Lecture 08: Principles of Parallel Algorithm Design

Concurrent and Multicore Programming
CSE 436/536
Department of Computer Science and Engineering
Yonghong Yan
yan@oakland.edu
www.secs.oakland.edu/~yan
Last lecture: Algorithms and Concurrency

- Introduction to Parallel Algorithms
 - Tasks and Decomposition
 - Processes and Mapping

- Decomposition Techniques
 - Recursive Decomposition (divide-conquer)
 - Data Decomposition (input, output, input+output, intermediate)

- Terms and concepts
 - Task dependency graph, task granularity, degree of concurrency
 - Task interaction graph, critical path

- Examples:
 - Dense vector addition, matrix vector product
 - Dense matrix matrix product
 - Database query
 - Quicksort, MIN
Today’s lecture

分解技术 - 继续
– 探索性分解
– 混合分解

映射任务到进程/内核/CPU/PEs

• 任务和交互的特性
 – 任务生成，粒度，和上下文
 – 任务交互的特性

• 映射技术用于负载平衡
 – 静态和动态映射

• 减少交互开销的方法
• 并行算法设计模型
Exploratory Decomposition

• Decomposition is fixed/static from the design
 – Data and recursive

• Exploration (search) of a state space of solutions
 – problem decomposition reflects shape of execution
 – Goes hand-in-hand with its execution

• Examples
 – discrete optimization, e.g. 0/1 integer programming
 – theorem proving
 – game playing
Exploratory Decomposition: Example

Solve a 15 puzzle

• Sequence of three moves from state (a) to final state (d)

\[
\begin{array}{cccc}
1 & 2 & 3 & 4 \\
5 & 6 & 8 & \\
9 & 10 & 7 & 11 \\
13 & 14 & 15 & 12 \\
\end{array}
\quad
\begin{array}{cccc}
1 & 2 & 3 & 4 \\
5 & 6 & 7 & 8 \\
9 & 10 & 11 & \\
13 & 14 & 15 & 12 \\
\end{array}
\quad
\begin{array}{cccc}
1 & 2 & 3 & 4 \\
5 & 6 & 7 & 8 \\
9 & 10 & 11 & 12 \\
13 & 14 & 15 & \\
\end{array}
\quad
\begin{array}{cccc}
1 & 2 & 3 & 4 \\
5 & 6 & 7 & 8 \\
9 & 10 & 11 & 12 \\
13 & 14 & 15 & \\
\end{array}
\]

(a) \quad (b) \quad (c) \quad (d)

• From an arbitrary state, must search for a solution
Exploratory Decomposition: Example

Solving a 15 puzzle

• Search
 – generate successor states of the current state
 – explore each as an independent task
Exploratory Decomposition Speedup

Solve a 15 puzzle

- The decomposition behaves according to the parallel formulation
 - May change the amount of work done

(a) Total serial work: 2m+1
 Total parallel work: 1

(b) Total serial work: m
 Total parallel work: 4m

Execution terminate when a solution is found
Speculative Decomposition

• Dependencies between tasks are not known a-priori.
 – **Impossible to identify independent tasks**

• Two approaches
 – **Conservative approaches**, which identify independent tasks only when they are guaranteed to not have dependencies
 • **May yield little concurrency**
 – **Optimistic approaches**, which schedule tasks even when they may potentially be inter-dependent
 • **Roll-back changes in case of an error**
Discrete event simulation

• Centralized time-ordered event list
 – you get up → get ready → drive to work → work → eat lunch → work some more → drive back → eat dinner → and sleep

• Simulation
 – extract next event in time order
 – process the event
 – if required, insert new events into the event list

• Optimistic event scheduling
 – assume outcomes of all prior events
 – speculatively process next event
 – if assumption is incorrect, roll back its effects and continue
Speculative Decomposition: Example

Simulation of a network of nodes

- Simulate network behavior for various input and node delays
 - The input are dynamically changing
 - Thus task dependency is unknown

- Speculate execution: tasks’ input
 - Correct: parallelism
 - Incorrect: rollback and redo
Speculative vs Exploratory

- Exploratory decomposition
 - The output of multiple tasks from a branch is unknown
 - Parallel program perform more, less or same amount of work as serial program

- Speculative
 - The input at a branch leading to multiple parallel tasks is unknown
 - Parallel program perform more or same amount of work as the serial algorithm
Hybrid Decompositions

Use multiple decomposition techniques together

• One decomposition may be not optimal for concurrency
 – Quicksort recursive decomposition limits concurrency (Why?)

