
Lecture	7X:	Prac-ces	with	Principles	of	
Parallel	Algorithm	Design	

Concurrent	and	Mul-core	Programming	
CSE	436/536	

	
Department	of	Computer	Science	and	Engineering	

Yonghong	Yan	
yan@oakland.edu	

www.secs.oakland.edu/~yan	
	

1	

Short	Review	and	Today’s	Class	

•  Parallel	Algorithms		
1.   Tasks	and	Decomposi-on		
2.   Processes	and	Mapping		
3.   Minimizing	Interac-on	Overheads	

•  PracBce	on	data	decomposi-on	with	working	examples	
–  BLAS	and	linear	algebra		
–  AXPY,	Matrix	vector	mulBplicaBon,	matrix	matrix	

mulBplicaBon	
•  PracBce	on	running	examples,	and	collect	and	report	
performance	results	
–  See	examples	

2	

Review	of	Last	Class	Contents	

Decomposing	a	large	problem	into	
mul-ple	smaller	one	(tasks)	

•  Recursive	DecomposiBon	

•  Data	DecomposiBon	

3	

Recursive	Decomposi-on:	Quicksort	

4	

At	each	level	and	for	each	vector	
1.  Select	a	pivot	
2.  ParBBon	set	around	pivot	
3.  Recursively	sort	each	subvector		

ê	

quicksort(A,	lo,	hi)	
				if	lo	<	hi	
							p	=	pivot_parBBon(A,	lo,	hi)		
							quicksort(A,	lo,	p-1)	
							quicksort(A,	p+1,	hi)	

Each	vector	can	be	sorted	
concurrently	(i.e.,	each	sor-ng	
represents	an	independent	subtask).		

Recursive	Decomposi-on:	Min	

5	

procedure SERIAL_MIN (A, n)
 min = A[0];
 for i := 1 to n − 1 do
 if (A[i] < min) min := A[i];
 return min;

procedure	RECURSIVE_MIN	(A,	n)		
	if	(n	=	1)	then	min	:=	A	[0]		;		
	else		
					lmin	:=	RECURSIVE_MIN	(A,	n/2);		
					rmin	:=	RECURSIVE_MIN	(&(A[n/2]),	n	-	n/2);		
			if	(lmin		<	rmin)	then	min	:=	lmin;		
			else	min	:=	rmin;		

						return	min;		
	

Finding	the	minimum	in	a	vector	using	divide-and-conquer	

Applicable	to	other	associa-ve	opera-ons,	e.g.	sum,	AND	…	

Output	Data	Decomposi-on		

•  Each	element	of	the	output	can	be	computed	
independently	of	others	
–  simply	as	a	funcBon	of	the	input.		

•  A	natural	problem	decomposiBon	

6	

Output	Data	Decomposi-on:	Matrix	
Mul-plica-on	

mul-plying	two	n	x	n	matrices	A	and	B	to	yield	matrix	C	
	
	
	
The	output	matrix	C	can	be	parBBoned	into	four	tasks:		

Task	1:		

Task	2:	

Task	3:	

Task	4:		 7	

Background:		
Dense	linear	algebra	and	BLAS	

8	

Mo-fs	

The	MoBfs	(formerly	“Dwarfs”)	from	“The	Berkeley	
View”	(Asanovic	et	al.)	form	key	computaBonal	paberns	

9	
The	Landscape	of	Parallel	CompuBng	Research:	A	View	from	Berkeley	
hbp://www.eecs.berkeley.edu/Pubs/TechRpts/2006/EECS-2006-183.pdf	

Dense	linear	algebra		
•  Sodware	library	solving	linear	system	

•  BLAS	(Basic	Linear	Algebra	Subprogram)	
–  Vector,	matrix	vector,	matrix	matrix	

•  Linear	Systems:		Ax=b	
•  Least	Squares:	choose	x	to	minimize	||Ax-b||2	

–  Overdetermined	or	underdetermined	
–  Unconstrained,	constrained,	weighted	

•  Eigenvalues	and	vectors	of	Symmetric	Matrices	
•  Standard	(Ax	=	λx),	Generalized	(Ax=λBx)	

