Lecture 1: An Introduction
Concurrent and Multicore Programming
CSE 436/536, Winter 2017

Department of Computer Science and Engineering
Yonghong Yan
yan@oakland.edu
www.secs.oakland.edu/~yan

Course information

Meeting Time: 3:30 pm —5:17 pm Monday Wednesday
Place: Engineering Center 550
Grade: 45% for 3 homeworks + 50% project + 5% attendance

Instructor: Yonghong Yan
— www.secs.oakland.edu/~yan, yan@oakland.edu
— Office: 534 Engineering Center, Tel: (248) 370-4087
— Office Hours: After class or by appointment

Public Course website: http://passlab.github.io/CSE436536/

Private and homework submission: moodle (
https://moodle.oakland.edu/course/view.php?id=168842)

Syllabus for more details

Objectives

* Learn fundamentals of concurrent and parallel
computing
— Describe benefits and applications of concurrent and
parallel programming.

— Explain key concepts in parallel computer architectures, e.g.
shared memory system, distributed system, NUMA and
cache coherence.

— Understand principles for concurrent program design, e.g.
decomposition of works, task and data parallelism,
processor mapping, mutual exclusion, locks.

* Develop skills writing and analyzing parallel programs
— Write parallel program using OpenMP, Cilk/Cilkplus, CUDA,
and MPI programming models.
— Perform analysis of parallel program problem.

Recommended textbook

EIEE : By Ananth Grama, Anshul Gupta, George
Computing Karypis, and Vipin Kumar
Addison-Wesley, 2003

Second Edition

8
O
o]
—
=
e
m
o
3

2
-

z‘?i

* |ots of materials on Internet.

— On the website, there is a “Resources” section that provides web
page links, documents, and other materials for this course

Other two reference books | used

Feter Pacheco

Professional
\‘

CUDA C

/l s §=s Programming

A IWVIDIA

é‘gtgﬂs:;]c;fg’ t≫ﬂ'i;?:ﬁ;ﬁ?mmg’ by Professional CUDA C Programming, by John Cheng,

Publishers Inc, Max Grossman, Ty McKercher,

http://www.cs.usfca.edu/~peter/ipp http://www.wiley.com/WileyCDA/WileyTitle/
productCdN 1118739329.html

Homework and Project

* Homeworks: Apply theory and practice programming skills
— Require both good and correct programming
* Write organized program that is easy to read
— Report and discuss your findings in report
* Writing good document

* Project: Study a real challenge and develop solutions

— Study related work, identify problem, develop solutions,
perform experiment and analyze your results

— Present your findings to the class
— Report your findings
* In the form of publishable paper

* Our class will have practice sessions to help the
assignments and project.

Topics (Part 1)

Introduction
Principles of parallel algorithm design (Chapter 3)

Programming on shared memory system (Chapter 7)
— OpenMP
— Cilk/Cilkplus
— PThread, mutual exclusion, locks, synchronizations
Analysis of parallel program executions (Chapter 5)
— Performance Metrics for Parallel Systems

* Execution Time, Overhead, Speedup, Efficiency, Cost

— Scalability of Parallel Systems
— Use of performance tools

Topics (Part 2)

* Parallel architectures and hardware
— Parallel computer architectures
— Memory hierarchy and cache coherency

* Manycore GPU architectures and programming

— GPUs architectures
— CUDA programming
— Introduction to offloading model in OpenMP
®* Programming on large scale systems (Chapter 6)

— MPI (point to point and collectives)
— Introduction to PGAS languages, UPC and Chapel

* Parallel algorithms (Chapter 8,9 &10)
— Sorting and Stencil

Prerequisites

Good reasoning and analytical skills

Skills of C programming
— macro, pointer, array, struct, union, function pointer, etc.

