Lecture 7X: Practices with Principles of Parallel Algorithm Design

Concurrent and Multicore Programming CSE 436/536

Department of Computer Science and Engineering
Yonghong Yan
yan@oakland.edu
www.secs.oakland.edu/~yan

Short Review and Today's Class

- Parallel Algorithms

1. Tasks and Decomposition
2. Processes and Mapping
3. Minimizing Interaction Overheads

- Practice on data decomposition with working examples
- BLAS and linear algebra
- AXPY, Matrix vector multiplication, matrix matrix multiplication
- Practice on running examples, and collect and report performance results
- See examples

Review of Last Class Contents

Decomposing a large problem into multiple smaller one (tasks)

- Recursive Decomposition
- Data Decomposition

Recursive Decomposition: Quicksort

At each level and for each vector

1. Select a pivot
2. Partition set around pivot
3. Recursively sort each subvector

quicksort(A, lo, hi)
Each vector can be sorted concurrently (i.e., each sorting represents an independent subtask).
p = pivot_partition(A, lo, hi) quicksort(A, lo, p-1)

Recursive Decomposition: Min

Finding the minimum in a vector using divide-and-conquer

procedure SERIAL_MIN (A, n)
$\min =A[0] ;$
for $i:=1$ to $n-1$ do
if $(A[i]$ < min $) \min :=A[i] ;$
return min;


```
procedure RECURSIVE_MIN (A, n)
if ( }n=1)\mathrm{ then min := A [0] ;
    else
        Imin := RECURSIVE_MIN (A, n/2 );
        rmin := RECURSIVE_MIN (&(A[n/2]), n-n/2);
        if (Imin < rmin) then min := Imin;
        else min := rmin;
    return min;
```

Applicable to other associative operations, e.g. sum, AND ...

Output Data Decomposition

- Each element of the output can be computed independently of others
- simply as a function of the input.
- A natural problem decomposition

Output Data Decomposition: Matrix Multiplication

multiplying two $n \times n$ matrices A and B to yield matrix C

The output matrix \boldsymbol{C} can be partitioned into four tasks:

$$
\left(\begin{array}{ll}
A_{1,1} & A_{1,2} \\
A_{2,1} & A_{2,2}
\end{array}\right) \cdot\left(\begin{array}{ll}
B_{1,1} & B_{1,2} \\
B_{2,1} & B_{2,2}
\end{array}\right) \rightarrow\left(\begin{array}{ll}
C_{1,1} & C_{1,2} \\
C_{2,1} & C_{2,2}
\end{array}\right)
$$

$$
\text { Task 1: } C_{1,1}=A_{1,1} B_{1,1}+A_{1,2} B_{2,1}
$$

$$
\text { Task 2: } C_{1,2}=A_{1,1} B_{1,2}+A_{1,2} B_{2,2}
$$

$$
\text { Task 3: } C_{2,1}=A_{2,1} B_{1,1}+A_{2,2} B_{2,1}
$$

$$
\text { Task 4: } C_{2,2}=A_{2,1} B_{1,2}+A_{2,2} B_{2,2}
$$

Background: Dense linear algebra and BLAS

Motifs

The Motifs (formerly "Dwarfs") from "The Berkeley View" (Asanovic et al.) form key computational patterns

		$$	$\begin{aligned} & \text { U } \\ & \text { 모 } \end{aligned}$		Image Speech	Music		
Finite State Mach.								
Circuits								
Graph Algorithms								
Structured Grid								
Dense Matrix								
Sparse Matrix								
Spectral (FFT)								
Dynamic Prog								
N-Body								
Backtrack B\&B								
Graphical Models								
Unstructured Grid								

The Landscape of Parallel Computing Research: A View from Berkeley http://www.eecs.berkeley.edu/Pubs/TechRpts/2006/EECS-2006-183.pdf

