Lecture 7: Principles of Parallel
Algorithm Design

Concurrent and Multicore Programming
CSE 436/536

Department of Computer Science and Engineering
Yonghong Yan
yan@oakland.edu
www.secs.oakland.edu/~yan

Topics (Part 1)

* |Introduction

* Programming on shared memory system (Chapter 7)
— OpenMP

@@ Principles of parallel algorithm design (Chapter 3)

®* Programming on shared memory system (Chapter 7)
— Cilk/Cilkplus and OpenMP Tasking
— PThread, mutual exclusion, locks, synchronizations

* Analysis of parallel program executions (Chapter 5)
— Performance Metrics for Parallel Systems
* Execution Time, Overhead, Speedup, Efficiency, Cost
— Scalability of Parallel Systems
— Use of performance tools

Topics (Part 2)

* Parallel architectures and hardware
— Parallel computer architectures
— Memory hierarchy and cache coherency

* Manycore GPU architectures and programming

— GPUs architectures
— CUDA programming
— Introduction to offloading model in OpenMP
®* Programming on large scale systems (Chapter 6)

— MPI (point to point and collectives)
— Introduction to PGAS languages, UPC and Chapel

* Parallel algorithms (Chapter 8,9 &10)
— Sorting and Stencil

“parallel and for” OpenMP Constructs

Sequential code for(i=0;i<N;i++) { a[i] = a[i] + bli]; }

#pragma omp parallel shared (a, b)

{
int id, i, Nthrds, istart, iend;
OpganIP parallel id = omp_get_thread_num();
region Nthrds = omp_get num_threads();

istart = id * N / Nthrds;
iend = (id+1) * N / Nthrds;
for(i=istart;i<iend;i++) { a[i] = a[i] + bl[i]; }

}
OpenMP parallel _ _
region and a #pragma omp parallel shared (a, b) private (i)
worksharing for #pragma omp for schedule(static)

construct for(i=0;i<N;i++) { a[i] = a[i] + b[i]; }

OpenMP Best Practices

#pragma omp parallel private(i)
{
#pragma omp for nowait
for(i=0;i<n;i++)
ali] +=bl[i];
#pragma omp for nowait
for(i=0;i<n;i++)
c[i] +=d[i];
#pragma omp barrier
#pragma omp for nowait reduction(+:sum)
for(i=0;i<n;i++)
sum += ali] + c[i];

}

False-sharing in OpenMP and Solution

* False sharing

— When at least one thread write to a
cache line while others access it

e Thread 0: =A[1] (read)
 Thread 1: A[O] = ... (write)

* Solution: use array padding

iInt a[max_threads];

CPUs Caches

T0

Bl o

T1

== =

Memory

#pragma omp parallel for schedule(static,1)

for(int i=0; i<max_threads; i++)
ali] +=i;

Int a[max_threads][cache_line_size];
#pragma omp parallel for schedule(static,1)

for(int i=0; i<max_threads; i++)
a[i][0] +=i;

NUMA First-touch

a[0] a[50]

Processor Processor

a[i9] a[§9]

Cache Coherent
Interconnect

tpragma omp parallel for num threads(2)

for (1i=0; 1i<100; i++)
a[i] = 0;

First Touch
Both memories each have “their half” of
the array

Work with First-touch in OpenMP

* First-touch in practice
— Initialize data consistently with the computations

#pragma omp parallel for
for(i=0; i<N; i++) {

ali] =0.0; b[i] =0.0; c[i] =0.0;
}
readfile(a,b,c);

#pragma omp parallel for
for(i=0; i<N; i++) {

ali] = b[i] + c[il;
}

SPMD Program Models in OpenMP

°* SPMD (Single Program, Multiple Data) for parallel regions
— All threads of the parallel region execute the same code
— Each thread has unique ID

* Use the thread ID to diverge the execution of the threads

— Different thread can follow different paths through the same
code

if(lmy_id==x){ }
else{ }

* SPMD is by far the most commonly used pattern for
structuring parallel programs
— MPI, OpenMP, CUDA, etc

Overview: Algorithms and Concurrency

* Introduction to Parallel Algorithms
— Tasks and Decomposition
— Processes and Mapping

* Decomposition Techniques
— Recursive Decomposition
— Data Decomposition
— Exploratory Decomposition
— Hybrid Decomposition

* Characteristics of Tasks and Interactions
— Task Generation, Granularity, and Context
— Characteristics of Task Interactions.

