
Lecture	1:	An	Introduc/on	
Concurrent	and	Mul/core	Programming	

CSE	436/536,	Winter	2017	

Department	of	Computer	Science	and	Engineering	
Yonghong	Yan	

yan@oakland.edu	
www.secs.oakland.edu/~yan	

1	

Course	informa/on	

•  Mee/ng	Time:		3:30	pm	–	5:17	pm	Monday	Wednesday	
•  Place:	Engineering	Center	550	
•  Grade:	45%	for	3	homeworks	+	50%	project	+	5%	aKendance	

•  Instructor:	Yonghong	Yan	
–  www.secs.oakland.edu/~yan,	yan@oakland.edu	
–  Office:	534	Engineering	Center,	Tel:	(248)	370-4087	
–  Office	Hours:	ATer	class	or	by	appointment	

•  Public	Course	website:	hKp://passlab.github.io/CSE436536/		
•  Private	and	homework	submission:	moodle	(

hKps://moodle.oakland.edu/course/view.php?id=168842)	
•  Syllabus	for	more	details	

2	

Objec/ves	

•  Learn	fundamentals	of	concurrent	and	parallel	
compu[ng	
–  Describe	benefits	and	applica[ons	of	concurrent	and	

parallel	programming.	
–  Explain	key	concepts	in	parallel	computer	architectures,	e.g.	

shared	memory	system,	distributed	system,	NUMA	and	
cache	coherence.		

–  Understand	principles	for	concurrent	program	design,	e.g.	
decomposi[on	of	works,	task	and	data	parallelism,	
processor	mapping,	mutual	exclusion,	locks.		

•  Develop	skills	wri[ng	and	analyzing	parallel	programs	
–  Write	parallel	program	using	OpenMP,	Cilk/Cilkplus,	CUDA,	

and	MPI	programming	models.	
–  Perform	analysis	of	parallel	program	problem.	

3	

•  Lots	of	materials	on	Internet.	
–  On	the	website,	there	is	a	“Resources”	sec[on	that	provides	web	

page	links,	documents,	and	other	materials	for	this	course	

Recommended textbook

4	

By	Ananth	Grama,	Anshul	Gupta,	George	
Karypis,	and	Vipin	Kumar	
Addison-Wesley,	2003	
	

Other	two	reference	books	I	used	

5	

An Introduction to Parallel Programming, by
Peter Pacheco, Morgan Kaufmann
Publishers Inc,
hKp://www.cs.usfca.edu/~peter/ipp 	

Professional	CUDA	C	Programming,	by	John	Cheng,	
Max	Grossman,	Ty	McKercher,	
hKp://www.wiley.com/WileyCDA/WileyTitle/
productCdN	1118739329.html	
	

Homework	and	Project	

•  Homeworks:	Apply	theory	and	prac[ce	programming	skills	
–  Require	both	good	and	correct	programming	

• Write	organized	program	that	is	easy	to	read	
–  Report	and	discuss	your	findings	in	report	

• Wri[ng	good	document	
•  Project:	Study	a	real	challenge	and	develop	solu[ons	

–  Study	related	work,	iden[fy	problem,	develop	solu[ons,	
perform	experiment	and	analyze	your	results	

–  Present	your	findings	to	the	class	
–  Report	your	findings	

•  In	the	form	of	publishable	paper	
•  Our	class	will	have	prac[ce	sessions	to	help	the	
assignments	and	project.	

6	

Topics	(Part	1)	

•  Introduc[on	
•  Principles	of	parallel	algorithm	design	(Chapter	3)	
•  Programming	on	shared	memory	system	(Chapter	7)	

–  OpenMP	
–  Cilk/Cilkplus	
–  PThread,	mutual	exclusion,	locks,	synchroniza/ons	

•  Analysis	of	parallel	program	execu[ons	(Chapter	5)	
–  Performance	Metrics	for	Parallel	Systems	

•  Execu/on	Time,	Overhead,	Speedup,	Efficiency,	Cost		
–  Scalability	of	Parallel	Systems	
–  Use	of	performance	tools	