Basic knowledge of computer architecture and data
structures
— Memory hierarchy, cache, virtual address
— Array and link-list

Familiarity with Linux environment
Talk with me if you have concern
The survey

Introduction: What is and why
Parallel Computing

Terms:
Concurrent and Multicore Programming

Parallel Programming

10

An example: grading

15 questions
300 exams

From An Introduction to Parallel Programming, By Peter Pacheco, Morgan Kaufmann Publishers
Inc, Copyright © 2010, Elsevier Inc. All rights Reserved

11

Teaching assistants

«

12

Division of work — data parallelism

* Each does the same type of work (task), but working on
different sheet (data)

TA#1

TAH#3
100 exams

100 exams

TAH#H2
100 exams

13

Division of work — task parallelism

* Each does different type of work (task), but working on
same sheets (data)

—
TA#1 -—
— —
— — P TA#3
— -
om
_ e

e TAH2

Questions 6 - 10

14

Summary

* Data: 300 copies of exam

Task: grade total 300*15 questions

Data parallelism

— Distributed 300 copies to three TAs \Which approach
— They work independently

Task Parallelism

could be faster!

Distributed 300 copies to three TAs

Each grades 5 questions of 100 copies

Exchange coples |y pOpTY
Grade 5 questions again Data Different Same

Exchange copies
Grade 5 questions

Task Same Different

The three TAs can do in parallel, we can achieve 3 time speedup
theoretically

15

Challenges

* Are the three TAs grading in the same performance?
— One CPU may be slower than the other
— They may not work on grading the same time

* How the TAs communicate?

— Are they sit on the same table? Or each take copies and grade
from home? How they share intermediate results (task
parallelism)

* Where the solutions are stored so they can refer to when
grading
— Remember answers to 5 questions vs to 15 questions
e Cache and Memory issues

16

What is parallel computing?

* A form of computation*:
— Large problems divided into smaller ones
— Smaller ones are carried out and solved simultaneously

® Uses more than one CPUs or processor cores concurrently
for one program

— Not conventional time-sharing: multiple programs switch
between each other on one CPU

* so fast that we donot notice that they are one after another.
— Or multiple programs each on a CPU and not interacting

* Serial processing
— Some programs, or part of a program are inherently serial
— Most of our programs and desktop applications

*http://en.wikipedia.org/wiki/Parallel_computing 17

Why Parallel Computing?

* Save time (execution time) and money!

— Parallel program can run faster if running concurrently instead of
sequentially.

e P s D i i i~ i i i~ e il

Picture from: Intro to Parallel Computing: https://computing.linl. gov/tutorlals/parallel comp

* Solve larger and more complex problems.
Utilize more computational resources

Current Grand Challenges

NIH, DARPA, and NSF’s BRAIN DOE’s SunShot Grand Challenge to NASA’s Asteroid Grand Challenge, to USAID’s Grand Challenges for

Initiative, to revolutionize our make solar energy cost competitive with find all asteroid threats to human Development, including Saving Lives at
understanding of the human mind and coal by the end of the decade, and EV populations and know what to do about Birth that catalyzes groundbreaking

From “21st Century Grand Challenges | The White House”, http://www.whitehouse.gov/administration/eop/ostp/grand-challenges
Grand challenges: http://en.wikipedia.org/wiki/Grand_Challenges

18

High performance computing (HPC) and
parallel computing

* HPCis what really needed *
— Parallel computing is so far the only way to get there!!

* Parallel computing makes sense!

* Applications that require HPC
— Many problem dom

— Data cannot fitinm \\/@ W|II dISCUSS each of

* Computer systems

— Physics limitation: h the two aspeCt tOdayI

— Parallel systems are widely accessible
 Smartphone has 2 to 4 cores + GPU now

*What is HPC: http://insidehpc.com/hpc-basic-training/what-is-hpc/
Supercomputer: http://en.wikipedia.org/wiki/Supercomputer
TOP500 (500 most powerful computer systems in the world): http://en.wikipedia.org/wiki/TOP500, http: //topSOO Qrg/

HPC matter: http://scl4.supercomputing.org/media/social-media

Simulation: The Third Pillar of Science

* Traditional scientific and engineering paradigm:
1) Do theory or paper design.
2) Perform experiments or build system.

* Limitations of experiments:
— Too difficult -- build large wind tunnels.
— Too expensive -- build a throw-away passenger jet.
— Too slow -- wait for climate or galactic evolution.

— Too dangerous -- weapons, drug design, climate experimentation.

* Computational science paradigm:
3) Use high performance computer systems to simulate the phenomenon

* Base on known physical laws and efficient numerical
methods.