10

Overview: Concurrency and Mapping

* Mapping Techniques for Load Balancing
— Static and Dynamic Mapping

* Methods for Minimizing Interaction Overheads
— Maximizing Data Locality
— Minimizing Contention and Hot-Spots
— Overlapping Communication and Computations
— Replication vs. Communication
— Group Communications vs. Point-to-Point Communication

* Parallel Algorithm Desigh Models

— Data-Parallel, Work-Pool, Task Graph, Master-Slave, Pipeline,
and Hybrid Models

11

Overview: Algorithms and Concurrency

@ Introduction to Parallel Algorithms
— Tasks and Decomposition
— Processes and Mapping

* Decomposition Techniques
— Recursive Decomposition
— Data Decomposition
— Exploratory Decomposition
— Hybrid Decomposition

* Characteristics of Tasks and Interactions
— Task Generation, Granularity, and Context
— Characteristics of Task Interactions.

12

Decomposition, Tasks, and Dependency Graphs

* Decompose work into tasks that can be executed concurrently
* Decomposition could be in many different ways.
* Tasks may be of same, different, or even indeterminate sizes.

* Task dependency graph:

— node = task
— edge = control dependence, output-input dependency

— No dependency == parallelism

Lo
V AY
, \
, \

/ T 1 \
I \
' \

N \
\

SO~ TR
@%@ . DA

13

Example: Dense Matrix Vector Multiplication

a b ¢ d x ar + ’{l/ + cz + dw

(_f q h Yy exr -+ f_r/ + gz + hw A X b =7
; : X = : 01 n

3 . ¥ % 2 i+ jy+ kz + lw Task 1 —]

m n o0 p w me -+ ny+ oz + pw 2 : B

REAL A[n][n], b[n], y[n; int i, j; N H

for(i=0;i<n;i++){ || |

sum = 0.0; B |

for (j=0;j<n;j++) - -

sum += A[i][j] * b[j]; | H

cli] = sum; n-1 | |

} Task n - L

* Computation of each element of output vector vy is
independent

* Decomposed into n tasks, one per element in y = Easy

* Observations
— Each task only reads one row of A, and writes one element of y
— All tasks share vector b (the shared data)
— No control dependencies between tasks

— All tasks are of the same size in terms of number of operations. ,

Example: Database Query Processing

Consider the execution of the query:

MODEL = ""CIVIC" AND YEAR =2001 AND
(COLOR = "GREEN" OR COLOR = ""WHITE")

on the following table:

ID# Model Year Color Dealer Price

4523 Civic 2002 Blue MN $18,000
3476 Corolla 1999 White IL $15,000
7623 Camry 2001 Green NY $21,000
9834 Prius 2001 Green CA $18,000
6734 Civic 2001 White OR $17,000
5342 Altima 2001 Green FL $19,000
3845 Maxima 2001 Blue NY $22,000
8354 Accord 2000 Green VT $18,000
4395 Civic 2001 Red CA $17,000

7352 Civic 2002 Red WA $18,000

Example: Database Query Processing

®* Tasks: Each task search the whole table for entries that
satisfy one predicate

— Results: A list of entries
* Edges: output of one task serves as input to the next

MODEL = "CIVIC" AND YEAR = 2001 AND
(COLOR = "GREEN" OR COLOR = “"WHITE")

, /| ID# | Year} .
ID# |Model / Y e . AD# | Color
— |\ / |7623 | 2001 |\ .t N) !
4523 C{Vgc vl | 6734 | 2001 L ID# | Color\ ':7623 Green !
] 6734 | Civic L5342 | 2001 —! 9834 | Green |
! 4395 | Civic | 1\ |3845 | 2001| | !|3476 | White i 5342 | Green |,
! 7352 | Civic | ! [4395 | 2001 /'I ‘|‘ 6734 | White ' 8354 | Green ,'
\ [