Dense linear algebra

- Software library solving linear system
- BLAS (Basic Linear Algebra Subprogram)
- Vector, matrix vector, matrix matrix
- Linear Systems: $A x=b$
- Least Squares: choose x to minimize $\|A x-b \mid\|_{2}$
- Overdetermined or underdetermined
- Unconstrained, constrained, weighted
- Eigenvalues and vectors of Symmetric Matrices
- Standard $(A x=\lambda x)$, Generalized $(A x=\lambda B x)$
- Eigenvalues and vectors of Unsymmetric matrices
- Eigenvalues, Schur form, eigenvectors, invariant subspaces
- Standard, Generalized
- Singular Values and vectors (SVD)
- Standard, Generalized
- Different matrix structures
- Real, complex; Symmetric, Hermitian, positive definite; dense, triangular, banded ...
- Level of detail
- Simple Driver
- Expert Drivers with error bounds, extra-precision, other options
- Lower level routines ("apply certain kind of orthogonal transformation", matmul...)

BLAS (Basic Linear Algebra Subprogram)

- BLAS 1, 1973-1977
- 15 operations (mostly) on vectors (1-d array)
- "AXPY" ($y=\alpha \cdot x+y$), dot product, scale ($x=\alpha \cdot x$)
- Up to 4 versions of each (S/D/C/Z), 46 routines, 3300 LOC
- Why BLAS 1 ? They do $\mathrm{O}\left(\mathrm{n}^{1}\right)$ ops on $\mathrm{O}\left(\mathrm{n}^{1}\right)$ data
$-\operatorname{AXPY}(y=\alpha \cdot x+y)$
- $2 n$ flops on $3 n$ read/writes
- Computational intensity $=(2 n) /(3 n)=2 / 3$

BLAS 2

- BLAS 2, 1984-1986
- 25 operations (mostly) on matrix/vector pairs
- "GEMV": $y=\alpha \cdot A \cdot x+\beta \cdot x$, "GER": $A=A+\alpha \cdot x \cdot y T, x=T-1 \cdot x$
- Up to 4 versions of each (S/D/C/Z), 66 routines, 18 K LOC
- Why BLAS 2 ? They do $\mathrm{O}\left(\mathrm{n}^{2}\right)$ ops on $\mathrm{O}\left(\mathrm{n}^{2}\right)$ data
- Computational intensity still just $\sim\left(2 n^{2}\right) /\left(n^{2}\right)=2$

BLAS 3

- BLAS 3, 1987-1988

- 9 operations (mostly) on matrix/matrix pairs
- "GEMM": $C=\alpha \cdot A \cdot B+\beta \cdot C, C=\alpha \cdot A \cdot A T+\beta \cdot C, B=T-1 \cdot B$
- Up to 4 versions of each (S/D/C/Z), 30 routines, 10K LOC
- Why BLAS 3 ? They do $O\left(n^{3}\right)$ ops on $O\left(n^{2}\right)$ data
- Computational intensity $\left(2 n^{3}\right) /\left(4 n^{2}\right)=n / 2-$ big at last!
- Good for machines with caches, deep mem hierarchy
$\mathrm{A}[\mathrm{M}][\mathrm{K}] * \mathrm{~B}[\mathrm{~K}][\mathrm{N}]=\mathrm{C}[\mathrm{M}][\mathrm{N}]$

$$
C[i][j]=\operatorname{sum}(A[i][k] * B[k][j]) \text { for } k=0 \ldots{ }_{13}^{n}
$$

Practice: AXPY, Matrix Vector, and Matrix Multiplication

BLAS 1: AXPY

- $y=\alpha \cdot x+y$
$-x$ and y are vectors of size N
- In C, $x[\mathrm{~N}], y[\mathrm{~N}]$
- α is scalar
- Decomposition is simple
- Terms: partition, distribution, the same

$$
\text { i_start }=0 \quad \text { i_start }=3 \quad \text { i_start }=6
$$

- Evenly divide N by num_tasks
- Handle corner cases, non divisible of N by num_tasks