• Combined recursive and data decomposition for MIN

```
3 7 2 9
11 4 5 8
7 10 6 13
1 19 3 9
```

Data decomposition

Recursive decomposition
Today’s lecture

- Decomposition Techniques - continued
 - Exploratory Decomposition
 - Hybrid Decomposition

Mapping tasks to processes/cores/CPU/PEs

- Characteristics of Tasks and Interactions
 - Task Generation, Granularity, and Context
 - Characteristics of Task Interactions
- Mapping Techniques for Load Balancing
 - Static and Dynamic Mapping
- Methods for Minimizing Interaction Overheads
- Parallel Algorithm Design Models
Characteristics of Tasks

• Theory
 – Decomposition: to parallelize theoretically
 • Concurrency available in a problem

• Practice
 – Task creations, interactions and mapping to PEs.
 • Realizing concurrency practically
 – Characteristics of tasks and task interactions
 • Impact choice and performance of parallelism

• Characteristics of tasks
 – Task generation strategies
 – Task sizes (the amount of work, e.g. FLOPs)
 – Size of data associated with tasks
Task Generation

• Static task generation
 – Concurrent tasks and task graph known a-priori (before execution)
 – Typically using recursive or data decomposition
 – Examples
 • Matrix operations
 • Graph algorithms
 • Image processing applications
 • Other *regularly* structured problems

• Dynamic task generation
 – Computations formulate concurrent tasks and task graph on the fly
 • Not explicit a priori, though high-level rules or guidelines known
 – Typically by exploratory or speculative decompositions.
 • Also possible by recursive decomposition, e.g. quicksort
 – A classic example: game playing
 • 15 puzzle board
Task Sizes/Granularity

- The amount of work \rightarrow amount of time to complete
 - E.g. FLOPs, memory access
- Uniform:
 - Often by *even* data decomposition, i.e. regular
- Non-uniform
 - Quicksort, the choice of pivot
Size of Data Associated with Tasks

• May be small or large compared to the task sizes
 – How relevant to the input and/or output data sizes
 – Example:
 • \(\text{size(input)} < \text{size(computation)} \), e.g., 15 puzzle
 • \(\text{size(input)} = \text{size(computation)} > \text{size(output)} \), e.g., min
 • \(\text{size(input)} = \text{size(output)} < \text{size(computation)} \), e.g., sort

• Considering the efforts to reconstruct the same task context
 – small data: small efforts: task can easily migrate to another process
 – large data: large efforts: ties the task to a process

• Context reconstructing vs communicating
 – It depends
Characteristics of Task Interactions

• Aspects of interactions
 – What: shared data or synchronizations, and sizes of the media
 – When: the timing
 – Who: with which task(s), and overall topology/patterns
 – Do we know details of the above three before execution
 – How: involve one or both?
 • The implementation concern, implicit or explicit

Orthogonal classification
• Static vs. dynamic
• Regular vs. irregular
• Read-only vs. read-write
• One-sided vs. two-sided
Characteristics of Task Interactions

- Aspects of interactions
 - What: shared data or synchronizations, and sizes of the media
 - When: the timing
 - Who: with which task(s), and overall topology/patterns
 - Do we know details of the above three before execution
 - How: involve one or both?

- Static interactions
 - Partners and timing (and else) are known a-priori
 - Relatively simpler to code into programs.

- Dynamic interactions
 - The timing or interacting tasks cannot be determined a-priori.
 - Harder to code, especially using explicit interaction.
Characteristics of Task Interactions

• Aspects of interactions
 – What: shared data or synchronizations, and sizes of the media
 – When: the timing
 – Who: with which task(s), and overall topology/patterns
 – Do we know details of the above three before execution
 – How: involve one or both?

• Regular interactions
 – Definite pattern of the interactions
 • E.g. a mesh or ring
 – Can be exploited for efficient implementation.