“Color|~---__
White

2 y A avre 7623 | Green
{6134 civie | 2001 (_ CiVicAND 2001 } (((White OR Green | | 7523 | Green

\\\
\
1
~~14395 | Civic | 2001 . 6734 | White
__________________________ - L/ 5342 | Green JPPtiat
Tt~ _____|8354 | Greea-|--"

_[--~Civic AND 2001 AND (White OR Green)™*~)

~
~

ID# | Model | Year| Color

Example: Database Query Processing

* An alternate decomposition

MODEL = ""CIVIC" AND YEAR = 2001 AND
(COLOR = ""GREEN" OR COLOR = "WHITE)

ID# | Year
ID# | Model ID# | Color
7623 2001
4523 Civic 6734 2001 ID# | Color 7623 | Green
6734 Civic 5342 2001 9834 | Green
4395 Civic 3845 2001 3476 ‘White 5342 Green
7352 | Civic 4395 | 2001 6734 | White 8354 | Green

(_cwic) 2001

ID# | Year|
ID# | Model ID# | Color
4523 | Civid vl et 7623 | Green ID# C I
vic 6734 | 2001
6734 | Civic s3a2 | 2001 D# | Cobor | | gess | Gromm olor
4395 | Civic 3845 | 2001 3476 | White | |5342 | Green
7352 | Civio 4395 | 2001 6734 | White | | 3354 | Green

(White OR Green) [3476 | White

7623 Green

(Green) 9834 | Green
6734 ‘White
o 5342 | Green
ID# | Model | Ye
s ce 200 e | gem 8354 | Green
14395 | Civic | 2001 | 6734 | White
5342 | Green
531 | e (2001 AND (White or Green)) [ID# | Color | Year

(__Civic AND 2001 AND (White OR Green))

7623 | Green | 2001
[0 [Mode | Year Color | Z;i; G‘,Z:let: 338 :

(__ civic AND 2001 AND (White OR Green))

ID# | Model | Year| Color
6734 Civic 2001 | White

* Different decompositions may yield different parallelism and
performance

17

Granularity of Task Decompositions

* Granularity is task size (amount of computation)
— Depending on the number of tasks for the same problem size

* Fine-grained decomposition = large number of tasks
® Coarse grained decomposition = small number of tasks

* Granularity for dense matrix-vector product
— fine-grain: each task represents an individual element iny
— coarser-grain: each task computes 3 elementsiny

A X b =y
01 n

Task 1

Task 2

Task 3

Task 4

Degree of Concurrency

* Definition: the number of tasks that can be executed in parallel
* May change over program execution

* Metrics
— Maximum degree of concurrency

* Maximum number of concurrent tasks at any point during
execution.

— Average degree of concurrency

* The average number of tasks that can be processed in parallel
over the execution of the program

* Speedup: serial_execution_time/parallel_execution_time

* Inverse relationship of degree of concurrency and task
granularity
— Task granularity AN(less tasks), degree of concurrency W
— Task granularity W (more tasks), degree of concurrency A\

19

Examples: Degree of Concurrency

* Maximum degree of concurrency
* Average degree of concurrency

" Ciic | " 2001 | " Whita| Green

Task 1

2
Year| ¥ " P
2001 | | Civic AND 2001 _ White OR Green

2001 :
X , "
Civic AND 2001 AND (White OR Green) n-1
Task n

* Database query
— Max: 4

— Average: 7/3 (each task takes the same time)

* Matrix-vector multiplication
— Max: n
— Average: n

01

o8

LI T T TTTTT]]

LITTTTTTTIIII] «

20

Critical Path Length

* Adirected path: a sequence of tasks that must be serialized
— Executed one after another

* Critical path:
— The longest weighted path throughout the graph
* Critical path length: shortest time in which the program can

be executed in parallel

— Lower bound on parallel execution time
7 days

/ 4 days = 3 days \
<s> z 3 days \
1 day 1 day > | 1day | —; <F>
\ : 5 days /
2 days — 2 days — 2 days

6 days 21

A building project

Critical Path Length and Degree of Concurrency

Questions: .

What are the tasks on the critical path for each dependency graph?

