		
–  CharacterisAcs	of	Task	InteracAons		

•  Mapping	Techniques	for	Load	Balancing		
–  StaAc	
–  Dynamic	Mapping		

•  Methods	for	Minimizing	InteracAon	Overheads		
•  Parallel	Algorithm	Design	Models		

50	



Schemes	for	Dynamic	Mapping		

•  Also	referred	to	as	dynamic	load	balancing	
–  Load	balancing	is	the	primary	moAvaAon	for	dynamic	

mapping.		
•  Dynamic	mapping	schemes	can	be	

–  Centralized	
–  Distributed		

51	



Centralized	Dynamic	Mapping		

•  Processes	are	designated	as	masters	or	slaves	
–  Workers	(slave	is	poliAcally	incorrect)		

•  General	strategies	
–  Master	has	pool	of	tasks	and	as	central	dispatcher	
–  When	one	runs	out	of	work,	it	requests	from	master	for	more	work.		

•  Challenge	
–  When	process	#	increases,	master	may	become	the	boaleneck.		

•  Approach	
–  Chunk	scheduling:	a	process	picks	up	mulAple	tasks	at	once		
–  Chunk	size:	

•  Large	chunk	sizes	may	lead	to	significant	load	imbalances	as	well	
•  Schemes	to	gradually	decrease	chunk	size	as	the	computaAon	
progresses.		

52	



Distributed	Dynamic	Mapping		

•  All	processes	are	created	equal	
–  Each	can	send	or	receive	work	from	others		

•  Alleviates	the	boaleneck	in	centralized	schemes.		
•  Four	criAcal	design	quesAons:	

–  how	are	sending	and	receiving	processes	paired	together	
–  who	iniAates	work	transfer	
–  how	much	work	is	transferred	
–  when	is	a	transfer	triggered?		

•  Answers	are	generally	applicaAon	specific.		

•  Workstealing	

53	



Today’s	lecture	

•  DecomposiAon	Techniques	-	conAnued		
–  Exploratory	DecomposiAon		
–  Hybrid	DecomposiAon		

•  CharacterisAcs	of	Tasks	and	InteracAons		
–  Task	GeneraAon,	Granularity,	and	Context		
–  CharacterisAcs	of	Task	InteracAons		

•  Mapping	Techniques	for	Load	Balancing		
–  StaAc	
–  Dynamic	Mapping		

•  Methods	for	Minimizing	InteracAon	Overheads		
•  Parallel	Algorithm	Design	Models		

54	



Minimizing	Interac<on	Overheads		

Rules	of	thumb	
•  Maximize	data	locality	

–  Where	possible,	reuse	intermediate	data	
–  Restructure	computaAon	so	that	data	can	be	reused	in	smaller	

Ame	windows.		
•  Minimize	volume	of	data	exchange	

–  parAAon	interacAon	graph	to	minimize	edge	crossings	
•  Minimize	frequency	of	interacAons	

–  Merge	mulAple	interacAons	to	one,	e.g.	aggregate	small	msgs.		
•  Minimize	contenAon	and	hot-spots	

–  Use	decentralized	techniques	
–  Replicate	data	where	necessary		

55	



Minimizing	Interac<on	Overheads	(con<nued)		

Techniques	
•  Overlapping	computaAons	with	interacAons	

–  Use	non-blocking	communicaAons	
–  MulAthreading	
–  Prefetching	to	hide	latencies.		

•  ReplicaAng	data	or	computaAons	to	reduce	communicaAon		
•  Using	group	communicaAons	instead	of	point-to-point	
primiAves.		

•  Overlap	interacAons	with	other	interacAons.		

56	



Today’s	lecture	

•  DecomposiAon	Techniques	-	conAnued		
–  Exploratory	DecomposiAon		
–  Hybrid	DecomposiAon		

•  CharacterisAcs	of	Tasks	and	InteracAons		
–  Task	GeneraAon,	Granularity,	and	Context		
–  CharacterisAcs	of	Task	InteracAons		

•  Mapping	Techniques	for	Load	Balancing		
–  StaAc	
–  Dynamic	Mapping		

•  Methods	for	Minimizing	InteracAon	Overheads		
•  Parallel	Algorithm	Design	Models		

57	



Parallel	Algorithm	Models		

•  Ways	of	structuring	parallel	algorithm	
–  DecomposiAon	techniques	
–  Mapping	technique	
–  Strategy	to	minimize	interacAons.		

	
•  Data	Parallel	Model	

–  Each	task	performs	similar	operaAons	on	different	data	
–  Tasks	are	staAcally	(or	semi-staAcally)	mapped	to	processes	

•  Task	Graph	Model	
–  Use	task	dependency	graph	to	guide	the	model	for	beaer	

locality	or	low	interacAon	costs.		

58	



Parallel	Algorithm	Models	(con<nued)		

•  Master-Slave	Model	
–  Master	(one	or	more)	generate	work	
–  Dispatch	work	to	workers.		
–  Dispatching	may	be	staAc	or	dynamic.		

•  Pipeline	/	Producer-Comsumer	Model	
–  Stream	of	data	is	passed	through	a	succession	of	processes,	

each	of	which	perform	some	task	on	it	
–  MulAple	stream	concurrently	

•  Hybrid	Models	
–  Applying	mulAple	models	hierarchically	
–  Applying	mulAple	models	sequenAally	to	different	phases	of	a	

parallel	algorithm.		

59	



References	

•  Adapted	from	slides	“Principles	of	Parallel	Algorithm	
Design”	by	Ananth	Grama	

•  Based	on	Chapter	3	of	“IntroducAon	to	Parallel	CompuAng”	
by	Ananth	Grama,	Anshul	Gupta,	George	Karypis,	and	Vipin	
Kumar.	Addison	Wesley,	2003	

60	


