
Lecture	7:	Principles	of	Parallel	
Algorithm	Design	

Concurrent	and	Mul;core	Programming	
CSE	436/536	

Department	of	Computer	Science	and	Engineering	
Yonghong	Yan	

yan@oakland.edu	
www.secs.oakland.edu/~yan	

	

1	

Topics	(Part	1)	

•  IntroducAon	
•  Programming	on	shared	memory	system	(Chapter	7)	

–  OpenMP	
•  Principles	of	parallel	algorithm	design	(Chapter	3)		
•  Programming	on	shared	memory	system	(Chapter	7)	

–  Cilk/Cilkplus	and	OpenMP	Tasking	
–  PThread,	mutual	exclusion,	locks,	synchroniza;ons	

•  Analysis	of	parallel	program	execuAons	(Chapter	5)	
–  Performance	Metrics	for	Parallel	Systems	

•  Execu;on	Time,	Overhead,	Speedup,	Efficiency,	Cost		
–  Scalability	of	Parallel	Systems	
–  Use	of	performance	tools	

2	

Topics	(Part	2)	

•  Parallel	architectures	and	hardware	
–  Parallel	computer	architectures	
–  Memory	hierarchy	and	cache	coherency	

•  Manycore	GPU	architectures	and	programming	
–  GPUs	architectures	
–  CUDA	programming	
–  IntroducAon	to	offloading	model	in	OpenMP	

•  Programming	on	large	scale	systems	(Chapter	6)	
–  MPI	(point	to	point	and	collec;ves)	
–  IntroducAon	to	PGAS	languages,	UPC	and	Chapel	

•  Parallel	algorithms	(Chapter	8,9	&10)	
–  Sor;ng	and	Stencil	

3	

“parallel	and	for”	OpenMP	Constructs	

4	

for(i=0;i<N;i++) { a[i] = a[i] + b[i]; }

#pragma omp parallel shared (a, b)

{

 int id, i, Nthrds, istart, iend;
 id = omp_get_thread_num();
 Nthrds = omp_get_num_threads();
 istart = id * N / Nthrds;
 iend = (id+1) * N / Nthrds;
 for(i=istart;i<iend;i++) { a[i] = a[i] + b[i]; }

}

#pragma omp parallel shared (a, b) private (i)
#pragma omp for schedule(static)

 for(i=0;i<N;i++) { a[i] = a[i] + b[i]; }

Sequential code

OpenMP parallel
region

OpenMP parallel
region and a
worksharing for
construct

OpenMP	Best	Prac;ces	

#pragma	omp	parallel	private(i)	
{	
			#pragma	omp	for	nowait	
			for(i=0;i<n;i++)	
						a[i]	+=b[i];	
			#pragma	omp	for	nowait	
			for(i=0;i<n;i++)	
						c[i]	+=d[i];	
			#pragma	omp	barrier	
			#pragma	omp	for	nowait	reducAon(+:sum)	
			for(i=0;i<n;i++)	
					sum	+=	a[i]	+	c[i];	
}		

5	

•  False	sharing	
–  When	at	least	one	thread	write	to	a	

cache	line	while	others	access	it	
•  Thread	0:		=	A[1]				(read)	
•  Thread	1:	A[0]	=	…	(write)	

•  SoluAon:	use	array	padding	

int a[max_threads];
#pragma omp parallel for schedule(static,1)
for(int i=0; i<max_threads; i++)
 a[i] +=i;

int a[max_threads][cache_line_size];
#pragma omp parallel for schedule(static,1)
for(int i=0; i<max_threads; i++)
 a[i][0] +=i;

False-sharing	in	OpenMP	and	Solu;on	

Getting OpenMP Up To Speed



RvdP/V1 Tutorial IWOMP 2010 – CCS Un. of Tsukuba, June 14, 2010

False Sharing

CPUs Caches Memory

A store into a shared cache line invalidates the other
copies of that line:

The system is not able to
distinguish between changes

within one individual line

6	

A	

T0	

T1	

NUMA	First-touch	

7	

Getting OpenMP Up To Speed



RvdP/V1 Tutorial IWOMP 2010 – CCS Un. of Tsukuba, June 14, 2010

About “First Touch” placement/2

for (i=0; i<100; i++)
 a[i] = 0;
