7	

Topics	(Part	2)	

•  Parallel	architectures	and	hardware	
–  Parallel	computer	architectures	
–  Memory	hierarchy	and	cache	coherency	

•  Manycore	GPU	architectures	and	programming	
–  GPUs	architectures	
–  CUDA	programming	
–  Introduc[on	to	offloading	model	in	OpenMP	

•  Programming	on	large	scale	systems	(Chapter	6)	
–  MPI	(point	to	point	and	collec/ves)	
–  Introduc[on	to	PGAS	languages,	UPC	and	Chapel	

•  Parallel	algorithms	(Chapter	8,9	&10)	
–  Sor/ng	and	Stencil	

8	

Prerequisites	

•  Good	reasoning	and	analy[cal	skills	
•  Skills	of	C	programming	

–  macro,	pointer,	array,	struct,	union,	func[on	pointer,	etc.		
•  Basic	knowledge	of	computer	architecture	and	data	
structures	
–  Memory	hierarchy,	cache,	virtual	address	
–  Array	and	link-list	

•  Familiarity	with	Linux	environment	
•  Talk	with	me	if	you	have	concern	
•  The	survey		

9	

Introduc/on:	What	is	and	why	
Parallel	Compu/ng	

Terms:		
Concurrent	and	Mul/core	Programming	
Parallel	Programming	

10	

An	example:	grading	

11	

15	ques[ons	
300	exams	

From An Introduction to Parallel Programming, By Peter Pacheco, Morgan Kaufmann Publishers
Inc, Copyright © 2010, Elsevier Inc. All rights Reserved

Teaching assistants	

12	

TA#1	
TA#2	 TA#3	

Division	of	work	–		data	parallelism	

•  Each	does	the	same	type	of	work	(task),	but	working	on	
different	sheet	(data)	

13	

TA#1	

TA#2	

TA#3	

100	exams	

100	exams	

100	exams	

Division	of	work	–	task	parallelism	

•  Each	does	different	type	of	work	(task),	but	working	on	
same	sheets	(data)	

14	

TA#1	

TA#2	

TA#3	

Ques[ons	1	-	5	

Ques[ons	6	-	10	

Ques[ons	11	-	15	

Summary	

•  Data:	300	copies	of	exam	
•  Task:	grade	total	300*15	ques[ons	
•  Data	parallelism	

–  Distributed	300	copies	to	three	TAs	
–  They	work	independently	

•  Task	Parallelism	
–  Distributed	300	copies	to	three	TAs	
–  Each	grades	5	ques/ons	of	100	copies	
–  Exchange	copies	
–  Grade	5	ques/ons	again	
–  Exchange	copies	
–  Grade	5	ques/ons		

•  The	three	TAs	can	do	in	parallel,	we	can	achieve	3	[me	speedup	
theore[cally	

15	

Data	Parallelism	 Task	Parallelism	

Data	 Different	 Same	

Task	 Same	 Different	

Which	approach	
could	be	faster!	

Challenges	

•  Are	the	three	TAs	grading	in	the	same	performance?	
–  One	CPU	may	be	slower	than	the	other	
–  They	may	not	work	on	grading	the	same	[me	

•  How	the	TAs	communicate?	
–  Are	they	sit	on	the	same	table?	Or	each	take	copies	and	grade	

from	home?	How	they	share	intermediate	results	(task	
parallelism)	

•  Where	the	solu[ons	are	stored	so	they	can	refer	to	when	
grading	
–  Remember	answers	to	5	ques[ons	vs	to	15	ques[ons	

•  Cache	and	Memory	issues	

16	

What	is	parallel	compu/ng?	

•  A	form	of	computa[on*:	
–  Large	problems	divided	into	smaller	ones	
–  Smaller	ones	are	carried	out	and	solved	simultaneously	

•  Uses	more	than	one	CPUs	or	processor	cores	concurrently	
for	one	program	
–  Not	conven[onal	[me-sharing:	mul[ple	programs	switch	

between	each	other	on	one	CPU	
•  so	fast	that	we	donot	no[ce	that	they	are	one	aTer	another.	