From slides of Kathy Yelic’'s 2007 course at Berkeley: http://www.cs.berkeley.edu/~yelick/cs267 sp07/
20

Applications: Science and engineering

* Model many difficult problems by parallel computing

Atmosphere, Earth, Environment

Physics - applied, nuclear, particle, condensed matter, high
pressure, fusion, photonics

Bioscience, Biotechnology, Genetics

Chemistry, Molecular Sciences

Geology, Seismology

Mechanical Engineering - from prosthetics to spacecraft
Electrical Engineering, Circuit Design, Microelectronics
Computer Science, Mathematics

Defense, Weapons '

21

Applications: Industrial and Commercial

* Processing large amounts of data in sophisticated ways

Databases, data mining

Oil exploration

Medical imaging and diagnosis
Pharmaceutical design 7
Financial and economic modelin
Management of national and multi-national corporations

Advanced graphics and virtual reality, particularly in the
entertainment industry

Networked video and multi-media technologies
Collaborative work environments
Web search engines, web based business services

22

Economic Impact of HPC

* Airlines:
— System-wide logistics optimization systems on parallel systems.
— Savings: approx. $100 million per airline per year.

* Automotive design:
— Major automotive companies use large systems (500+ CPUs) for:

 CAD-CAM, crash testing, structural integrity and aerodynamics.

* One company has 500+ CPU parallel system.
— Savings: approx. $1 billion per company per year.
* Semiconductor industry:
— Semiconductor firms use large systems (500+ CPUs) for
* device electronics simulation and logic validation
— Savings: approx. $1 billion per company per year.
* Securities industry:
— Savings: approx. $15 billion per year for U.S. home mortgages.

From slides of Kathy Yelic’s 2007 course at Berkeley: http://www.cs.berkeley.edu/~yelick/cs267 sp07/

23

T S |

Top500 HPC Application Areas

A wide variety of parallel applications globally
160
140 +
120 |
100 |
80
60
40
20
0

saolMagolsibon
llE}ay
laplaoldlaulay|
elpape}big
10}aNpU0IIWIAS
Buiysesalo J1ayjeanp
AMAAA
Yoleasayajew|niayieapn
uonepodsuel|
IITHEETET

alem}jos

CRIENELS

yoleasay

183yjo

auldIpa

a0Ual98a)N

24

8018 BuISSa0014UoIjELLIO JU|

201ASUOIBLLLIO JU|
alempleH
solsfydoag
aoueul 4
Juawu ol Aug
ABlaug
S21U0J}23|3
asuajag
aseqejeq
Buinsuon
ABojoig
Bupjewyasuag
anjowony
aoedsolay

Source: top500.org

Parallel applications

Many Classes of Applications are Massively Parallel

Neural Networks

\ f / T B-ospheryGeosphere
Chemical g'i?ud
Dynamics ¥ Atomic ysx:s
Scatterings

Condensed Matter ¥~ Electronic Fourier
Electronic Structure Structure " I'.I 'el .
Actinide Quantum . Transport /

Chemis Chemis!
Cosmology try iy

R —— Discrete Basic Partial —_—
Astrophysics Manufact / ° Reactors
W Algorithms & Diff. EQs. \

= m L
Logistics Methods D B

Geophysical Fluids

Symbolic
Ecosystems

Nuclear uatchmg Processmg
E CONOMIcs

Structure
Models
Virtual
U —
R eality lnte Astrophysics
gé:g;‘:,g‘gm Databases

Number Theory

Inteigent

* Example: weather prediction and global climate modeling

25

Units of measure in HPC

Flop: floating point operation (*, /, +, -, etc)
Flops/s: floating point operations per second

Bytes: size of data
— A double precision floating point number is 8 bytes

Typical sizes are millions, billions, trillions...
— Mega Mflop/s = 10° flop/sec Mzbyte = 2% = 1048576 = ~10° bytes
— Giga Gflop/s =10°flop/sec Gbyte = 23 =~10° bytes

— Tera Tflop/s = 10%? flop/sec Tbyte = 24° = ~10'? bytes

— Peta Pflop/s =10 flop/sec Pbyte = 2°° = ~10?° bytes

— Exa Eflop/s = 10!8 flop/sec Ebyte = 2°0 = ~10'® bytes

— Zetta Zflop/s = 10%! flop/sec Zbyte =279 = ~10%! bytes

— Yotta Yflop/s = 10%* flop/sec Ybyte = 280 = ~10%* bytes

See www.top500.org for the units of the fastest machines

— The fastest: Tianhe-2 or TH-2 (Chinese: X ;A[-2), 33.86 petaflops
— The second: DoE ORNL Titan, 17.59 petaflops