 

a[0]
 :
a[49]

#pragma omp parallel for num_threads(2)

First Touch
Both memories each have “their half” of

the array

a[50]
 :
a[99]

 

Work	with	First-touch	in	OpenMP	

•  First-touch	in	pracAce	
–  IniAalize	data	consistently	with	the	computaAons	
	

8	

#pragma	omp	parallel	for	
for(i=0;	i<N;	i++)	{	
			a[i]	=	0.0;	b[i]	=	0.0	;	c[i]	=	0.0;		
}	
readfile(a,b,c);	
	
#pragma	omp	parallel	for	
for(i=0;	i<N;	i++)	{	
				a[i]	=	b[i]	+	c[i];	
}	

SPMD	Program	Models	in	OpenMP	

9	

•  SPMD	(Single	Program,	Mul;ple	Data)	for	parallel	regions	
–  All	threads	of	the	parallel	region	execute	the	same	code	
–  Each	thread	has	unique	ID	

•  Use	the	thread	ID	to	diverge	the	execuAon	of	the	threads	
–  Different	thread	can	follow	different	paths	through	the	same	

code	
	
				
	

•  SPMD	is	by	far	the	most	commonly	used	pamern	for	
structuring	parallel	programs	
–  MPI,	OpenMP,	CUDA,	etc	

 if(my_id == x) { }
 else { }

Overview:	Algorithms	and	Concurrency	

•  IntroducAon	to	Parallel	Algorithms		
–  Tasks	and	DecomposiAon		
–  Processes	and	Mapping		

•  Decomposi;on	Techniques		
–  Recursive	DecomposiAon		
–  Data	DecomposiAon		
–  Exploratory	DecomposiAon		
–  Hybrid	DecomposiAon		

•  CharacterisAcs	of	Tasks	and	InteracAons		
–  Task	GeneraAon,	Granularity,	and	Context		
–  CharacterisAcs	of	Task	InteracAons.		

10	

Overview:	Concurrency	and	Mapping	

•  Mapping	Techniques	for	Load	Balancing		
–  StaAc	and	Dynamic	Mapping		

•  Methods	for	Minimizing	InteracAon	Overheads		
–  Maximizing	Data	Locality		
–  Minimizing	ContenAon	and	Hot-Spots		
–  Overlapping	CommunicaAon	and	ComputaAons		
–  ReplicaAon	vs.	CommunicaAon		
–  Group	CommunicaAons	vs.	Point-to-Point	CommunicaAon		

•  Parallel	Algorithm	Design	Models		
–  Data-Parallel,	Work-Pool,	Task	Graph,	Master-Slave,	Pipeline,	

and	Hybrid	Models		
	

11	

Overview:	Algorithms	and	Concurrency	

•  IntroducAon	to	Parallel	Algorithms		
–  Tasks	and	DecomposiAon		
–  Processes	and	Mapping		

•  DecomposiAon	Techniques		
–  Recursive	DecomposiAon		
–  Data	DecomposiAon		
–  Exploratory	DecomposiAon		
–  Hybrid	DecomposiAon		

•  CharacterisAcs	of	Tasks	and	InteracAons		
–  Task	GeneraAon,	Granularity,	and	Context		
–  CharacterisAcs	of	Task	InteracAons.		

12	

Decomposi;on,	Tasks,	and	Dependency	Graphs	

•  Decompose	work	into	tasks	that	can	be	executed	concurrently		
•  DecomposiAon	could	be	in	many	different	ways.		
•  Tasks	may	be	of	same,	different,	or	even	indeterminate	sizes.		
•  Task	dependency	graph:	

–  node	=	task		
–  edge	=	control	dependence,	output-input	dependency		
–  No	dependency	==	parallelism	

13	

Example:	Dense	Matrix	Vector	Mul;plica;on	

14	

X																			=	

•  ComputaAon	of	each	element	of	output	vector	y	is	
independent	

•  Decomposed	into	n	tasks,	one	per	element	in	y	à	Easy	
•  ObservaAons	

–  Each	task	only	reads	one	row	of	A,	and	writes	one	element	of	y	
–  All	tasks	share	vector	b	(the	shared	data)	
–  No	control	dependencies	between	tasks	
–  All	tasks	are	of	the	same	size	in	terms	of	number	of	operaAons.		