What is the shortest parallel execution time?

How many processors are needed to achieve the minimum time?

What is the maximum degree of concurrency?

What is the average parallelism (average degree of concurrency)?
Total amount of work/(critical path length)
2.33(63/27) and 1.88 (64/34)

22

Limits on Parallel Performance

* What bounds parallel execution time?
— minimum task granularity
* e.g. dense matrix-vector multiplication < n? concurrent tasks
— fraction of application work that can’t be parallelized
* more about Amdahl’s law in a later lecture ...
— dependencies between tasks
— parallelization overheads
* e.g., cost of communication between tasks

* Measures of parallel performance
— speedup =T1/Tp
— parallel efficiency = T1/(pTp)

23

Task Interaction Graphs

* Tasks generally exchange data with others
— example: dense matrix-vector multiply

* If b is not replicated in all tasks: each task has some, but not
all

 Tasks will have to communicate elements o™

01 n

Task 1
2

* Task interaction graph
— node = task .
— edge = interaction or data exchange*”

* Task interaction graphs vs. task dependency graphs
— Task dependency graphs represent control dependences
— Task interaction graphs represent data dependences

(TIIIIIIII1I>g <
[(TIIIITITITI1O =

24

Task Interaction Graphs: An Example

Sparse matrix vector multiplication: Ax b
® Computation of each result element = an independent task.

® Only non-zero elements of sparse matrix A participate in
computation.

® |f partition b across tasks, i.e. task Ti has b[i] only
e The task interaction graph of the computation = graph of the matrix A

e Ais the adjacent matrix of the graph
A b

Task 0

L LIRS
00 e —
o0 000 v

4

3 |®

Task 1 1

—
o
e

(b) 25

Task Interaction Graphs, Granularity, and
Communication

Finer task granularity =» more overhead of task interactions
— Overhead as a ratio of useful work of a task

Example: sparse matrix-vector product interaction graph
A

b
01234567 891011
Task 0 ole)) :
e00 (1) ||
o006 o0 L
(0] [J ||
4 |@ L 4L J o ||
oo oo D B
o0 0000000 ||
[) o0 ||
s @ o @ ||
o00 e ||
[J [10) ||
Task 11 L o ||

Assumptions:
— each dot (A[i][j]*bl[j]) takes unit time to process
— each communication (edge) causes an overhead of a unit time

If node O is a task: communication = 3; computation = 4

If nodes O, 4, and 5 are a task: communication = 5; computation = 15

— coarser-grain decomposition = smaller communication/computation
ratio (3/4 vs 5/15)

(a)

26

Processes and Mapping

* Generally
— # of tasks >= # processing elements (PEs) available
— parallel algorithm must map tasks to processes

* Mapping: aggregate tasks into processes
— Process/thread = processing or computing agent that performs work
— assign collection of tasks and associated data to a process

* An PE, e.g. a core/thread, has its system abstraction

— Not easy to bind tasks to physical PEs, thus, more layers at least
conceptually from PE to task mapping

— Process in MPI, thread in OpenMP/pthread, etc

* The overloaded terms of processes and threads
— Task = processes = OS processes = CPU - cores
— For the sake of simplicity, processes = PEs/cores

27

Processes and Mapping

Mapping of tasks to processes is critical to the parallel
performance of an algorithm.

On what basis should one choose mappings?
— Task dependency graph
— Task interaction graph

Task dependency graphs

— To ensure equal spread of work across all processes at any point

* minimum idling
e optimal load balance
Task interaction graphs

— To minimize interactions
* Minimize communication and synchronization

28

Processes and Mapping

A good mapping must minimize parallel execution time by:

* Mapping independent tasks to different processes
— Maximize concurrency

* Tasks on critical path have high priority of being assigned to
processes

* Minimizing interaction between processes
— mapping tasks with dense interactions to the same process.

* Difficulty: these criteria often conflict with each other

— E.g. No decomposition, i.e. one task, minimizes interaction but
no speedup at all!

— Other such conflicting cases?