• Irregular interactions
 – lack well-defined topologies
 – Modeled as a graph
Example of *Regular* Static Interaction

Image processing algorithms: dithering, edge detection

- Nearest neighbor interactions on a 2D mesh

\[G_x = \begin{bmatrix} -1 & 0 & +1 \\ -2 & 0 & +2 \\ -1 & 0 & +1 \end{bmatrix}, \quad G_y = \begin{bmatrix} -1 & -2 & -1 \\ 0 & 0 & 0 \\ +1 & +2 & +1 \end{bmatrix} \]
Example of *Irregular* Static Interaction

Sparse matrix vector multiplication

(a)

(b)
Characteristics of Task Interactions

• Aspects of interactions
 – **What**: shared data or synchronizations, and sizes of the media

• Read-only interactions
 – Tasks only read data items associated with other tasks

• Read-write interactions
 – Read, as well as modify data items associated with other tasks.
 – Harder to code
 • **Require additional synchronization primitives**
 – to avoid read-write and write-write ordering races
Characteristics of Task Interactions

• Aspects of interactions
 – What: shared data or synchronizations, and sizes of the media
 – When: the timing
 – Who: with which task(s), and overall topology/patterns
 – Do we know details of the above three before execution
 – How: involve one or both?
 • The implementation concern, implicit or explicit

• One-sided
 – initiated & completed independently by 1 of 2 interacting tasks
 • GET and PUT

• Two-sided
 – both tasks coordinate in an interaction
 • SEND + RECV
Today’s lecture

• Decomposition Techniques - continued
 – Exploratory Decomposition
 – Hybrid Decomposition

• Characteristics of Tasks and Interactions
 – Task Generation, Granularity, and Context
 – Characteristics of Task Interactions

Mapping Techniques for Load Balancing
 – Static and Dynamic Mapping

• Methods for Minimizing Interaction Overheads
• Parallel Algorithm Design Models
Mapping Techniques

• Parallel algorithm design
 – Program decomposed
 – Characteristics of task and interactions identified

Assign large amount of concurrent tasks to equal or relatively small amount of processes for execution

• Though often we do 1:1 mapping
Mapping Techniques

• Goal of mapping: minimize overheads
 – There is cost to do parallelism
 • Interactions and idling (serialization)

• Contradicting objectives: interactions vs idling
 – Idling (serialization) ↑: insufficient parallelism
 – Interactions ↑: excessive concurrency

 – E.g. Assigning all work to one processor trivially minimizes interaction at the expense of significant idling.
Mapping Techniques for Minimum Idling

- Execution: alternating stages of computation and interaction

- Mapping must simultaneously minimize idling and load balance
 - Idling means not doing useful work
 - Load balance: doing the same amount of work

- Merely balancing load does not minimize idling

\[\text{A poor mapping, 50\% waste} \]
Mapping Techniques for Minimum Idling

Static or dynamic mapping

• Static Mapping
 – Tasks are mapped to processes a-prior
 – Need a good estimate of task sizes
 – Optimal mapping may be NP complete

• Dynamic Mapping
 – Tasks are mapped to processes at runtime
 – Because:
 • Tasks are generated at runtime
 • Their sizes are not known.

• Other factors determining the choice of mapping techniques
 – the size of data associated with a task
 – the characteristics of inter-task interactions
 – even the programming models and target architectures
Schemes for Static Mapping

• Mappings based on data decomposition
 – Mostly 1-1 mapping

• Mappings based on task graph partitioning

• Hybrid mappings
Mappings Based on Data Partitioning

- Partition the computation using a combination of
 - Data decomposition
 - The "owner-computes" rule

Example: 1-D *block distribution* of 2-D dense matrix

1-1 mapping of task/data and process

<table>
<thead>
<tr>
<th>row-wise distribution</th>
<th>column-wise distribution</th>
</tr>
</thead>
<tbody>
<tr>
<td>P_0</td>
<td>P_0</td>
</tr>
<tr>
<td>P_1</td>
<td>P_1</td>
</tr>
<tr>
<td>P_2</td>
<td>P_2</td>
</tr>
<tr>
<td>P_3</td>
<td>P_3</td>
</tr>
<tr>
<td>P_4</td>
<td>P_4</td>
</tr>
<tr>
<td>P_5</td>
<td>P_5</td>
</tr>
<tr>
<td>P_6</td>
<td>P_6</td>
</tr>
<tr>
<td>P_7</td>
<td>P_7</td>
</tr>
</tbody>
</table>
Block Array Distribution Schemes

Multi-dimensional Block distribution

In general, higher dimension decomposition allows the use of larger # of processes.
Block Array Distribution Schemes: Examples