REAL	A[n][n],	b[n],	y[n];	int	i,	j;	
for	(i	=	0;	i	<	n;	i++)	{	
				sum	=	0.0;	
				for	(j	=	0;	j	<	n;	j++)		
								sum	+=	A[i][j]	*	b[j];		
				c[i]	=	sum;	
}	

Example:	Database	Query	Processing		
Consider	the	execuAon	of	the	query:	
													MODEL	=	``CIVIC''	AND	YEAR	=	2001	AND	
																											(COLOR	=	``GREEN''	OR	COLOR	=	``WHITE”)		

on	the	following	table:		

ID# Model Year Color Dealer Price
4523 Civic 2002 Blue MN $18,000
3476 Corolla 1999 White IL $15,000
7623 Camry 2001 Green NY $21,000
9834 Prius 2001 Green CA $18,000
6734 Civic 2001 White OR $17,000
5342 Altima 2001 Green FL $19,000
3845 Maxima 2001 Blue NY $22,000
8354 Accord 2000 Green VT $18,000
4395 Civic 2001 Red CA $17,000
7352 Civic 2002 Red WA $18,000

15	

Example:	Database	Query	Processing		

•  Tasks:	Each	task	search	the	whole	table	for	entries	that	
saAsfy	one	predicate	
–  Results:	A	list	of	entries	

•  Edges:	output	of	one	task	serves	as	input	to	the	next	
	 	 	MODEL	=	``CIVIC''	AND	YEAR	=	2001	AND	
																											(COLOR	=	``GREEN''	OR	COLOR	=	``WHITE”)			

16	

Example:	Database	Query	Processing		
•  An	alternate	decomposiAon	
												MODEL	=	``CIVIC''	AND	YEAR	=	2001	AND	

																											(COLOR	=	``GREEN''	OR	COLOR	=	``WHITE)		
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
		

•  Different	decomposiAons	may	yield	different	parallelism	and	
performance		

	 17	

Granularity	of	Task	Decomposi;ons		
•  Granularity	is	task	size	(amount	of	computa;on)	

–  Depending	on	the	number	of	tasks	for	the	same	problem	size	
•  Fine-grained	decomposiAon	=	large	number	of	tasks		
•  Coarse	grained	decomposiAon	=	small	number	of	tasks		
•  Granularity	for	dense	matrix-vector	product	

–  fine-grain:	each	task	represents	an	individual	element	in	y	
–  coarser-grain:	each	task	computes	3	elements	in	y		

			X																				=	

18	

Degree	of	Concurrency		

•  DefiniAon:	the	number	of	tasks	that	can	be	executed	in	parallel		
•  May	change	over	program	execuAon	

•  Metrics	
–  Maximum	degree	of	concurrency	

•  Maximum	number	of	concurrent	tasks	at	any	point	during	
execuAon.		

–  Average	degree	of	concurrency	
•  The	average	number	of	tasks	that	can	be	processed	in	parallel	
over	the	execuAon	of	the	program	

•  Speedup:	serial_execu;on_;me/parallel_execu;on_;me	
•  Inverse	relaAonship	of	degree	of	concurrency	and	task	

granularity		
–  Task	granularity	é(less	tasks),	degree	of	concurrency	ê
–  Task	granularity	ê(more	tasks),	degree	of	concurrency	é	

19	

Examples:	Degree	of	Concurrency		

•  Maximum	degree	of	concurrency	
•  Average	degree	of	concurrency	

20	

X																			=	

•  Database	query	
–  Max:	4	
–  Average:	7/3	(each	task	takes	the	same	Ame)	

•  Matrix-vector	mulAplicaAon	
–  Max:	n	
–  Average:	n	

Cri;cal	Path	Length		

•  A	directed	path:	a	sequence	of	tasks	that	must	be	serialized	
–  Executed	one	ater	another	