29

Processes and Mapping: Example

(a) (b)

Example: mapping database queries to processes

* Consider the dependency graphs in levels
— no nodes in a level depend upon one another
* Assign all tasks within a level to different processes
— compute levels using topological sort

30

Overview: Algorithms and Concurrency

* Introduction to Parallel Algorithms
— Tasks and Decomposition
— Processes and Mapping

@ Decomposition Techniques
— Recursive Decomposition
— Data Decomposition
— Exploratory Decomposition
— Hybrid Decomposition

* Characteristics of Tasks and Interactions

— Task Generation, Granularity, and Context
— Characteristics of Task Interactions.

31

Decomposition Techniques

So how does one decompose a task into various subtasks?

SL15v7| Grid Decomposition on 256 Processors

* No single recipe that works for all problems

32

— Recursive decomposition

* Practically used techniques
— Data decomposition

30°

— Exploratory decomposition
— Speculative decomposition

29°

-89°

-90°

Recursive Decomposition

Generally suited to problems solvable using the divide-and-
conquer strategy

Steps:
1. decompose a problem into a set of sub-problems

2. recursively decompose each sub-problem
3. stop decomposition when minimum desired granularity

reached /

.A é\xﬁ

33

Recursive Decomposition: Quicksort

At each level and for each vector <pivot | | > pivot

1. Select a pivot low pivot high

2. Partition set around pivot v
. pivot| ppivot ivot

3. Recursively sort each subvector i ~P

low pivot pivot high
|5 1211 1]10]6|8|3|7]4]0]2]
1|3 |a]2] |5 |12]11]10| 6|8 |7 | 9]

[1]2] [3]4]

Each vector can be sorted
+] | concurrently (i.e., each sorting

quicksort(A. lo, hi) represents an independent subtask).

if o < hi (5] [&8] 7] [8&] (19 [11]12]
p = pivot_partition(A, lo, hi)
quicksort(A, lo, p-1) 1] [12]
quicksort(A, p+1, hi) 34

Recursive Decomposition: Min

Finding the minimum in a vector using divide-and-conquer

procedure SERIAL_MIN (A, n) | | procedure RECURSIVE_MIN (A, n)
min = A[0]; if (n=1)then min:=A[0] ;
foriz=1ton-1do |

if (A[i] < min) min := Al else
return min: Imin := RECURSIVE_MIN (A, n/2);

rmin := RECURSIVE_MIN (&(A[n/2]), n - n/2);
if (Imin < rmin) then min := Imin;
else min := rmin;

return min;

Applicable to other associative operations, e.g. sum, AND ...
Known as reduction operation

35

Recursive Decomposition: Min

finding the minimum inset{4,9,1, 7, 8, 11, 2, 12}.

procedure RECURSIVE_MIN (A, n)
if(n=1)thenmin:=A|[0] ;
else

__

return min;):

min(4,9)

Task dependency graph:

* RECURSIVE_MIN forms the
binary tree

* min finishes and closes

®* Parallel in the same level

min(1,2)

min(1,7)

min(8,11) min(2,12)

36

Fib with OpenMP Tasking

* Task completion occurs when the task reaches the end of
the task region code

* Multiple tasks joined to complete through the use of task
synchronization constructs ;. s int n) ¢

— taskwait int x, y;
— barrier construct if (n<2) returnn;
else {
#pragma omp task shared(x)
* taskwait constructs: x = fib(n-1);
) # task shared

— #pragma omp taskwait yir?iirz:izo)fnp ask shared(y)
— ISomp taskwait #pragma omp taskwait

return x +v;,

37

Data Decomposition

-- The most commonl

roach

used a

* Steps

|dentify the data on which computations are performed.

2. Partition this data across various tasks.

1.

* Partitioning induces a decomposition of the problem, i.e.

computation is partitioned

* Data can be partitioned in various ways

— Critical for parallel performance

PR

'

-
@
O
)
%)
4
O
-
O
=
%2
@
o
=
O
O
)
O
[

T/

AN ..’I! {muwa

5
T 0O
© ©
md
Q 5
=2 o
Un
o .=
I

5
c 3
T ©
._w_d
m.m
5 .©
° 7
=
g
S o
Q o
£ £
|

38

Output Data Decomposition

* Each element of the output can be computed
independently of others
— simply as a function of the input.