26

Global climate modeling problem

* Problem is to compute:
— f(latitude, longitude, elevation, time) =2
temperature, pressure, humidity, wind velocity
* Approach:

— Discretize the domain, e.g., a measurement point every 10 km
— Devise an algorithm to predict weather at time t+dt given t

* Uses:
— Predict major events, e.g., El Nino
— Air quality forecasting

T

i

27

Global climate modeling computation

®* One piece is modeling the fluid flow in the atmosphere
— Solve Navier-Stokes equations

* Roughly 100 Flops per grid point with 1 minute timestep

* Computational requirements:
— To match real-time, need 5 x 10*! flops in 60 seconds = 8 Gflop/s
— Weather prediction (7 days in 24 hours) = 56 Gflop/s
— Climate prediction (50 years in 30 days) = 4.8 Tflop/s

— To use in policy negotiations (50 years in 12 hours) = 288 Tflop/s

* To double the grid resolution, computation is 8x to 16x

* State of the art models require integration of atmosphere,
ocean, sea-ice, land models, plus possibly carbon cycle,
geochemistry and more

28

Parameters

Modeling the Climate System

Incoming Solar
Energy Outgoing Heat
Energy

Transition from
Solid to Vapor

Evaporative

and Heat Energy
'y Exchanges
Stratus Clouds g8 Cumulus
Aerosols Clouds

TSt

ration

Preci

% Snow Cover
Evapo -

Includes the Atmosphere,

Cirrus Clouds Atmospheric
GCM

Atmosphere
(Temperature, Winds,
and Precipitation)

Stratus Clouds

Evaporation

A | Atmospheric Model Layers

29

Community Earth System Model (CESM)
~ Atmosphere Component CAM _DATM _(WRF) —

CAM Modes: Multiple Dycores, Multiple Chemistry Options, WACCM, single column
Data-ATM: Multiple Forcing/Physics Modes

G T o oo o

CLM Modes: no BGC, BGC, Dynamic-Vegetation, BGC-DV, Prescribed-Veg, Urban —
Data-LND: Multiple Forcing/Physics Modes

CICE Modes: Fully Prognostic, Prescribed <P
Data-ICE : Multiple Forcing/Physics Modes

10 G g ror poowsompo_wows

POP Modes: Ecosystem, Fully-coupled, Ocean-only, Multiple Physics Options
Data-OCN : Multiple Forcing/Physics Modes (SOM/DOM)

L elecomoommeo
|t . ot o 3 s, oo |

Picture courtesy of M. Vertenstein (NCAR)

30

The rise of multicore processors

31

Semiconductor trend: “Moore’s Law”

Gordon Moore, Founder of Intel

* 1965: since the integrated circuit was invented, the number of
transistors/inch? in these circuits roughly doubled every year;
this trend would continue for the foreseeable future

* 1975: revised - circuit complexity doubles every two years

Transistors
Per Die

1010
©® 1965 Actual Data 1G 2G 40

10°{ m MOS Arrays o MOS Logic 1975 Actual Data 256M >12M
aM

108 1975 Projection 12 Manium™
Memory Pentium® 4

107 y Pentium® lll
A Microprocessor ~ Pentium®ll
108 Pentium

108

104

103

102

10?

L OO'T'HWWW
1960 1965 1970 1975 1980 1985 1990 1995 2000 2005 2010

Image credit: Intel
32

Microprocessor Transistor Counts 1971-2011 &

Transistor count

2,600,000,000
1,000,000,000

100,000,000

10,000,000 -

1,000,000 —

100,000

10,000

2,300~

Moore's Law

16.Care SPARC T3

Six-CaeCarelT

Six-Core Xeon 7400 N\ } @10-Core Xeon Westmere-EX
N

DuN-Core Ranium 2@ L4 _-8.core POWERT
+— Quad-core 2195

AMD K10, +— Quad-Care Rarium Tukwila

POWERG® @/, &-Care Xeon Nehaem-EX
Earium 2 with SME cache @ %, Six-Core Opteron 2400

AMD K108 Corel7 (Quad)

’Ccrc 2Dw
Cdll

ium2 @
@ AMD K3
Periun 4 @ § s ®Alan

) oL KT
curve shows transistor AN Kd-

count doubling every AMD K6
- 8P m

two years [.