Multiplying two dense matrices: $A \times B = C$

- Partition the output matrix C using a block decomposition
 - Load balance: Each task compute the same number of elements of C
 - Note: each element of C corresponds to a single dot product
 - The choice of precise decomposition: 1-D (row/col) or 2-D
 - Determined by the associated communication overhead

$$
\begin{bmatrix}
A(11) & A(12) & A(13) \\
A(21) & A(22) & A(23) \\
A(31) & A(32) & A(33)
\end{bmatrix} \times
\begin{bmatrix}
B(11) & B(12) & B(13) \\
B(21) & B(22) & B(23) \\
B(31) & B(32) & B(33)
\end{bmatrix} =
\begin{bmatrix}
C(11) & C(12) & C(13) \\
C(21) & C(22) & C(23) \\
C(31) & C(32) & C(33)
\end{bmatrix}
$$

- $C(11) = A(11) \times B(11) + A(12) \times B(21) + A(13) \times B(31)$
- $C(21) = A(21) \times B(11) + A(22) \times B(21) + A(23) \times B(31)$
- $C(31) = A(31) \times B(11) + A(32) \times B(21) + A(33) \times B(31)$
- $C(12) = A(11) \times B(12) + A(12) \times B(22) + A(13) \times B(32)$
- $C(22) = A(21) \times B(12) + A(22) \times B(22) + A(23) \times B(32)$
- $C(32) = A(31) \times B(12) + A(32) \times B(22) + A(33) \times B(32)$
- $C(13) = A(11) \times B(13) + A(12) \times B(23) + A(13) \times B(33)$
- $C(23) = A(21) \times B(13) + A(22) \times B(23) + A(23) \times B(33)$
- $C(33) = A(31) \times B(13) + A(32) \times B(23) + A(33) \times B(33)$
Block Distribution and Data Sharing for Dense Matrix Multiplication

- **Row-based 1-D**
 \[
 \begin{array}{c}
 \text{A} \\
 \text{X} \\
 \text{B} \\
 \text{=} \\
 \text{C}
 \end{array}
 \]

- **Column-based 1-D**
 \[
 \begin{array}{c}
 \text{A} \\
 \text{X} \\
 \text{B} \\
 \text{=} \\
 \text{C}
 \end{array}
 \]

- **Row/Col-based 2-D**
 \[
 \begin{array}{c}
 \text{A} \\
 \text{X} \\
 \text{B} \\
 \text{=} \\
 \text{C}
 \end{array}
 \]
Cyclic and Block Cyclic Distributions

- Consider a block distribution for LU decomposition (Gaussian Elimination)
 - The amount of computation per data item varies
 - Block decomposition would lead to significant load imbalance
LU Factorization of a Dense Matrix

A decomposition of LU factorization into 14 tasks

\[
\begin{pmatrix}
A_{1,1} & A_{1,2} & A_{1,3} \\
A_{2,1} & A_{2,2} & A_{2,3} \\
A_{3,1} & A_{3,2} & A_{3,3}
\end{pmatrix}
\rightarrow
\begin{pmatrix}
L_{1,1} & 0 & 0 \\
L_{2,1} & L_{2,2} & 0 \\
L_{3,1} & L_{3,2} & L_{3,3}
\end{pmatrix}
\cdot
\begin{pmatrix}
U_{1,1} & U_{1,2} & U_{1,3} \\
0 & U_{2,2} & U_{2,3} \\
0 & 0 & U_{3,3}
\end{pmatrix}
\]

1: \(A_{1,1} \rightarrow L_{1,1}U_{1,1} \)
2: \(L_{2,1} = A_{2,1}U_{1,1}^{-1} \)
3: \(L_{3,1} = A_{3,1}U_{1,1}^{-1} \)
4: \(U_{1,2} = L_{1,1}^{-1}A_{1,2} \)
5: \(U_{1,3} = L_{1,1}^{-1}A_{1,3} \)
6: \(A_{2,2} = A_{2,2} - L_{2,1}U_{1,2} \)
7: \(A_{3,2} = A_{3,2} - L_{3,1}U_{1,2} \)
8: \(A_{2,3} = A_{2,3} - L_{2,1}U_{1,3} \)
9: \(A_{3,3} = A_{3,3} - L_{3,1}U_{1,3} \)
10: \(A_{2,2} \rightarrow L_{2,2}U_{2,2} \)
11: \(L_{3,2} = A_{3,2}U_{2,2}^{-1} \)
12: \(U_{2,3} = L_{2,2}^{-1}A_{2,3} \)
13: \(A_{3,3} = A_{3,3} - L_{3,2}U_{2,3} \)
14: \(A_{3,3} \rightarrow L_{3,3}U_{3,3} \)
Block Distribution for LU