–  Or	mul[ple	programs	each	on	a	CPU	and	not	interac[ng	
•  Serial	processing	

–  Some	programs,	or	part	of	a	program	are	inherently	serial	
–  Most	of	our	programs	and	desktop	applica[ons	

*hKp://en.wikipedia.org/wiki/Parallel_compu[ng	 17	

Why	Parallel	Compu/ng?	

•  Save	[me	(execu[on	[me)	and	money!	
–  Parallel	program	can	run	faster	if	running	concurrently	instead	of	

sequen[ally.	

	
•  Solve	larger	and	more	complex	problems!	

–  U[lize	more	computa[onal	resources	

From	“21st	Century	Grand	Challenges	|	The	White	House”,	hKp://www.whitehouse.gov/administra[on/eop/ostp/grand-challenges	
Grand	challenges:	hKp://en.wikipedia.org/wiki/Grand_Challenges	

18	

Picture	from:	Intro	to	Parallel	Compu[ng:	hKps://compu[ng.llnl.gov/tutorials/parallel_comp	

High	performance	compu/ng	(HPC)	and	
parallel	compu/ng	

•  HPC	is	what	really	needed	*	
–  Parallel	compu[ng	is	so	far	the	only	way	to	get	there!!	

•  Parallel	compu[ng	makes	sense!	

•  Applica/ons	that	require	HPC	
–  Many	problem	domains	are	naturally	parallelizable	
–  Data	cannot	fit	in	memory	of	one	machine	

•  Computer	systems	
–  Physics	limita[on:	has	to	build	it	parallel	
–  Parallel	systems	are	widely	accessible		

•  Smartphone	has	2	to	4	cores	+	GPU	now	

19	

*What	is	HPC:	hKp://insidehpc.com/hpc-basic-training/what-is-hpc/	
Supercomputer:	hKp://en.wikipedia.org/wiki/Supercomputer	
TOP500	(500	most	powerful	computer	systems	in	the	world):	hKp://en.wikipedia.org/wiki/TOP500,	hKp://top500.org/	
HPC	maKer:	hKp://sc14.supercompu[ng.org/media/social-media	

We	will	discuss	each	of	
the	two	aspect	today!	

	Simula/on:	The	Third	Pillar	of	Science		

•  Tradi[onal	scien[fic	and	engineering	paradigm:	
1)  Do	theory	or	paper	design.	
2)  Perform	experiments	or	build	system.	

•  Limita[ons	of	experiments:	
–  Too	difficult	--	build	large	wind	tunnels.	
–  Too	expensive	--	build	a	throw-away	passenger	jet.	
–  Too	slow	--	wait	for	climate	or	galac[c	evolu[on.	
–  Too	dangerous	--	weapons,	drug	design,	climate	experimenta[on.	

•  Computa[onal	science	paradigm:	
3)  Use	high	performance	computer	systems	to	simulate	the	phenomenon	

• Base	on	known	physical	laws	and	efficient	numerical	
methods.	

20	

From	slides	of	Kathy	Yelic’s	2007	course	at	Berkeley:	hKp://www.cs.berkeley.edu/~yelick/cs267_sp07/		

Applica/ons:	Science	and	engineering		

•  Model	many	difficult	problems	by	parallel	compu[ng	
–  Atmosphere,	Earth,	Environment	
–  Physics	-	applied,	nuclear,	par[cle,	condensed	maKer,	high	

pressure,	fusion,	photonics	
–  Bioscience,	Biotechnology,	Gene[cs	
–  Chemistry,	Molecular	Sciences	
–  Geology,	Seismology	
–  Mechanical	Engineering	-	from	prosthe[cs	to	spacecraT	
–  Electrical	Engineering,	Circuit	Design,	Microelectronics	
–  Computer	Science,	Mathema[cs	
–  Defense,	Weapons	

21	

Applica/ons:	Industrial	and	Commercial	

•  Processing	large	amounts	of	data	in	sophis[cated	ways	
–  Databases,	data	mining	
–  Oil	explora[on	
–  Medical	imaging	and	diagnosis	
–  Pharmaceu[cal	design	
–  Financial	and	economic	modeling	
–  Management	of	na[onal	and	mul[-na[onal	corpora[ons	
–  Advanced	graphics	and	virtual	reality,	par[cularly	in	the	

entertainment	industry	
–  Networked	video	and	mul[-media	technologies	
–  Collabora[ve	work	environments	
–  Web	search	engines,	web	based	business	services	

22	

Economic	Impact	of	HPC	

•  Airlines:	
–  System-wide	logis[cs	op[miza[on	systems	on	parallel	systems.	
–  Savings:	approx.	$100	million	per	airline	per	year.	