@ AMD X3
®Pernum
80435 @
80336 @,
20236 @
GE000 e ©20195

20550 95033

8083
‘3‘3‘33 ‘e %

8090, +/ @230

"

f @Mos o0z

4004 @ nca 102

a0sEe

1 I

I |
1971 1980 1990 2000 2011

Date of introduction

https://en.wikipedia.org/wiki/Transistor_count

Moore’s Law trends

* More transistors = * opportunities for exploiting parallelism in the
instruction level (ILP)

— Pipeline, superscalar, VLIW (Very Long Instruction Word), SIMD (Single
Instruction Multiple Data) or vector, speculation, branch prediction

* General path of scaling
— Wider instruction issue, longer piepline
— More speculation
— More and larger registers and cache

* Increasing circuit density ~= increasing frequency ~= increasing
performance

®* Transparent to users

— An easy job of getting better performance: buying faster processors (higher
frequency)

* We have enjoyed this free lunch for several decades, however ...

34

Problems of traditional ILP scaling

* Fundamental circuit limitations?

— delays ™ as issue queues ™ and multi-port register files T

— increasing delays limit performance returns from wider issue
* Limited amount of instruction-level parallelism?

— inefficient for codes with difficult-to-predict branches

* Power and heat stall clock frequencies

[1] The case for a single-chip multiprocessor, K. Olukotun, B. Nayfeh, L.
Hammond, K. Wilson, and K. Chang, ASPLOS-VII, 1996.

35

ILP impacts

Issue Waste

Issue slots ,
— B fuil issue slot

O empty issue slot

horizontal waste=9 slots

vertical waste =12 slots

e Contributing factors
—instruction dependencies
—long-latency operations within a thread

-——— cycles

36

Simulations of 8-issue Superscalar

100 -

L]
o
|

oo
o

-~
[=)

SERNSSSSSSSH

T NN |

60 -

.....

3
o
-

Percent of Total Issue Cycles
W
o

w
o
|

20 1 I8

Simultaneous multithreading: maximizing
on-chip parallelism, Tullsen et. al. ISCA, 1995.

. memory conflict
long fp

short fp

long integer

- short integer
load delays

] control hazards
B3 branch misprediction
B acache miss

[icache miss

By dtib miss

. itlb miss

. processor busy

Summary:
Highly underutilized

Applications: m f SPEC92
e Onaverage <1.51PC (19%)

e Dominant waste differs by application

e Short FP dependences: 37%

37

Power/heat density limits frequency

* Some fundamental physical limits are being reached

Moore’s Law Extrapolation:
Power Density for Leading Edge Microprocessors

10000
% 1000 Rocket Nozzle www——p
2 Nuclear Reactor sy
S 100 .
%‘ 10 W Hot Plate
@ -
Q
()]
% 1 , , : : : ,
Q. 1996 1998 2000 2002 2004 2006 2008

Power Density Becomes Too High to Cool Chips Inexpensively

Source: Shekhar Borkar, Intel Corp

We will have this ...

39

More Limits: How fast can a serial computer be?

1 Tflop/s, 1 Thyte
sequential machine

r=0.3mm

* Consider the 1 Tflop/s sequential machine:
— Data must travel some distance, r, to go from memory to CPU.

— To get 1 data element per cycle, this means 10%? times per
second at the speed of light, c = 3x10% m/s.

— Thusr<c/102=0.3 mm.
* Now put 1 Thyte of storage in a 0.3 mm x 0.3 mm area:

— Each bit occupies about 1 square Angstrom, or the size of a
small atom

* We are limited by the size of transistors

40

Revolution is happening now

10,000,000

* Chip density is
continuing increase ~2x
every 2 years

— Clock speed is not
— Number of processor

cores may double
instead

* There is little or no
hidden parallelism (ILP)
to be found

* Parallelism must be
exposed to and
managed by software

1,000,000

100,000

10,000

1,000

100

10

— NO free IUnCh 1 _‘/ = Transistors (000)
a1ty ¢ Clock Speed (MHz)
. P W
Source: Intel, Microsoft (Sutter) and s :pl’ﬁfcﬁicﬁ (ILP)
Stanford (Olukotun, Hammond) 0 | 1 ‘ '