•  CriAcal	path:	
–  The	longest	weighted	path	throughout	the	graph	

•  CriAcal	path	length:	shortest	Ame	in	which	the	program	can	
be	executed	in	parallel	
–  Lower	bound	on	parallel	execuAon	Ame	

	

21	

A	building	project	

Cri;cal	Path	Length	and	Degree	of	Concurrency		
Database	query	task	dependency	graph	

Ques;ons:	
What	are	the	tasks	on	the	criAcal	path	for	each	dependency	graph?		
What	is	the	shortest	parallel	execuAon	Ame?		
How	many	processors	are	needed	to	achieve	the	minimum	Ame?		
What	is	the	maximum	degree	of	concurrency?	
What	is	the	average	parallelism	(average	degree	of	concurrency)?	

	Total	amount	of	work/(criAcal	path	length)	
		2.33	(63/27)	and	1.88	(64/34)	

22	

Limits	on	Parallel	Performance		

•  What	bounds	parallel	execuAon	Ame?	
–  minimum	task	granularity	

•  e.g.	dense	matrix-vector	mulAplicaAon	≤	n2	concurrent	tasks	
–  fracAon	of	applicaAon	work	that	can’t	be	parallelized	

•  more	about	Amdahl’s	law	in	a	later	lecture	…	
–  dependencies	between	tasks	
–  paralleliza;on	overheads	

•  e.g.,	cost	of	communicaAon	between	tasks	
	
	

•  Measures	of	parallel	performance	
–  speedup	=	T1/Tp	
–  parallel	efficiency	=	T1/(pTp)	

23	

Task	Interac;on	Graphs		

•  Tasks	generally	exchange	data	with	others		
–  example:	dense	matrix-vector	mulAply	

•  If	b	is	not	replicated	in	all	tasks:	each	task	has	some,	but	not	
all	

•  Tasks	will	have	to	communicate	elements	of	b	

•  Task	interacAon	graph		
–  node	=	task	
–  edge	=	interacAon	or	data	exchange	

•  Task	interacAon	graphs	vs.	task	dependency	graphs		
–  Task	dependency	graphs	represent	control	dependences	
–  Task	interacAon	graphs	represent	data	dependences	

24	

Task	Interac;on	Graphs:	An	Example		

	 	 	Sparse	matrix	vector	mul;plica;on:	A	x	b	
•  ComputaAon	of	each	result	element	=	an	independent	task.		
•  Only	non-zero	elements	of	sparse	matrix	A	parAcipate	in	

computaAon.		
•  If	par;;on	b	across	tasks,	i.e.	task	Ti	has	b[i]	only	
•  The	task	interacAon	graph	of	the	computaAon	=	graph	of	the	matrix	A	
•  A	is	the	adjacent	matrix	of	the	graph	

25	

•  Finer	task	granularity	è	more	overhead	of	task	interacAons	
–  Overhead	as	a	raAo	of	useful	work	of	a	task	

•  Example:	sparse	matrix-vector	product	interacAon	graph	

•  AssumpAons:	
–  each	dot	(A[i][j]*b[j])	takes	unit	Ame	to	process		
–  each	communicaAon	(edge)	causes	an	overhead	of	a	unit	Ame	

•  If	node	0	is	a	task:	communicaAon	=	3;	computaAon	=	4	
•  If	nodes	0,	4,	and	5	are	a	task:	communicaAon	=	5;	computaAon	=	15	

–  coarser-grain	decomposi;on	→	smaller	communica;on/computa;on	
ra;o	(3/4	vs	5/15)	

Task	Interac;on	Graphs,	Granularity,	and	
Communica;on		

26	

Processes	and	Mapping		

•  Generally	
–  #	of	tasks	>=	#	processing	elements	(PEs)	available	
–  parallel	algorithm	must	map	tasks	to	processes	

•  Mapping:	aggregate	tasks	into	processes	
–  Process/thread	=	processing	or	compuAng	agent	that	performs	work	
–  assign	collecAon	of	tasks	and	associated	data	to	a	process	

•  An	PE,	e.g.	a	core/thread,	has	its	system	abstracAon	
–  Not	easy	to	bind	tasks	to	physical	PEs,	thus,	more	layers	at	least	

conceptually	from	PE	to	task	mapping	
–  Process	in	MPI,	thread	in	OpenMP/pthread,	etc	

•  The	overloaded	terms	of	processes	and	threads	
–  Task	à	processes	à	OS	processes	à	CPU	à	cores	
–  For	the	sake	of	simplicity,	processes	=	PEs/cores	

27	

Processes	and	Mapping		

•  Mapping	of	tasks	to	processes	is	criAcal	to	the	parallel	
performance	of	an	algorithm.		