•  Automo[ve	design:	
–  Major	automo[ve	companies	use	large	systems	(500+	CPUs)	for:	

•  CAD-CAM,	crash	tes[ng,	structural	integrity	and	aerodynamics.	
•  One	company	has	500+	CPU	parallel	system.	

–  Savings:	approx.	$1	billion	per	company	per	year.	
•  Semiconductor	industry:	

–  Semiconductor	firms	use	large	systems	(500+	CPUs)	for	
•  device	electronics	simula[on	and	logic	valida[on		

–  Savings:	approx.	$1	billion	per	company	per	year.	
•  Securi[es	industry:	

–  Savings:	approx.	$15	billion	per	year	for	U.S.	home	mortgages.	

23	From	slides	of	Kathy	Yelic’s	2007	course	at	Berkeley:	hKp://www.cs.berkeley.edu/~yelick/cs267_sp07/		

A	wide	variety	of	parallel	applica/ons	globally	

24	Source:	top500.org	

Parallel	applica/ons	

•  Example:	weather	predic[on	and	global	climate	modeling	

25	

Units	of	measure	in	HPC	

•  Flop:	floa[ng	point	opera[on	(*,	/,	+,	-,	etc)	
•  Flops/s:	floa[ng	point	opera[ons	per	second	
•  Bytes:	size	of	data	

–  A	double	precision	floa[ng	point	number	is	8	bytes	
•  Typical	sizes	are	millions,	billions,	trillions…	

–  Mega 	Mflop/s	=	106	flop/sec 	Mzbyte	=	220	=	1048576	=	~106	bytes	
–  Giga 	Gflop/s	=	109	flop/sec 	Gbyte	=	230	=	~109	bytes	
–  Tera 	Tflop/s	=	1012	flop/sec 	Tbyte	=	240	=	~1012	bytes		
–  Peta 	Pflop/s	=	1015	flop/sec 	Pbyte	=	250	=	~1015	bytes	
–  Exa 	Eflop/s	=	1018	flop/sec 	Ebyte	=	260	=	~1018	bytes	
–  ZeKa 	Zflop/s	=	1021	flop/sec 	Zbyte	=	270	=	~1021	bytes	
–  YoKa 	Yflop/s	=	1024	flop/sec 	Ybyte	=	280	=	~1024	bytes	 		

•  See	www.top500.org	for	the	units	of	the	fastest	machines	
–  The	fastest:	Tianhe-2	or	TH-2	(Chinese:	天河-2),	33.86	petaflops	
–  The	second:	DoE	ORNL	Titan,	17.59	petaflops	

26	

Global	climate	modeling	problem	

•  Problem	is	to	compute:	
–  f(la[tude,	longitude,	eleva[on,	[me)	à		
																				temperature,	pressure,	humidity,	wind	velocity	

•  Approach:	
–  Discre'ze	the	domain,	e.g.,	a	measurement	point	every	10	km	
–  Devise	an	algorithm	to	predict	weather	at	[me	t+dt	given	t	

•  Uses:	
–  Predict	major	events,	e.g.,	El	Nino	
–  Air	quality	forecas[ng	

27	

Global	climate	modeling	computa/on	

•  One	piece	is	modeling	the	fluid	flow	in	the	atmosphere	
–  Solve	Navier-Stokes	equa[ons	

•  Roughly	100	Flops	per	grid	point	with	1	minute	[mestep	
•  Computa[onal	requirements:	

