Lecture 7X: Practices with Principles of
Parallel Algorithm Design

Concurrent and Multicore Programming
CSE 436/536

Department of Computer Science and Engineering
Yonghong Yan
yan@oakland.edu
www.secs.oakland.edu/~yan

Short Review and Today’s Class

* Parallel Algorithms
1. Tasks and Decomposition

2. Processes and Mapping
3. Minimizing Interaction Overheads

* Practice on data decomposition with working examples

— BLAS and linear algebra
— AXPY, Matrix vector multiplication, matrix matrix
multiplication
* Practice on running examples, and collect and report
performance results
— See examples

Review of Last Class Contents

Decomposing a large problem into
multiple smaller one (tasks)

®* Recursive Decomposition

* Data Decomposition

Recursive Decomposition: Quicksort

At each level and for each vector <pivot | | > pivot
1. Select a pivot low pivot high
2. Partition set around pivot v
3. Recursively sort each subvector R Cr
low Ppivot pivot high

|5 1211 1[10]6|8|3|7]4]0]2]

1|3 |a]2] |5 |12]11]10|6 |8 |7 | 9]

[1]2] [3]4]

Each vector can be sorted
+] | concurrently (i.e., each sorting

quicksort(A. lo, hi) represents an independent subtask).

if 1o < hi (51 5] 7] [8] 9] [11]12]
p = pivot_partition(A, lo, hi)
quicksort(A, lo, p-1) 1] [12]
quicksort(A, p+1, hi) 4

Recursive Decomposition: Min

Finding the minimum in a vector using divide-and-conquer

procedure SERIAL MIN (A, n)
min = A[O];
fori:=1ton-1do

if (A[i] < min) min = A[];
return min;

procedure RECURSIVE_MIN (A, n)
if(n=1)thenmin:=A|[0] ;
else
Imin := RECURSIVE_MIN (A, n/2);
rmin := RECURSIVE_MIN (&(A[n/2]), n - n/2);

if (Imin < rmin) then min := Imin;
else min := rmin;
return min;

Applicable to other associative operations, e.g. sum, AND ...

Output Data Decomposition

* Each element of the output can be computed
independently of others
— simply as a function of the input.

* A natural problem decomposition

12 n

Task 1

Example:
dense matrix-vector
multiply

HNEEEEEEEEEERe

LITTTTTTTTI]]«

Output Data Decomposition: Matrix
Multiplication

multiplying two n x n matrices A and B to yield matrix C

The output matrix € can be partitioned into four tasks:

(Al,l Ay Bi1 Bip R Ci1 Cip
As1 Az)\ Ba1 Bap Ca1 Cap

Task1l: Oy 1 = A11B11 + A12B2 1 J
S
..O(\
Task 2: Cl,g — A1,1B1,2 -+ A1,2B2,2 (QQO%(O
o
e
Task 3: 02,1 = A2,1B1,1 —+ A2,2B2,1 ,bcgéb
o
RS

Task 4: 02,2 — A2,1B1,2 + A2,2B2,2 ©

Background:
Dense linear algebra and BLAS

Motifs

The Motifs (formerly “Dwarfs”) from “The Berkeley
View~ (Asanovic et al.) form key computational patterns

o~ -
- *»

Embed
SPEC

Health Image Speech Music Browser CAD

Finite State Mach.
Circuits
Graph Algorithms
Structured Grid

Spectral (FFT)
Dynamic Prog
N-Body
Backirack/ B&B
Graphical Models
Unstructured Grid

The Landscape of Parallel Computing Research: A View from Berkeley
http://www.eecs.berkeley.edu/Pubs/TechRpts/2006/EECS-2006-183.pdf

Dense linear algebra

Software library solving linear system

BLAS (Basic Linear Algebra Subprogram)
— Vector, matrix vector, matrix matrix

Linear Systems: Ax=b

Least Squares: choose x to minimize | |Ax-b]| |,
— Overdetermined or underdetermined
— Unconstrained, constrained, weighted

Eigenvalues and vectors of Symmetric Matrices
e Standard (Ax = Ax), Generalized (Ax=ABx)

Eigenvalues and vectors of Unsymmetric matrices

e Eigenvalues, Schur form, eigenvectors, invariant subspaces
* Standard, Generalized

Singular Values and vectors (SVD)
— Standard, Generalized

Different matrix structures

— Real, complex; Symmetric, Hermitian, positive definite; dense, triangular, banded ...

Level of detail
— Simple Driver
— Expert Drivers with error bounds, extra-precision, other options
— Lower level routines (“apply certain kind of orthogonal transformation”, matmul...)

10

BLAS (Basic Linear Algebra Subprogram)

* BLAS 1,1973-1977

15 operations (mostly) on vectors (1-d array)

e “AXPY” (y=a-x+y), dot product, scale (x = a-x)

Up to 4 versions of each (S/D/C/Z), 46 routines, 3300 LOC
Why BLAS 1 ? They do O(n') ops on O(n') data

AXPY (y=ax+vVy)

* 2n flops on 3n read/writes

 Computational intensity = (2n)/(3n) =2/3

000000 -

RRERRN

11

BLAS 2

* BLAS 2, 1984-1986
— 25 operations (mostly) on matrix/vector pairs
— “GEMV”:y =a-Ax+ B-x, “GER”": A=A+ a-xyT, x=T-1:x
— Up to 4 versions of each (S/D/C/Z), 66 routines, 18K LOC
* Why BLAS 2 ? They do O(n?) ops on O(n?) data
— Computational intensity still just ~(2n?)/(n?) = 2

dy @y - Ay ([K A X Tapk, T T ax,
@y Gy - Ay || & Ay X taynXy +... +ay,X,
Ax= .] =)
A X -
01 n
aml am? am _xx_ _amlxl +am2x2 T '+amxx_