•  On	what	basis	should	one	choose	mappings?	
–  Task	dependency	graph	
–  Task	interacAon	graph		

•  Task	dependency	graphs	
–  To	ensure	equal	spread	of	work	across	all	processes	at	any	point		

•  minimum	idling	
•  opAmal	load	balance		

•  Task	interacAon	graphs	
–  To	minimize	interacAons	

•  Minimize	communicaAon	and	synchronizaAon	
	 28	

Processes	and	Mapping		

A	good	mapping	must	minimize	parallel	execu;on	;me	by:	
	
•  Mapping	independent	tasks	to	different	processes	

–  Maximize	concurrency		
•  Tasks	on	criAcal	path	have	high	priority	of	being	assigned	to	
processes	

•  Minimizing	interacAon	between	processes		
–  mapping	tasks	with	dense	interacAons	to	the	same	process.		

•  Difficulty:	these	criteria	oten	conflict	with	each	other	
–  E.g.	No	decomposiAon,	i.e.	one	task,	minimizes	interacAon	but	

no	speedup	at	all!	
–  Other	such	conflicAng	cases?		

29	

Processes	and	Mapping:	Example		

30	

Example:	mapping	database	queries	to	processes	
•  Consider	the	dependency	graphs	in	levels		

–  no	nodes	in	a	level	depend	upon	one	another	
•  Assign	all	tasks	within	a	level	to	different	processes	

–  compute	levels	using	topological	sort	

Overview:	Algorithms	and	Concurrency	

•  IntroducAon	to	Parallel	Algorithms		
–  Tasks	and	Decomposi;on		
–  Processes	and	Mapping		

•  Decomposi;on	Techniques		
–  Recursive	DecomposiAon		
–  Data	DecomposiAon		
–  Exploratory	DecomposiAon		
–  Hybrid	DecomposiAon		

•  CharacterisAcs	of	Tasks	and	InteracAons		
–  Task	GeneraAon,	Granularity,	and	Context		
–  CharacterisAcs	of	Task	InteracAons.		

31	

Decomposi;on	Techniques		

32	

	So	how	does	one	decompose	a	task	into	various	subtasks?		
	
	
	
	
•  No	single	recipe	that	works	for	all	problems	
•  PracAcally	used	techniques	

–  Recursive	decomposi;on	
–  Data	decomposi;on	
–  Exploratory	decomposiAon	
–  SpeculaAve	decomposiAon		

	

Recursive	Decomposi;on		

Generally	suited	to	problems	solvable	using	the	divide-and-
conquer	strategy		
Steps:	
1.  decompose	a	problem	into	a	set	of	sub-problems	
2.  recursively	decompose	each	sub-problem		
3.  stop	decomposiAon	when	minimum	desired	granularity	

reached	

33	

Recursive	Decomposi;on:	Quicksort	

34	

At	each	level	and	for	each	vector	
1.  Select	a	pivot	
2.  ParAAon	set	around	pivot	
3.  Recursively	sort	each	subvector		

ê	

quicksort(A,	lo,	hi)	
				if	lo	<	hi	
							p	=	pivot_parAAon(A,	lo,	hi)		
							quicksort(A,	lo,	p-1)	
							quicksort(A,	p+1,	hi)	

Each	vector	can	be	sorted	
concurrently	(i.e.,	each	sor;ng	
represents	an	independent	subtask).		