–  To	match	real-[me,	need	5	x	1011	flops	in	60	seconds	=	8	Gflop/s	
–  Weather	predic[on	(7	days	in	24	hours)	à	56	Gflop/s	
–  Climate	predic[on	(50	years	in	30	days)	à	4.8	Tflop/s	
–  To	use	in	policy	nego[a[ons	(50	years	in	12	hours)	à	288	Tflop/s	

•  To	double	the	grid	resolu[on,	computa[on	is	8x	to	16x		
•  State	of	the	art	models	require	integra[on	of	atmosphere,	

ocean,	sea-ice,	land	models,	plus	possibly	carbon	cycle,	
geochemistry	and	more	

28	

Parameters	

29	

Community	Earth	System	Model	(CESM)	

30	
Picture	courtesy	of	M.	Vertenstein	(NCAR)	

The	rise	of	mul/core	processors	

31	

Semiconductor	trend:	“Moore’s	Law”	

	 	Gordon	Moore,	Founder	of	Intel	
•  1965:	since	the	integrated	circuit	was	invented,	the	number	of	

transistors/inch2	in	these	circuits	roughly	doubled	every	year;	
this	trend	would	con[nue	for	the	foreseeable	future	

•  1975:	revised	-	circuit	complexity	doubles	every	two	years	

32	
Image	credit:	Intel	

Microprocessor	Transistor	Counts	1971-2011	&	
Moore's	Law	

33	

hips://en.wikipedia.org/wiki/Transistor_count	

Moore’s	Law	trends	

•  More	transistors	=	↑	opportuni[es	for	exploi[ng	parallelism	in	the	
instruc[on	level	(ILP)	

–  Pipeline,	superscalar,	VLIW	(Very	Long	Instruc[on	Word),	SIMD	(Single	
Instruc[on	Mul[ple	Data)	or	vector,	specula[on,	branch	predic[on	

•  General	path	of	scaling	
–  Wider	instruc[on	issue,	longer	piepline	
–  More	specula[on	
–  More	and	larger	registers	and	cache	

•  Increasing	circuit	density	~=	increasing	frequency	~=	increasing	
performance	

•  Transparent	to	users	
–  An	easy	job	of	ge�ng	beKer	performance:	buying	faster	processors	(higher	

frequency)	

•  We	have	enjoyed	this	free	lunch	for	several	decades,	however	…	

34	

Problems	of	tradi/onal	ILP	scaling	

•  Fundamental	circuit	limita[ons1	
–  delays	⇑	as	issue	queues	⇑	and	mul[-port	register	files	⇑	
–  increasing	delays	limit	performance	returns	from	wider	issue	

•  Limited	amount	of	instruc[on-level	parallelism1	

–  inefficient	for	codes	with	difficult-to-predict	branches	

•  Power	and	heat	stall	clock	frequencies	

35	

[1]	The	case	for	a	single-chip	mul[processor,	K.	Olukotun,	B.	Nayfeh,	L.	
Hammond,	K.	Wilson,	and	K.	Chang,	ASPLOS-VII,	1996.	

ILP	impacts	

36	

Simula/ons	of	8-issue	Superscalar	

37	

Power/heat	density	limits	frequency	

38	

•  Some	fundamental	physical	limits	are	being	reached	

We	will	have	this	…	

39	

40	

More	Limits:	How	fast	can	a	serial	computer	be?	

•  Consider	the	1	Tflop/s	sequen[al	machine:	
–  Data	must	travel	some	distance,	r,	to	go	from	memory	to	CPU.	
–  To	get	1	data	element	per	cycle,	this	means	1012	[mes	per	

second	at	the	speed	of	light,	c	=	3x108	m/s.			
–  Thus	r	<	c/1012	=	0.3	mm.	