Notice the significant load imbalance

<table>
<thead>
<tr>
<th>P_0</th>
<th>P_3</th>
<th>P_6</th>
</tr>
</thead>
<tbody>
<tr>
<td>T_1</td>
<td>T_4</td>
<td>T_5</td>
</tr>
<tr>
<td>P_1</td>
<td>P_4</td>
<td>P_7</td>
</tr>
<tr>
<td>T_2</td>
<td>T_6</td>
<td>T_8</td>
</tr>
<tr>
<td></td>
<td>T_{10}</td>
<td>T_{12}</td>
</tr>
<tr>
<td>P_2</td>
<td>P_5</td>
<td>P_8</td>
</tr>
<tr>
<td>T_3</td>
<td>T_7</td>
<td>T_{13}</td>
</tr>
<tr>
<td></td>
<td>T_{11}</td>
<td>T_{14}</td>
</tr>
</tbody>
</table>
Block Cyclic Distributions

• Variation of the block distribution scheme
 – Partition an array into many more blocks (i.e. tasks) than the number of available processes.
 – Blocks are assigned to processes in a round-robin manner so that each process gets several non-adjacent blocks.
 – N-1 mapping of tasks to processes

• Used to alleviate the load-imbalance and idling problems.
Block-Cyclic Distribution for Gaussian Elimination

- Active submatrix shrinks as elimination progresses
- Assigning blocks in a block-cyclic fashion
 - Each PEs receives blocks from different parts of the matrix
 - In one batch of mapping, the PE doing the most will most likely receive the least in the next batch
Block-Cyclic Distribution

- A cyclic distribution: a special case with block size = 1
- A block distribution: a special case with block size = n/p
 - n is the dimension of the matrix and p is the number of processes.
Sparse matrix computations

• Load imbalance using block-cyclic partitioning/mapping
 – more non-zero blocks to diagonal processes P_0, P_5, P_{10}, and P_{15} than others
 – P_{12} gets nothing
Block Partitioning and Random Mapping

\[V = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11] \]

\[\text{random}(V) = [8, 2, 6, 0, 3, 7, 11, 1, 9, 5, 4, 10] \]

mapping

\[
\begin{array}{cccc}
8 & 2 & 6 & 0 \\
3 & 7 & 11 & 1 \\
9 & 5 & 4 & 10 \\
\end{array}
\]

\[P_0 \quad P_1 \quad P_2 \quad P_3 \]

(a) (b) (c)
Graph Partitioning Based Data Decomposition

• Array-based partitioning and static mapping
 – Regular domain, i.e. rectangular, mostly dense matrix
 – Structured and regular interaction patterns
 – Quite effective in balancing the computations and minimizing the interactions

• Irregular domain
 – Spars matrix-related
 – Numerical simulations of physical phenomena
 • Car, water/blood flow, geographic

• Partition the irregular domain so as to
 – Assign equal number of nodes to each process
 – Minimizing edge count of the partition.
Partitioning the Graph of Lake Superior

- Each mesh point has the same amount of computation
 - Easy for load balancing
- Minimize edges
- Optimal partition is an NP-complete
 - Use heuristics
Mappings Based on Task Partitioning

• Schemes for Static Mapping
 – Mappings based on data partitioning
 • Mostly 1-1 mapping
 – Mappings based on task graph partitioning
 – Hybrid mappings

• Data partitioning
 – Data decomposition and then 1-1 mapping of tasks to PEs

Partitioning a given task-dependency graph across processes
• An optimal mapping for a general task-dependency graph
 – NP-complete problem.
• Excellent heuristics exist for structured graphs.
Mapping a Binary Tree Dependency Graph

Mapping dependency graph of quicksort to processes in a hypercube

- Hypercube: n-dimensional analogue of a square and a cube
 - node numbers that differ in 1 bit are adjacent
Mapping a Sparse Graph

Sparse matrix vector multiplication

Using data partitioning
Mapping a Sparse Graph

Sparse matrix vector multiplication

Using task graph partitioning

Process 0
0,4,5,8

Process 1
1,2,3,7

Process 2
6,9,10,11
A single mapping is inadequate.
- E.g. task graph mapping of the binary tree (quicksort) cannot use a large number of processors.