* A natural problem decomposition

12 n

Task 1

Example:
dense matrix-vector
multiply

HNEEEEEEEEEERe

LITTTTTTTTI]]«

Output Data Decomposition: Matrix
Multiplication

multiplying two n x n matrices A and B to yield matrix C

The output matrix € can be partitioned into four tasks:

(Al,l Ay Bi1 Bip R Ci1 Cip
As1 Az)\ Ba1 Bap Ca1 Cap

Task1l: Oy 1 = A11B11 + A12B2 1 J
S
..O(\
Task 2: Cl,g — A1,1B1,2 -+ A1,2B2,2 (QQO%(O
o
e
Task 3: 02,1 = A2,1B1,1 —+ A2,2B2,1 ,bcgéb
o
RS

Task 4: 02,2 — A2,1B1,2 + A2,2B2,2 ©

40

Output Data Decomposition: Example

A partitioning of output data does not result in a unique decomposition into tasks.
For example, for the same problem as in previus foil, with identical output data
distribution, we can derive the following two (other) decompositions:

Decomposition | Decomposition li

Task 1: €44 = A, By, Task 1: C;4=A;, By,
Task2: C14=Cy,+A,B,, |Task2: C;1=Cy,+ A, B;;
Task 3: Cy,=A;4 B, Task 3: C;,=A,, B,,
Task4: C,,=Cy,+ A, By, |Task4: C,=Ci,+ A, By,
Task 5: C,4 = A, By, Task 5: C,4 = A,, B,
Task6: C,4 = Cy + Ay, By, |Task6: Cyqy=Cyy+ Ay, By
Task 7: C,, = Ay 4 By, Task 7: Cy5, = Ay 4 By,
Task8: Cy,=Cy,+ Ay By, |Task8: C,5=Cy,+ Ay, B,,

41

Output Data Decomposition: Example

Count the frequency of item sets in database transactions

A,B,C,E GH A,B,C 1
B,D,E,F,K,L D,E 3
A,B,F,H L CF,G g 0
D,EF,H AE g 2
F,G,HK, C,D % 1
% AEFEKL D,K }z
B,C,D,G,H,L B,C,F 0
G,H,L C,D,K 0
D,E,F, KL
F,G,H,L
[E$> A,B,C,E,G,H A,B,C g
B,D,B,F, KL D,E
A,B,F,HL g CFG (e
g D,E F,H AE g
F,GHK,
e AEFRKL
g B,C,D,G,H,L
G HL
D,E,F,K,L
F,GHL

* Decompose the item sets to count

— each task computes total count for each
of its item sets

— append total counts for item sets to
produce total count result

N ©O W =

C,D
D,K
B,C,F
C,D,K

A,B,C,EGH
B,D,B,F,K,L
A,B,F,HL
D,E,F,H
F,GHK,
AEFRK,L
B,C,D,G,H,L
G, HL
D,E,F,K,L
F,G,HL

E

ltemset Frequency
O O N =

Database Transactions

= 42

task 1

task 2

Output Data Decomposition: Example

From the previous example, the following observations can
be made:

If the database of transactions is replicated across the
processes, each task can be independently accomplished
with no communication.

If the database is partitioned across processes as well (for
reasons of memory utilization), each task first computes
partial counts. These counts are then aggregated at the
appropriate task.

43

Input Data Partitioning

* Generally applicable if each output can be naturally
computed as a function of the input.

* In many cases, this is the only natural decomposition if the
output is not clearly known a-priori
— e.g., the problem of finding the minimum, sorting.

* Ataskis associated with each input data partition
— The task performs computation with its part of the data.
— Subsequent processing combines these partial results.