•  Now	put	1	Tbyte	of	storage	in	a	0.3	mm	x	0.3	mm	area:	
–  Each	bit	occupies	about	1	square	Angstrom,	or	the	size	of	a	

small	atom	

•  We	are	limited	by	the	size	of	transistors	

r	=	0.3	mm	
1	Tflop/s,	1	Tbyte	
sequen[al	machine	

01/17/2007	 CS267-Lecture	1	 41	

Revolu/on	is	happening	now	
•  Chip	density	is	

con[nuing	increase	~2x	
every	2	years	
–  Clock	speed	is	not	
–  Number	of	processor	

cores	may	double	
instead	

•  There	is	liKle	or	no	
hidden	parallelism	(ILP)	
to	be	found	

•  Parallelism	must	be	
exposed	to	and	
managed	by	soTware	
–  No	free	lunch	

Source:	Intel,	MicrosoT	(SuKer)	and	
Stanford	(Olukotun,	Hammond)	

IBM	
BG/L

ASCI	White
Pacific

EDSAC	1
UNIVAC	1

IBM	7090
CDC	6600

IBM	360/195 CDC	7600

Cray	1

Cray	X-MP
Cray	2

TMC	CM-2

TMC	CM-5 Cray	T3D

ASCI	Red

1950 1960 1970 1980 1990 2000 2010

1	KFlop/s

1	MFlop/s

1	GFlop/s

1	TFlop/s

1	PFlop/s

Scalar

Super Scalar

Parallel

Vector

1941 1 (Floating Point operations / second, Flop/s)
1945 100
1949 1,000 (1 KiloFlop/s, KFlop/s)
1951 10,000
1961 100,000
1964 1,000,000 (1 MegaFlop/s, MFlop/s)
1968 10,000,000
1975 100,000,000
1987 1,000,000,000 (1 GigaFlop/s, GFlop/s)
1992 10,000,000,000
1993 100,000,000,000
1997 1,000,000,000,000 (1 TeraFlop/s, TFlop/s)
2000 10,000,000,000,000
2005 131,000,000,000,000 (131 Tflop/s)

Super Scalar/Vector/Parallel

(103)

(106)

(109)

(1012)

(1015)

2X	Transistors/Chip	
Every	1.5	Years		

The	trends	

Recent	mul/core	processors	

43	

Recent	manycore	GPU	processors	

44	

�
�

An�Overview�of�the�GK110�Kepler�Architecture�
Kepler�GK110�was�built�first�and�foremost�for�Tesla,�and�its�goal�was�to�be�the�highest�performing�
parallel�computing�microprocessor�in�the�world.�GK110�not�only�greatly�exceeds�the�raw�compute�
horsepower�delivered�by�Fermi,�but�it�does�so�efficiently,�consuming�significantly�less�power�and�
generating�much�less�heat�output.��

A�full�Kepler�GK110�implementation�includes�15�SMX�units�and�six�64�bit�memory�controllers.��Different�
products�will�use�different�configurations�of�GK110.��For�example,�some�products�may�deploy�13�or�14�
SMXs.��

Key�features�of�the�architecture�that�will�be�discussed�below�in�more�depth�include:�

� The�new�SMX�processor�architecture�
� An�enhanced�memory�subsystem,�offering�additional�caching�capabilities,�more�bandwidth�at�

each�level�of�the�hierarchy,�and�a�fully�redesigned�and�substantially�faster�DRAM�I/O�
implementation.�

� Hardware�support�throughout�the�design�to�enable�new�programming�model�capabilities�

�

Kepler�GK110�Full�chip�block�diagram�

�
�

Streaming�Multiprocessor�(SMX)�Architecture�

Kepler�GK110)s�new�SMX�introduces�several�architectural�innovations�that�make�it�not�only�the�most�
powerful�multiprocessor�we)ve�built,�but�also�the�most�programmable�and�power�efficient.��

�

SMX:�192�single�precision�CUDA�cores,�64�double�precision�units,�32�special�function�units�(SFU),�and�32�load/store�units�
(LD/ST).�

�
�

Kepler�Memory�Subsystem�/�L1,�L2,�ECC�

Kepler&s�memory�hierarchy�is�organized�similarly�to�Fermi.�The�Kepler�architecture�supports�a�unified�
memory�request�path�for�loads�and�stores,�with�an�L1�cache�per�SMX�multiprocessor.�Kepler�GK110�also�
enables�compiler�directed�use�of�an�additional�new�cache�for�read�only�data,�as�described�below.�

�

�

64�KB�Configurable�Shared�Memory�and�L1�Cache�

In�the�Kepler�GK110�architecture,�as�in�the�previous�generation�Fermi�architecture,�each�SMX�has�64�KB�
of�on�chip�memory�that�can�be�configured�as�48�KB�of�Shared�memory�with�16�KB�of�L1�cache,�or�as�16�
KB�of�shared�memory�with�48�KB�of�L1�cache.�Kepler�now�allows�for�additional�flexibility�in�configuring�
the�allocation�of�shared�memory�and�L1�cache�by�permitting�a�32KB�/�32KB�split�between�shared�
memory�and�L1�cache.�To�support�the�increased�throughput�of�each�SMX�unit,�the�shared�memory�
bandwidth�for�64b�and�larger�load�operations�is�also�doubled�compared�to�the�Fermi�SM,�to�256B�per�
core�clock.�

48KB�Read�Only�Data�Cache�

In�addition�to�the�L1�cache,�Kepler�introduces�a�48KB�cache�for�data�that�is�known�to�be�read�only�for�
the�duration�of�the�function.�In�the�Fermi�generation,�this�cache�was�accessible�only�by�the�Texture�unit.�
Expert�programmers�often�found�it�advantageous�to�load�data�through�this�path�explicitly�by�mapping�
their�data�as�textures,�but�this�approach�had�many�limitations.��

•  ~3k	cores	

Now	it’s	up	to	the	programmers	

•  Adding	more	processors	doesn’t	help	much	if	programmers	
aren’t	aware	of	them…	
–  …	or	don’t	know	how	to	use	them.	

•  Serial	programs	don’t	benefit	from	this	approach	(in	most	
cases).	

45	

We	will	end	up	…	

46	

Concluding	Remarks	

•  The	laws	of	physics	have	brought	us	to	the	doorstep	of	
mul[core	technology	
–  The	worst	or	the	best	[me	to	major	in	computer	science	

•  IEEE	Reboo[ng	Compu[ng	(hKp://reboo[ngcompu[ng.ieee.org/)	

•  Serial	programs	typically	don’t	benefit	from	mul[ple	cores.	
•  Automa[c	paralleliza[on	from	serial	program	isn’t	the	most	
efficient	approach	to	use	mul[core	computers.	
–  Proved	not	a	viable	approach	

•  Learning	to	write	parallel	programs	involves		
–  learning	how	to	coordinate	the	cores.	

•  Parallel	programs	are	usually	very	complex	and	therefore,	
require	sound	program	techniques	and	development.	

47	

References	

•  Introduc[on	to	Parallel	Compu[ng,	Blaise	Barney,	
Lawrence	Livermore	Na[onal	Laboratory	
–  hKps://compu[ng.llnl.gov/tutorials/parallel_comp	

•  Some	slides	are	adapted	from	notes	of	Rice	University	John	
Mellor-Crummey’s	class	and	Berkely	Kathy	Yelic’s	class.	

•  Examples	are	from	chapter	01	slides	of	book	“An	
Introduc[on	to	Parallel	Programming”	by	Peter	Pacheco	
–  Note	the	copyright	no[ce	

•  Latest	HPC	news	
–  hKp://www.hpcwire.com	

•  World-wide	premier	conference	for	supercompu[ng	
–  hKp://www.supercompu[ng.org/,	the	week	before	

thanksgiving	week	 48	

49	

•  “I	think	there	is	a	world	market	for	maybe	five	computers.”	
–  Thomas	Watson,	chairman	of	IBM,	1943.	

•  “There	is	no	reason	for	any	individual	to	have	a	computer	in	
their	home”	

–  Ken	Olson,	president	and	founder	of	Digital	Equipment	Corpora/on,	
1977.	

•  “640K	[of	memory]	ought	to	be	enough	for	anybody.”	
–  Bill	Gates,	chairman	of	Microsow,1981.	

•  “On	several	recent	occasions,	I	have	been	asked	whether	
parallel	compu/ng	will	soon	be	relegated	to	the	trash	heap	
reserved	for	promising	technologies	that	never	quite	make	it.”	