Recursive	Decomposi;on:	Min	

35	

procedure SERIAL_MIN (A, n)
 min = A[0];
 for i := 1 to n − 1 do
 if (A[i] < min) min := A[i];
 return min;

procedure	RECURSIVE_MIN	(A,	n)		
	if	(n	=	1)	then	min	:=	A	[0]		;		
	else		
					lmin	:=	RECURSIVE_MIN	(A,	n/2);		
					rmin	:=	RECURSIVE_MIN	(&(A[n/2]),	n	-	n/2);		
			if	(lmin		<	rmin)	then	min	:=	lmin;		
			else	min	:=	rmin;		

						return	min;		
	

Finding	the	minimum	in	a	vector	using	divide-and-conquer	

Applicable	to	other	associa;ve	opera;ons,	e.g.	sum,	AND	…	
Known	as	reduc;on	opera;on	

Recursive	Decomposi;on:	Min	

	finding	the	minimum	in	set	{4,	9,	1,	7,	8,	11,	2,	12}.	

36	

Task	dependency	graph:	
•  RECURSIVE_MIN	 forms	 the	

binary	tree	
•  min	finishes	and	closes	
•  Parallel	in	the	same	level	

Fib	with	OpenMP	Tasking	

•  Task	comple;on	occurs	when	the	task	reaches	the	end	of	
the	task	region	code	

•  MulAple	tasks	joined	to	complete	through	the	use	of	task	
synchroniza;on	constructs	
–  taskwait	
–  barrier	construct	

•  taskwait	constructs:	
–  #pragma	omp	taskwait	
–  !$omp	taskwait	

37	

int	fib(int	n)	{	
				int	x,	y;	
				if	(n	<	2)		return	n;	
				else	{	
										#pragma	omp	task	shared(x)	
										x	=	fib(n-1);	
										#pragma	omp	task	shared(y)	
										y	=	fib(n-2);	
										#pragma	omp	taskwait	
										return	x	+	y;				
				}	
}	

Data	Decomposi;on	
--	The	most	commonly	used	approach		

•  Steps:		
1.  IdenAfy	the	data	on	which	computaAons	are	performed.		
2.  ParAAon	this	data	across	various	tasks.		

•  ParAAoning	induces	a	decomposiAon	of	the	problem,	i.e.	
computaAon	is	parAAoned	

•  Data	can	be	parAAoned	in	various	ways	
–  CriAcal	for	parallel	performance		

•  DecomposiAon	based	on	
–  output	data	
–  input	data	
–  input	+	output	data	
–  intermediate	data	

38	

Output	Data	Decomposi;on		

•  Each	element	of	the	output	can	be	computed	
independently	of	others	
–  simply	as	a	funcAon	of	the	input.		

•  A	natural	problem	decomposiAon	

39	

Output	Data	Decomposi;on:	Matrix	
Mul;plica;on	

mul;plying	two	n	x	n	matrices	A	and	B	to	yield	matrix	C	
	
	
	
The	output	matrix	C	can	be	parAAoned	into	four	tasks:		

Task	1:		

Task	2:	

Task	3:	

Task	4:		 40	

Output	Data	Decomposi;on:	Example		
	A	parAAoning	of	output	data	does	not	result	in	a	unique	decomposiAon	into	tasks.	
For	example,	for	the	same	problem	as	in	previus	foil,	with	idenAcal	output	data	
distribuAon,	we	can	derive	the	following	two	(other)	decomposiAons:		

Decomposition I Decomposition II

Task 1: C1,1 = A1,1 B1,1

Task 2: C1,1 = C1,1 + A1,2 B2,1

Task 3: C1,2 = A1,1 B1,2

Task 4: C1,2 = C1,2 + A1,2 B2,2

Task 5: C2,1 = A2,1 B1,1

Task 6: C2,1 = C2,1 + A2,2 B2,1

Task 7: C2,2 = A2,1 B1,2

Task 8: C2,2 = C2,2 + A2,2 B2,2

Task 1: C1,1 = A1,1 B1,1

Task 2: C1,1 = C1,1 + A1,2 B2,1

Task 3: C1,2 = A1,2 B2,2

Task 4: C1,2 = C1,2 + A1,1 B1,2

Task 5: C2,1 = A2,2 B2,1

Task 6: C2,1 = C2,1 + A2,1 B1,1

Task 7: C2,2 = A2,1 B1,2

Task 8: C2,2 = C2,2 + A2,2 B2,2
41	

Output	Data	Decomposi;on:	Example		
	Count	the	frequency	of	item	sets	in	database	transac;ons	