12

[TTTTTITIITT] <

LITTTTTTITTTIT] «

BLAS 3

* BLAS 3, 1987-1988
— 9 operations (mostly) on matrix/matrix pairs
e “GEMM”:C=a-A-B+B-C,C=a-A-AT+B-C, B=T-1‘B
— Up to 4 versions of each (S/D/C/Z), 30 routines, 10K LOC
— Why BLAS 3 ? They do O(n3) ops on O(n?) data
* Computational intensity (2n3)/(4n?) = n/2 — big at last!
* Good for machines with caches, deep mem hierarchy
AIMI][K] * B[K][N] = C[M][N]
B A B C

- — S — PR T—

0.1 [Praffbus Ooood oOeggd HINE.
S O O 00000 0Osdod _ OEdodo
' S0RbD OmObo | Bopnn
ﬁ""_"O 00000 OmO00 00000

C[i][3] = sum(A[i][k] * B[k][j]) for k =08 ... n

Practice:
AXPY, Matrix Vector, and Matrix
Multiplication

14

i_start=0 i start=3 I_start=6

BLAS 1: AXPY

*y=ax+y
— x and vy are vectors of size N
* In C, x[N], y[N]
— o is scalar
* Decomposition is simple
— Terms: partition, distribution, the same

EEEEEEE
Mt =3 Mt =3
— Evenly divide N by num_tasks

* Handle corner cases, non divisible of N by num_tasks

15

BLAS 2: Matrix Vector Multiplication

y A X [start
— A[M][N], x[N], y[N]
* Row-wise decomposition Mt

16

BLAS 3: Dense Matrix Multiplication

A[M][K] * B[k][N] = C[M][N]
Base
Base 1: column major order of access
rowlD_ dist

K N
columnl1D_dist | |
rowcol2D dist M - X =

Decomposition is to calculate Mt and Nt

17

BLAS 3: Dense Matrix Multiplication

* Row-based 1-D

i_start

N
Mt{

Mt = N/num_tasks
i_start = tid * Mt;

Nt =N
j_start=0

TO
T1
T2
T3

18

BLAS 3: Dense Matrix Multiplication

* Column-based 1-D

TO T1 172 T3

Mt =

NN

—

A X B - Y

i_start=0 Nt = N/num_tasks
Mt=N j_start =tid * Nt

19

|_sta

Mt

BLAS 3: Dense Matrix Multiplication

* Row/Column-based 2-D

rt

p - - - —————————— — -

i
j_start
Nt

* If you do nested parallelism
— export OMP_NESTED=true

20

Submatrix Multiplication

* Work with any of the three decomposition

123 /% compute submatrix multiplication, A[start:length] notation

124 x A[i_start:Mt][N] x B[N][j_start:Nt] = C[i_start:Mt][j_start:Nt]
125 x/

126 void matmul_base_sub(int i_start, int j_start, int Mt, int Nt, int N,

127 REAL A[][N], REAL B[][N], REAL C[]IN]) {
128 int i, j, k;

129 for (i = i _start; i < Mt+i_start; i++) {
130 for (j = j_start; j < Nt + j_start; j++) {
131 Clil [j] = ©;

132 for (k = 0; k < N; k++)

133 Clil [j] += Alil [k]1xB[k]l[j];

134 }

135 }

136 }

21

Background:
C multidimensional array

22

Vector/Matrix and Array in C

* C has row-major storage for multiple dimensional array

— A[2,2] is followed by A[2,3]

* 3-dimensional array
— B[3][100][100]

* Think it as recursive definition
— A[4][10][32]

WN—=O

char A[4][4]

0123

M emory

0

1

3

4

5

2

8

9

11

12

13

15

O = N W LN O =) WO

23

Column Major

Fortran is column major

Row-major order

Column-major order

24

Array Layout: Why We Care?

1. Makes a big difference for access speed

* For performance, set up code to go in row major order in C
— Caching: each read from memory will bring other adjacent

elements to the cache line

fori=1ton
* (Bad) Example: 4 vs 16 accesses forj=1ton
— matmul_base_1 Al]IT = value
Low Addresses High Addresses
01]2]|c= 10 11||121314 15
+ A

011]2]|3

45|67

8 | 9|10 [11

12|12 |14 |15 =

Array Layout: Why We Care?

2. Affect decomposition and data movement

* Decomposition may create submatrices that are in non-
contiguous memory locations, e.g. A3 and B1

* Submatrices in contiguous memory location of 2-D row

major matrix

— A single-row submatrix, e.g. A2
— A submatrix formed with adjacent rows with full column

length, e.g. Al

26

®* Row or column wise distribution of 2-D row-major array

Array Layout: Why We Care?

2. Affect decomposition and submatrix

* # of data movement to exchange data between TO and T1
— Row-wise: one memory copy by each

— Column-wise: 16 copies each
Row-wise distribution

Task 0

Task 1

Task 2

Task 3

00~ O 1 AWM=

= s B e e
s WNRE O W

Column-wise distribution

T3

27

Array and pointers in C

°* InC, an array is a pointer + dimensionality
— They are literally the same in binary, i.e. pointer to the first
element, referenced as base address
® Cast and assignment from array to pointe, int A[M][N]
* A, &A[0][0], and A[O] have the same value, i.e. the pointer to
the first element of the array

®* (Cast a pointer to an array

0123]

N-1

— int *ap; int (*A)[N] = (int(*)[N])ap; A[il[]j]

w N = O

* Address calculation for array references

— Address of A[i][j] = A + (i*N+j)*sizeof (int)

M-1

28