Hierarchical mapping
- Task graph mapping at the top level
- Data partitioning within each level.
Today’s lecture

• Decomposition Techniques - continued
 – Exploratory Decomposition
 – Hybrid Decomposition

• Characteristics of Tasks and Interactions
 – Task Generation, Granularity, and Context
 – Characteristics of Task Interactions

• Mapping Techniques for Load Balancing
 – Static
 ➡️ Dynamic Mapping

• Methods for Minimizing Interaction Overheads

• Parallel Algorithm Design Models
Schemes for Dynamic Mapping

• Also referred to as dynamic load balancing
 – Load balancing is the primary motivation for dynamic mapping.

• Dynamic mapping schemes can be
 – Centralized
 – Distributed
Centralized Dynamic Mapping

• Processes are designated as **masters** or **slaves**
 – Workers (slave is politically incorrect)

• General strategies
 – Master has pool of tasks and as central dispatcher
 – When one runs out of work, it requests from master for more work.

• Challenge
 – When process # increases, master may become the bottleneck.

• Approach
 – Chunk scheduling: a process picks up multiple tasks at once
 – Chunk size:
 • Large chunk sizes may lead to significant load imbalances as well
 • Schemes to gradually decrease chunk size as the computation progresses.
Distributed Dynamic Mapping

• All processes are created equal
 – Each can send or receive work from others
 • Alleviates the bottleneck in centralized schemes.

• Four critical design questions:
 – how are sending and receiving processes paired together
 – who initiates work transfer
 – how much work is transferred
 – when is a transfer triggered?

• Answers are generally application specific.

• Workstealing
Today’s lecture

• Decomposition Techniques - continued
 – Exploratory Decomposition
 – Hybrid Decomposition

• Characteristics of Tasks and Interactions
 – Task Generation, Granularity, and Context
 – Characteristics of Task Interactions

• Mapping Techniques for Load Balancing
 – Static
 – Dynamic Mapping

Methods for Minimizing Interaction Overheads

• Parallel Algorithm Design Models
Minimizing Interaction Overheads

Rules of thumb

• Maximize data locality
 – Where possible, reuse intermediate data
 – Restructure computation so that data can be reused in smaller time windows.

• Minimize volume of data exchange
 – partition interaction graph to minimize edge crossings

• Minimize frequency of interactions
 – Merge multiple interactions to one, e.g. aggregate small msgs.

• Minimize contention and hot-spots
 – Use decentralized techniques
 – Replicate data where necessary
Minimizing Interaction Overheads (continued)

Techniques

• Overlapping computations with interactions
 – Use non-blocking communications
 – Multithreading
 – Prefetching to hide latencies.
• Replicating data or computations to reduce communication
• Using group communications instead of point-to-point primitives.
• Overlap interactions with other interactions.
Today’s lecture

• Decomposition Techniques - continued
 – Exploratory Decomposition
 – Hybrid Decomposition

• Characteristics of Tasks and Interactions
 – Task Generation, Granularity, and Context
 – Characteristics of Task Interactions

• Mapping Techniques for Load Balancing
 – Static
 – Dynamic Mapping

• Methods for Minimizing Interaction Overheads

Parallel Algorithm Design Models
Parallel Algorithm Models

• Ways of structuring parallel algorithm
 – Decomposition techniques
 – Mapping technique
 – Strategy to minimize interactions.

• Data Parallel Model
 – Each task performs similar operations on different data
 – Tasks are statically (or semi-statically) mapped to processes

• Task Graph Model
 – Use task dependency graph to guide the model for better locality or low interaction costs.
Parallel Algorithm Models (continued)

- **Master-Slave Model**
 - Master (one or more) generate work
 - Dispatch work to workers.
 - Dispatching may be static or dynamic.

- **Pipeline / Producer-Consumer Model**
 - Stream of data is passed through a succession of processes, each of which perform some task on it
 - Multiple stream concurrently

- **Hybrid Models**
 - Applying multiple models hierarchically
 - Applying multiple models sequentially to different phases of a parallel algorithm.
References

• Adapted from slides “Principles of Parallel Algorithm Design” by Ananth Grama
• Based on Chapter 3 of “Introduction to Parallel Computing” by Ananth Grama, Anshul Gupta, George Karypis, and Vipin Kumar. Addison Wesley, 2003