•  Eigenvalues	and	vectors	of	Unsymmetric	matrices	
•  Eigenvalues,	Schur	form,	eigenvectors,	invariant	subspaces	
•  Standard,	Generalized	

•  Singular	Values	and	vectors	(SVD)	
–  Standard,	Generalized	

•  Different	matrix	structures	
–  Real,	complex;	Symmetric,	HermiBan,	posiBve	definite;	dense,	triangular,	banded	…	

•  Level	of	detail	
–  Simple	Driver	
–  Expert	Drivers	with	error	bounds,		extra-precision,	other	opBons	
–  Lower	level	rouBnes	(“apply	certain	kind	of	orthogonal	transformaBon”,	matmul…)	 10	

BLAS	(Basic	Linear	Algebra	Subprogram)	

•  BLAS	1,	1973-1977	
–  15	operaBons	(mostly)	on	vectors	(1-d	array)	

•  “AXPY”		(y	=	α·x	+	y),	dot	product,	scale	(x	=	α·x)	
–  Up	to	4	versions	of	each	(S/D/C/Z),	46	rouBnes,	3300	LOC	
–  Why	BLAS	1	?		They	do	O(n1)	ops	on	O(n1)	data	
–  AXPY	(y	=	α·x	+	y)	

•  2n	flops	on	3n	read/writes		
•  ComputaBonal	intensity	=	(2n)/(3n)	=	2/3	

11	

BLAS	2	

•  BLAS	2,	1984-1986	
–  25	operaBons	(mostly)	on	matrix/vector	pairs	
–  “GEMV”:	y	=	α·A·x	+	β·x,	“GER”:	A	=	A	+	α·x·yT,		x	=	T-1·x	
–  Up	to	4	versions	of	each	(S/D/C/Z),	66	rouBnes,	18K	LOC	

•  Why	BLAS	2	?		They	do	O(n2)	ops	on	O(n2)	data	
–  ComputaBonal	intensity	sBll	just	~(2n2)/(n2)	=	2	

12	

X																			=	

BLAS	3	

•  BLAS	3,	1987-1988	
–  9	operaBons	(mostly)	on	matrix/matrix	pairs	

•  “GEMM”:	C	=	α·A·B	+	β·C,	C	=	α·A·AT	+	β·C,		B	=	T-1·B	
–  Up	to	4	versions	of	each	(S/D/C/Z),	30	rouBnes,	10K	LOC	
–  Why	BLAS	3	?		They	do	O(n3)	ops	on	O(n2)	data	

•  ComputaBonal	intensity	(2n3)/(4n2)	=	n/2	–	big	at	last!	
•  Good	for	machines	with	caches,	deep	mem	hierarchy	

13	

A[M][K]	*	B[K][N]	=	C[M][N]	

Prac-ce:		
AXPY,	Matrix	Vector,	and	Matrix	
Mul-plica-on	

14	

BLAS	1:	AXPY	

•  y	=	α·x	+	y	
–  x	and	y	are	vectors	of	size	N	

•  In	C,	x[N],	y[N]	
–  α	is	scalar	

•  DecomposiBon	is	simple	
–  Terms:	parBBon,	distribuBon,	the	same		
–  Evenly	divide	N	by	num_tasks	

•  Handle	corner	cases,	non	divisible	of	N	by	num_tasks	

15	

Mt	=	3	 Mt	=	3	

T0	 T1	

i_start	=	0	 i_start	=	3	 i_start	=	6	

BLAS	2:	Matrix	Vector	Mul-plica-on	

•  y	=	A·x	
–  A[M][N],	x[N],	y[N]	

•  Row-wise	decomposiBon	

16	

Mt	

i_start	

BLAS	3:	Dense	Matrix	Mul-plica-on	

17	

	 	 	 	A[M][K]	*	B[k][N]	=	C[M][N]	
•  Base	
•  Base_1:	column	major	order	of	access	
•  row1D_dist	
•  column1D_dist	
•  rowcol2D_dist	

•  DecomposiBon	is	to	calculate	Mt	and	Nt	

M

K N

BLAS	3:	Dense	Matrix	Mul-plica-on	

18	

•  Row-based	1-D	

Mt	
!!!!!!!!!!!!!!!!!!X!!!!!!!!!!!!!!!!!!!!!!!!!!=!