1970 1975 1980 1985 1990 1995 2000 2005 2010

The trends

Super Scalar/Vector/Parallel

/IBM

f L

ASCI Re ASCI \{V.hlte
Pacific

2X Tran5|stors/Ch|p

Vector

Tw%ay T3D

~ Every 1.5 Years

(

o

V-TescCN2

Cray 2

1 GFlop/s
(109) Super Scalar

Cray X-MP

T

Y

cc W

1 MFlop/s Scala

1941 1 (Floating Point operations / second, Flop/s)

1945
1949

6600

1951
1961
1964

(109
BV 7 /"9"‘

1968
1975

1 KFlop/s /

1987
1992
1993

(10%) ¥ UNIVAC1

1997
2000

<I> EDSAC 1

1950 1960 1970

1980

100

1,000 (1 KiloFlop/s, KFlop/s)

10,000

100,000

1,000,000 (1 MegaFlop/s, MFlop/s)
10,000,000

100,000,000

1,000,000,000 (1 GigaFlop/s, GFlop/s)
10,000,000,000

100,000,000,000

1,000,000,000,000 (1 TeraFlop/s, TFlop/s)
10,000,000,000,000

2005 131,000,000,000,000 (131 Tflop/s)
|

1990 2000

2010

Recent multicore processors

e Sept 13: Intel Ivy Bridge-EP Xeon E5-2695 v2
— 12 cores; 2-way SMT; 30MB cache
e March 13: SPARC T5
— 16 cores; 8-way fine-grain MT per core
e May 12: AMD Trinity
— 4 CPU cores; 384 graphics cores
* Nov 12: Intel Xeon Phi coprocessor
— ~60 cores
e Feb 12: Blue Gene/Q
— 17 cores; 4-way SMT
e Q4 11: Intel Ivy Bridge

. 3 Figure credit: Ruud Haring, Blue
— 4 cores,; 2 way SMT, Gene/Q compute chip, Hot Chips

23, August, 2011.

e November 11: AMD Interlagos

— 16 cores
e Jan 10: IBM Power 7

— 8 cores; 4-way SMT; 32MB shared cache
e Tilera TilePro64 21

l01u0D Kiowow

J0lj0nu0D Asowon

J0l01u00 Alowow

Recent manycore GPU processors

e ~3k cores

PCI Express 3.0 Host Interface

Jelj0nu00 Aiowow J0l101u0D Kiowow

Jol101u0D Aiowon

SMX

L Warp Scheduler Warp Scheduler Warp Scheduler
Dispatch Dispatch Dispatch Dispaich Dispatch Dispatch
- - 2 £ + £

Reglster File (65,536 x 32:bit)
s 23 s

P
] e R -

o

Wap Scheduler

Dispateh
£

ispatch
T

Kepler Memory Hierarchy

Thread

Y

Shared
Memory

L1
Cache

Read-Only
Data Cache

Cache

(to/sm).

cPu GPU
4 CORES 240 CORES

44

Now it’s up to the programmers

* Adding more processors doesn’t help much if programmers
aren’t aware of them...
— ...or don’t know how to use them.

* Serial programs don’t benefit from this approach (in most
cases).

[y,
X0

45

We will end up ...

; -~ ‘ o
T o 0 - tu.duowan

i com

46

Concluding Remarks

* The laws of physics have brought us to the doorstep of
multicore technology

— The worst or the best time to major in computer science
* |EEE Rebooting Computing (http://rebootingcomputing.ieee.org/)

* Serial programs typically don’t benefit from multiple cores.

* Automatic parallelization from serial program isn’t the most
efficient approach to use multicore computers.
— Proved not a viable approach

® Learning to write parallel programs involves
— learning how to coordinate the cores.

* Parallel programs are usually very complex and therefore,
require sound program techniques and development.

47

References

Introduction to Parallel Computing, Blaise Barney,
Lawrence Livermore National Laboratory
— https://computing.linl.gov/tutorials/parallel comp

Some slides are adapted from notes of Rice University John

Mellor-Crummey’s class and Berkely Kathy Yelic’s class.