BLAS 2: Matrix Vector Multiplication

BLAS 3: Dense Matrix Multiplication

$\mathrm{A}[\mathrm{M}][\mathrm{K}] * \mathrm{~B}[\mathrm{~K}][\mathrm{N}]=\mathrm{C}[\mathrm{M}][\mathrm{N}]$

- Base
- Base_1: column major order of access
- row1D_dist
- column1D_dist
- rowcol2D_dist

- Decomposition is to calculate Mt and Nt

BLAS 3: Dense Matrix Multiplication

- Row-based 1-D

BLAS 3: Dense Matrix Multiplication

- Column-based 1-D

BLAS 3: Dense Matrix Multiplication

- Row/Column-based 2-D

- If you do nested parallelism
- export OMP_NESTED=true

Submatrix Multiplication

- Work with any of the three decomposition

123 /* compute submatrix multiplication, A[start:length] notation
124 * A[i_start:Mt][N] x B[N][j_start:Nt] = C[i_start:Mt][j_start:Nt] */
126 void matmul_base_sub(int i_start, int j_start, int Mt, int Nt, int N,
for (i = i_start; i < Mt+i_start; i++) \{
for ($\mathrm{j}=\mathrm{j}=\mathrm{s}$ start ; $\mathrm{j}<\mathrm{Nt}+\mathrm{j}_{\mathrm{s}}$ start; $\mathrm{j}+\mathrm{+}$) \{
$\mathrm{C}[\mathrm{i}][\mathrm{j}]=0$;
for ($k=0$; $k<N ; k+$)
C[i][j] += A[i][k]*B[k][j];
\}
\}

Background:
 C multidimensional array

Vector/Matrix and Array in C

- C has row-major storage for multiple dimensional array
- A[2,2] is followed by A[2,3]

char A[4][4]				
0123				
0	0	1	2	3
1	4	5	6	7
2	8	9	10	11
3	12	13	14	15

Memory

- Think it as recursive definition
- A[4][10][32]

Column Major

Fortran is column major

Row-major order

Column-major order

Array Layout: Why We Care?

1. Makes a big difference for access speed

- For performance, set up code to go in row major order in C
- Caching: each read from memory will bring other adjacent elements to the cache line
- (Bad) Example: 4 vs 16 accesses
- matmul_base_1

$$
\begin{aligned}
& \text { for } i=1 \text { to } n \\
& \text { for } j=1 \text { to } n \\
& \quad A[j][i]=\text { value }
\end{aligned}
$$

Array Layout: Why We Care?

2. Affect decomposition and data movement

- Decomposition may create submatrices that are in noncontiguous memory locations, e.g. A3 and B1
- Submatrices in contiguous memory location of 2-D row major matrix
- A single-row submatrix, e.g. A2
- A submatrix formed with adjacent rows with full column length, e.g. A1

Array Layout: Why We Care?

2. Affect decomposition and submatrix

- Row or column wise distribution of 2-D row-major array
- \# of data movement to exchange data between T0 and T1
- Row-wise: one memory copy by each
- Column-wise: 16 copies each

Row-wise distribution

Task 0													1
													2
													3
													4
Task 1													5
													6
													7
													8
Task 2													9
													10
													11
													12
Task 3													13
													14
													15
													16

Column-wise distribution

Array and pointers in C

- In C, an array is a pointer + dimensionality
- They are literally the same in binary, i.e. pointer to the first element, referenced as base address
- Cast and assignment from array to pointe, int A[M][N]
- $A, \& A[0][0]$, and $A[0]$ have the same value, i.e. the pointer to the first element of the array
- Cast a pointer to an array
- int *ap; int (*A)[N] = (int(*)[N])ap; A[i][j]
- Address calculation for array references
- Address of A[i][j] = A + (i*N+j)*sizeof (int)