!!!!!!!A!!!!!!!!!X!!!!!!!!!!!!B!!!!!!!!!!!!=!!!!!!!!!!!!!!C!

T0!
T1!
T2!
T3!

Nt	

i_start	

Mt	=	N/num_tasks	
i_start	=	Bd	*	Mt;	

Nt	=	N	
j_start	=	0	

BLAS	3:	Dense	Matrix	Mul-plica-on	

19	

•  Column-based	1-D	

Mt	

Nt	

!!!!!!!!!!!!!!!!!!X!!!!!!!!!!!!!!!!!!!!!!!!!!=!

!!!!!!!A!!!!!!!!!X!!!!!!!!!!!!B!!!!!!!!!!!!=!!!!!!!!!!!!!!C!

T0!!!T1!!T2!!T3!

i_start	=	0	
Mt	=	N	

Nt	=	N/num_tasks	
j_start	=	Bd	*	Nt	

BLAS	3:	Dense	Matrix	Mul-plica-on	

20	

•  Row/Column-based	2-D	

•  If	you	do	nested	parallelism	
–  export	OMP_NESTED=true	

Mt	

Nt	

i_start	

j_start	

Submatrix	Mul-plica-on	

•  Work	with	any	of	the	three	decomposiBon	

21	

Background:		
C	mul-dimensional	array	

22	

Vector/Matrix	and	Array	in	C	

•  C	has	row-major	storage	for	mulBple	dimensional	array	
–  A[2,2]	is	followed	by	A[2,3]	

	
•  3-dimensional	array	

–  B[3][100][100]	

•  Think	it	as	recursive	definiBon	
–  A[4][10][32]	

23	

					char	A[4][4]	

Column	Major	

Fortran	is	column	major	

24	

Array	Layout:	Why	We	Care?	

1.	Makes	a	big	difference	for	access	speed	
•  For	performance,	set	up	code	to	go	in	row	major	order	in	C	

–  Caching:	each	read	from	memory	will	bring	other	adjacent	
elements	to	the	cache	line			

•  (Bad)	Example:	4	vs	16	accesses	
–  matmul_base_1	

	

25	

for i = 1 to n
 for j = 1 to n
 A[j][i] = value

Array	Layout:	Why	We	Care?	

2.	Affect	decomposi-on	and	data	movement	
•  DecomposiBon	may	create	submatrices	that	are	in	non-
conBguous	memory	locaBons,	e.g.	A3	and	B1	

•  Submatrices	in	conBguous	memory	locaBon	of	2-D	row	
major	matrix	
–  A	single-row	submatrix,	e.g.	A2	
–  A	submatrix	formed	with	adjacent	rows	with	full	column	

length,	e.g.	A1	

26	

A1	

A2	 B1	

A3	

Array	Layout:	Why	We	Care?	

2.	Affect	decomposi-on	and	submatrix	
•  Row	or	column	wise	distribuBon	of	2-D	row-major	array	
•  #	of	data	movement	to	exchange	data	between	T0	and	T1	

–  Row-wise:	one	memory	copy	by	each	
–  Column-wise:	16	copies	each	

27	
			T0										T1										T2								T3	

Row-wise	distribuBon	 Column-wise	distribuBon	

Array	and	pointers	in	C	

•  In	C,	an	array	is	a	pointer	+	dimensionality	
–  They	are	literally	the	same	in	binary,	i.e.	pointer	to	the	first	

element,	referenced	as	base	address	
•  Cast	and	assignment	from	array	to	pointe,	int	A[M][N]	

•  A,	&A[0][0],	and	A[0]	have	the	same	value,	i.e.	the	pointer	to	
the	first	element	of	the	array	

•  Cast	a	pointer	to	an	array	
–  int	*ap;	int	(*A)[N]	=	(int(*)[N])ap;	A[i][j]	….	

•  Address	calculaBon	for	array	references	
–  Address	of	A[i][j]	=	A	+	(i*N+j)*sizeof	(int)	

28	