Examples are from chapter 01 slides of book “An
Introduction to Parallel Programming” by Peter Pacheco

— Note the copyright notice
Latest HPC news
— http://www.hpcwire.com

World-wide premier conference for supercomputing

— http://www.supercomputing.org/, the week before
thanksgiving week

48

Vision and Wisdom by Experts

“l think there is a world market for maybe five computers.”
— Thomas Watson, chairman of IBM, 1943.

“There is no reason for any individual to have a computer in
their home”
— Ken Olson, president and founder of Digital Equipment Corporation,
1977.
“640K [of memory] ought to be enough for anybody.”
— Bill Gates, chairman of Microsoft,1981.

“On several recent occasions, | have been asked whether
parallel computing will soon be relegated to the trash heap
reserved for promising technologies that never quite make it.”

— Ken Kennedy, CRPC Directory, 1994

Linus: The Whole "Parallel Computing Is
The Future" Is A Bunch Of Crock. _
http://highscalability.com/blog/2014/12/31/linus-the-whole-parallel-

computing-is-the-future-is-a-bunch.html 49

Good to Know:

50

Terminology

®* Concurrent computing —a program is one in which multiple
tasks can be in progress at any instant.

* Parallel computing —a program is one in which multiple
tasks cooperate closely to solve a problem

® Distributed computing — a program may need to cooperate
with other programs to solve a problem.

51

A simple example

* Compute n values and add them together.
* Serial solution:

sum = 0;

for (i = 0; i < n: i++) {
X = Compute_next_value (.
sum += X:

52

Example (cont.)

* We have p cores, p much smaller than n.

* Each core performs a partial sum of approximately n/p
values.

my_sum = 0;

my_first_i =

my_last_i = .

for (my_i = my_first_i; my_i < my_last_i; my_i++) {
my_X = Compute_next_value(. . .);
my_sum += my_X;

J

Each core uses it’ s own private variables

and executes this block of code
independently of the other cores.

53

Example (cont.)

* After each core completes execution of the code, is a
private variable my sum contains the sum of the values
computed by its calls to Compute next value.

* Ex., 8 cores, n = 24, then the calls to Compute next value
return:

1,4,3, 9,2,8, 5,1,1, 5,2,7, 25,0, 4,18, 6,51, 2,39

54

Example (cont.)

®* Once all the cores are done computing their private
my sum, they form a global sum by sending results to a
designated “master’ core which adds the final result.

55

Example (cont.)

if (I'm the master core)
sum = my_X;
for each core other than myself

e,

receive value from core;

sum += value;

D
—t
)]
D

send my_X to the master;

SPMD: All run the same program, but perform
differently depending on who they are.

56

Example (cont.)

Core _l-_____-

my_sum

Global sum
8+19+7+15+7+13+12+14=95

Core _-_____-

my_sum

57

But wait!

There’ s a much better way
to compute the global sum.

58

Better parallel algorithm

Don’ t make the master core do all the work.
Share it among the other cores.

Pair the cores so that core 0 adds its result with core 1’ s
result.

Core 2 adds its result with core 3’ s result, etc.

Work with odd and even numbered pairs of cores.

59

Better parallel algorithm (cont.)

Repeat the process now with only the evenly ranked cores.
Core 0 adds result from core 2.
Core 4 adds the result from core 6, etc.

Now cores divisible by 4 repeat the process, and so forth,
until core 0 has the final result.

60

Multiple cores forming a global sum

61

(1))
E
—
- "\M/_
) /
N —~
O (N} (O
\— \N
+
7%y
wn
/i/
7~ -.J o 0\
st {~)]-———- {ig F————- [_
_/ \&/J \&
" + +
o
nw _
™ "\wJ
//
() o
NN) -
_/ QW
+
(> .
\
\.J <\ o\ o
O/l t=m——=— 'l o R . 2 T — 4 ~
Y, &) &/ \&/

Analysis

In the first example, the master core performs 7 receives
and 7 additions.

In the second example, the master core performs 3
receives and 3 additions.

The improvement is more than a factor of 2!

62

Analysis (cont.)

* The difference is more dramatic with a larger number of
cores.

* |f we have 1000 cores:

— The first example would require the master to perform 999
receives and 999 additions.

— The second example would only require 10 receives and 10
additions.

* That’ s an improvement of almost a factor of 100!

63