– Ken	Kennedy,	CRPC	Directory,	1994	

hKp://highscalability.com/blog/2014/12/31/linus-the-whole-parallel-
compu[ng-is-the-future-is-a-bunch.html	

Vision	and	Wisdom	by	Experts	

Good	to	Know:	

50	

Terminology		

•  Concurrent	compu[ng	–	a	program	is	one	in	which	mul[ple	
tasks	can	be	in	progress	at	any	instant.	

•  Parallel	compu[ng	–	a	program	is	one	in	which	mul[ple	
tasks	cooperate	closely	to	solve	a	problem	

•  Distributed	compu[ng	–	a	program	may	need	to	cooperate	
with	other	programs	to	solve	a	problem.	

51	

A simple example

•  Compute	n	values	and	add	them	together.	
•  Serial	solu[on:	

52	

Example	(cont.)	

•  We	have	p	cores,	p	much	smaller	than	n.	
•  Each	core	performs	a	par[al	sum	of	approximately	n/p	
values.	

Each core uses it’s own private variables
and executes this block of code
independently of the other cores.

53	

Example	(cont.)	

•  ATer	each	core	completes	execu[on	of	the	code,	is	a	
private	variable	my_sum	contains	the	sum	of	the	values	
computed	by	its	calls	to	Compute_next_value.	

•  Ex.,	8	cores,	n	=	24,	then	the	calls	to	Compute_next_value	
return:	

1,4,3,			9,2,8,				5,1,1,			5,2,7,			2,5,0,			4,1,8,			6,5,1,			2,3,9	

54	

Example	(cont.)	

•  Once	all	the	cores	are	done	compu[ng	their	private	
my_sum,	they	form	a	global	sum	by	sending	results	to	a	
designated	“master”	core	which	adds	the	final	result.	

55	

Example (cont.)

56	

SPMD:	All	run	the	same	program,	but	perform	
differently	depending	on	who	they	are.		

Example (cont.)

Core	 0	 1	 2	 3	 4	 5	 6	 7	

my_sum	 8	 19	 7	 15	 7	 13	 12	 14	

Global	sum	
8	+	19	+	7	+	15	+	7	+	13	+	12	+	14	=	95	

Core	 0	 1	 2	 3	 4	 5	 6	 7	

my_sum	 95	 19	 7	 15	 7	 13	 12	 14	

57	

But	wait!	
There’s	a	much	beKer	way	
to	compute	the	global	sum.	

58	

Beier	parallel	algorithm	

•  Don’t	make	the	master	core	do	all	the	work.	
•  Share	it	among	the	other	cores.	
•  Pair	the	cores	so	that	core	0	adds	its	result	with	core	1’s	
result.	

•  Core	2	adds	its	result	with	core	3’s	result,	etc.	
•  Work	with	odd	and	even	numbered	pairs	of	cores.	

59	

Beier	parallel	algorithm	(cont.)	

•  Repeat	the	process	now	with	only	the	evenly	ranked	cores.	
•  Core	0	adds	result	from	core	2.	
•  Core	4	adds	the	result	from	core	6,	etc.	

•  Now	cores	divisible	by	4	repeat	the	process,	and	so	forth,	
un[l	core	0	has	the	final	result.	

60	

Mul/ple	cores	forming	a	global	sum	

61	

Analysis	

•  In	the	first	example,	the	master	core	performs	7	receives	
and	7	addi[ons.	

•  In	the	second	example,	the	master	core	performs	3	
receives	and	3	addi[ons.	

•  The	improvement	is	more	than	a	factor	of	2!	

62	

Analysis	(cont.)	

•  The	difference	is	more	drama[c	with	a	larger	number	of	
cores.	

•  If	we	have	1000	cores:	
–  The	first	example	would	require	the	master	to	perform	999	

receives	and	999	addi[ons.	
–  The	second	example	would	only	require	10	receives	and	10	

addi[ons.	
	

•  That’s	an	improvement	of	almost	a	factor	of	100!	

63	