42	

•  Decompose	the	item	sets	to	count		
–  each	task	computes	total	count	for	each	

of	its	item	sets	
–  append	total	counts	for	item	sets	to	

produce	total	count	result	

Output	Data	Decomposi;on:	Example		

	From	the	previous	example,	the	following	observaAons	can	
be	made:		

	
•  If	the	database	of	transacAons	is	replicated	across	the	
processes,	each	task	can	be	independently	accomplished	
with	no	communicaAon.		

•  If	the	database	is	parAAoned	across	processes	as	well	(for	
reasons	of	memory	uAlizaAon),	each	task	first	computes	
parAal	counts.	These	counts	are	then	aggregated	at	the	
appropriate	task.		

43	

Input	Data	Par;;oning		

•  Generally	applicable	if	each	output	can	be	naturally	
computed	as	a	funcAon	of	the	input.		

•  In	many	cases,	this	is	the	only	natural	decomposiAon	if	the	
output	is	not	clearly	known	a-priori	
–  e.g.,	the	problem	of	finding	the	minimum,	sorAng.		

•  A	task	is	associated	with	each	input	data	parAAon	
–  The	task	performs	computaAon	with	its	part	of	the	data.	
–  Subsequent	processing	combines	these	parAal	results.		

•  MapReduce	

44	

Input	Data	Par;;oning:	Example		

45	

Par;;oning	Input	and	Output	Data		

46	

•  ParAAon	on	both	input	and	output	for	more	concurrency	
•  Example:	item	set	counAng	

Intermediate	Data	Par;;oning		

47	

•  If	computaAon	is	a	sequence	of	transforms	
–  from	input	data	to	output	data,	e.g.	image	processing	

workflow	
•  Can	decompose	based	on	data	for	intermediate	stages	

Task	1:		

Task	2:	

Task	3:	

Task	4:		

Intermediate	Data	Par;;oning:	Example		

48	

•  dense	matrix	mulAplicaAon	
–  visualize	 this	 computaAon	 in	 terms	 of	 intermediate	

matrices		D.		

Intermediate	Data	Par;;oning:	Example		

Stage	II	

Task 01: D1,1,1= A1,1 B1,1 Task 02: D2,1,1= A1,2 B2,1

Task 03: D1,1,2= A1,1 B1,2 Task 04: D2,1,2= A1,2 B2,2

Task 05: D1,2,1= A2,1 B1,1 Task 06: D2,2,1= A2,2 B2,1

Task 07: D1,2,2= A2,1 B1,2 Task 08: D2,2,2= A2,2 B2,2

Task 09: C1,1 = D1,1,1 + D2,1,1 Task 10: C1,2 = D1,1,2 + D2,1,2

Task 11: C2,1 = D1,2,1 + D2,2,1 Task 12: C2,,2 = D1,2,2 + D2,2,2 49	

•  	 A	decomposiAon	of	intermediate	data:	8	+	4	tasks:		
Stage	I	

Intermediate	Data	Par;;oning:	Example		
	 The	 task	 dependency	 graph	 for	 the	 decomposiAon	
(shown	in	previous	foil)	into	12	tasks	is	as	follows:		

50	

The	Owner	Computes	Rule		

51	

•  Each	datum	is	assigned	to	a	process	
•  Each	process	computes	values	associated	with	its	data	
•  ImplicaAons	

–  input	data	decomposiAon	
•  all	computaAons	using	an	input	datum	are	performed	by	its	
process		

–  output	data	decomposiAon	
•  an	output	is	computed	by	the	process	assigned	to	the	output	
data	

References	

•  Adapted	from	slides	“Principles	of	Parallel	Algorithm	
Design”	by	Ananth	Grama	

•  Based	on	Chapter	3	of	“IntroducAon	to	Parallel	CompuAng”	
by	Ananth	Grama,	Anshul	Gupta,	George	Karypis,	and	Vipin	
Kumar.	Addison	Wesley,	2003	

52	