* MapReduce

k- < —fiil

k- < — —

k- < —fill 44

Input Data Partitioning: Example

Count the frequency of item sets in database transactions

AB,GEGH A,B,C 1
B,D,EF,K,L D,E 3
é ABFHL GF,G go
D,E,F,H AE g 2
F,GEK, E C,D % 1
e AEFKL D,K Ez
g B,C,D,G,H,L B,C,F 0
GH,L C,D,K 0
D,E,F,K,L
F,G,HL

e Partition computation by partitioning the set of transactions
—a task computes a local count for each item set for its transactions

ABCRGH AB,C 1 AB,C 0
BDEBEKL DE 2 D,E 1
ABFHL GFG EO GFG Eo
DEEH g AE B | |5 ABRKL g AR B
F,GHK GD 0 B,C,D,GHL CD 1

5 o Dl ie ¥
B,C,F (] D,EFKL B,GF 0

GDK 0 ERGHL GD,K 0

task 1 task2

—sum local count vectors for item sets to produce total count vector
45

* Partition on both input and output for more concurrency

Partitioning Input and Output Data

* Example: item set counting

Partitioning both transactions and frequencies among the tasks

Database Transactions

Database Transactions |

A.B,C,E G H
B,D,E,F,K,L
A, B,F,HL
D,E F,H

F.G, HK,

A.B,C
D, E
C,F,G
A E

[temsets

A.E,F,K.L
B,.C,D.G,HL
G, H, L
D,E,F,K,L
F.G HL

Itemsets

task 3

A,B,C
D,E
C,F,G
ALE

ltemset Frequency

ltemset Frequency

-0 - Q

Database Transactions

Database Transactions

A,B,CEGH
B,D,E,F.K,L
A,B,F HL
D,E,F,H
F.G H, K,

A.E,F,K L
B,C,D.G,HL
G, H, L
D,E,F,K,L
F.G HL

Itemsets

C.D
D,.K
B,CF
C, DK

task 2

Itemsets

C.D
D, K
B,C,F
C,D, K

ltemset Frequency

S O =~ 0

ltemset Frequency

O O = m=

task 4

Intermediate Data Partitioning

* |If computation is a sequence of transforms

— from input data to output data, e.g. image processing
workflow

* Can decompose based on data for intermediate stages
A1 Arp Bi11 Bip R Ciq1 Cip
Azq1 Ass)\ Ba1 Bap Ca1 Cap

Task1l: Oy 1 = A11B11 + A12B2 1

Task 2: 01,2 — A1,1B1,2 -+ A1,2B2,2

Task 3: C2,1 — Ag,lBl,l + Az,sz,l
Task 4: 02,2 = Ag,lBl,g + A2,232,2

47

Intermediate Data Partitioning: Example

* dense matrix multiplication

— visualize this computation in terms of intermediate

matrices D.

A1

Ao

D 1,1

D54

Dy

D2

Dooa

Dso

48

Intermediate Data Partitioning: Example

* A decomposition of intermediate data: 8 + 4 tasks:

Stage |
Di11 Dijap
A1,1 A1,2 Bi1 Bip . Di22 Dippo
A2,1 Aso)° Bs1 Bap D>11 Do
D35> D3po
Stage |l
Digg Diap 4 D>11 Dojo . Ciq1 Chip
D1,2,2 D22 D252 Dioo Ca1 Cap
Task 01: D111 AHB11 Task 02: D211 A12321
Task 03: D, 12™ A, 1 B, 2 Task 04: D2,1,2= A1,2 32,2
Task 05: D121 A21B11 Task 06: D221 A22321
Task 07: D1,2’2— Az,1 B1’2 Task 08: D2,2,2= A2,2 32,2
TaSk 09 C1,1 - D1,1,1 + D2,1,1 TaSk 10 C1’2 - D1’1’2 + D2’1,2

TaSk 11 C2’1 - D1’2’1 + D2’2,1 TaSk 12 C2,,2 - D1’2’2 + D2’2,2 49

Intermediate Data Partitioning: Example

The task dependency graph for the decomposition
(shown in previous foil) into 12 tasks is as follows:

50

The Owner Computes Rule

®* Each datum is assigned to a process
* Each process computes values associated with its data
* Implications

— input data decomposition

 all computations using an input datum are performed by its
process

— output data decomposition

* an output is computed by the process assigned to the output
data

51

References

* Adapted from slides “Principles of Parallel Algorithm
Design” by Ananth Grama

* Based on Chapter 3 of “Introduction to Parallel Computing”

by Ananth Grama, Anshul Gupta, George Karypis, and Vipin
Kumar. Addison Wesley, 2003

52

