
Lecture	08:	Programming	with	PThreads:	
PThreads basics,	Mutual	Exclusion	and	Locks,	

and	Examples
CSCE	790:	Parallel	Programming	Models	
for	Multicore	and	Manycore Processors

Department	of	Computer	Science	and	Engineering
Yonghong Yan

yanyh@cse.sc.edu
http://cse.sc.edu/~yanyh

1

OpenMP:	Worksharing	Constructs

2

for(i=0;i<N;i++) { a[i] = a[i] + b[i]; }

#pragma omp parallel shared (a, b)

{

int id, i, Nthrds, istart, iend;
id = omp_get_thread_num();
Nthrds = omp_get_num_threads();
istart = id * N / Nthrds;
iend = (id+1) * N / Nthrds;
for(i=istart;i<iend;i++) { a[i] = a[i] + b[i]; }

}

#pragma omp parallel shared (a, b) private (i)
#pragma omp for schedule(static)

for(i=0;i<N;i++) { a[i] = a[i] + b[i]; }

Sequential code

OpenMP parallel
region

OpenMP parallel
region and a
worksharing for
construct

PThreads

• Processing	element	abstraction	for	software
– PThreads
– OpenMP/Cilk/others	runtime	use	PThreads for	their	

implementation

• The	foundation	of	parallelism	from	computer	system

• Topic	Overview	
– Thread	basics	and	the	POSIX	Thread	API	
– Thread	creation,	termination	and	joining
– Thread	safety
– Synchronization	primitives	in	PThreads

• processes contain	information	about	program	resources	and	
program	execution	state,	including:	
– Process	ID,	process	group	ID,	user	ID,	and	group	ID	
– Environment,	Working	directory,	Program	instructions	
– Registers,	Stack,	Heap	
– File	descriptors,	Signal	actions	
– Shared	libraries,	Inter-process	communication	tools	(such	as	

message	queues,	pipes,	semaphores,	or	shared	memory).	

• When	we	run	a	program,	a	process	is	created
– E.g.	./a.out,	./axpy,	etc
– fork	()	system	call

OS	Review:	Processes

• Threads	use,	and	exist	within,	the	process	resources
• Scheduled	and	run	as	independent	entities
• Duplicate	only	the	bare	essential	resources	that	enable	
them	to	exist	as	executable	code

Threads

• A	thread	maintains	its	own:
– Stack	pointer	
– Registers	
– Scheduling	properties	(such	as	policy	

or	priority)	
– Set	of	pending	and	blocked	signals	
– Thread	specific	data.	

• Multiple	threads	share	the	
process	resources

• A	thread	dies	if	the	process	dies
• "lightweight”	for	creating	and	

terminating	threads	that	for	
processes

Threads

What	is	a	Thread	in	Real

• OS	view
– An	independent	stream	of	instructions	
that	can	be	scheduled	to	run	by	the	OS.

• Software	developer	view
– A “procedure”	that	runs	independently	from	the	main	program

• Imagine	multiple	such	procedures	of	main	run	simultaneously	
and/or	independently	

– Sequential	program:	a	single	stream	of	instructions	in	a	
program.

– Multi-threaded	program:	a	program	with	multiple	streams
• Multiple	threads	are	needed	to	use	multiple	cores/CPUs	

7

Thread	as	“function	instance”	

X																			=

A	thread is	a	single	stream	of	control	in	the	flow	of	a	
program:

for (i = 0; i < n; i++)
y[i] = dot_product(row(A, i),b);

for (i = 0; i < n; i++)
y[i] = create_thread(dot_product(row(A, i), b));

• think	of	the	thread	as	an	instance	of	
a	function	that	returns	before	the	function	
has	finished	executing.	

POSIX	threads	(PThreads)

• Threads	used	to	implement	parallelism in	shared	
memory	multiprocessor	systems,	such	as	SMPs	

• Historically,	hardware	vendors	have	implemented	their	
own	proprietary	versions	of	threads
– Portability	a	concern	for	software	developers.	

• For	UNIX	systems,	a	standardized	C	language	threads	
programming	interface	has	been	specified	by	the	IEEE	
POSIX	1003.1c	standard.
– Implementations	that	adhere	to	this	standard	are	referred	to	

as	POSIX	threads

9

The	POSIX	Thread	API	

• Commonly	referred	to	as	PThreads,	POSIX	has	emerged	as	the	
standard	threads	API,	supported	by	most	vendors.	
– Implemented	with	a	pthread.h header/include	file	and	a	thread	

library

• Functionalities
– Thread	management,	e.g.	creation	and	joining
– Thread	synchronization	primitives

• Mutex
• Condition	variables
• Reader/writer	locks
• Pthread barrier

– Thread-specific	data	

• The	concepts	discussed	here	are	largely	independent	of	the	API
– Applied	to	other	thread	APIs	(NT	threads,	Solaris	threads,	Java	

threads,	etc.)	as	well.	

PThread API

• #include <pthread.h>

• gcc -lpthread

11

• Initially,	main()	program	comprises	a	single,	default	thread
– All	other	threads	must	be	explicitly	created

int pthread_create(
pthread_t *thread,
const pthread_attr_t *attr,
void *(*start_routine)(void *),
void * arg);

• thread:	An	opaque,	unique	identifier	for	the	new	thread	returned	by	the	subroutine
• attr:	An	opaque attribute	object	that	may	be	used	to	set	thread	attributes	

You	can	specify	a	thread	attributes	object,	or	NULL	for	the	default	values
• start_routine:	the	C	routine	that	the	thread	will	execute	once	it	is	created	
• arg:	A	single	argument	that	may	be	passed	to	start_routine.	It	must	be	passed	by	

reference	as	a	pointer	cast	of	type	void.	NULL	may	be	used	if	no	argument	is	to	be	
passed.

Thread	Creation

Opaque	object:	A	letter	is	an	opaque	object	to	the	mailman,	and	sender	and	receiver	
know	the	information.

Thread	Creation

• pthread_create creates	a	new	thread	and	makes	it	
executable,	i.e.	run	immediately	in	theory
– can	be	called	any	number	of	times	from	anywhere	within	your	code

• Once	created,	threads	are	peers,	and	may	create	other	threads	
• There	is	no	implied	hierarchy	or	dependency	between	threads

13

#include <pthread.h>
#define NUM_THREADS5

void *PrintHello(void *thread_id) {
long tid = (long)thread_id;
printf("Hello World! It's me, thread #%ld!\n", tid);
pthread_exit(NULL);

}

int main(int argc, char *argv[]) {
pthread_t threads[NUM_THREADS];
long t;

for(t=0;t<NUM_THREADS;t++) {
printf("In main: creating thread %ld\n", t);
int rc = pthread_create(&threads[t], NULL, PrintHello, (void *)t);
if (rc) {

printf("ERROR; return code from pthread_create() is %d\n", rc);
exit(-1);

}
}

pthread_exit(NULL);
}

One possible output:

In main: creating thread 0
In main: creating thread 1
In main: creating thread 2
In main: creating thread 3
Hello World! It's me, thread #0!
In main: creating thread 4
Hello World! It's me, thread #1!
Hello World! It's me, thread #3!
Hello World! It's me, thread #2!
Hello World! It's me, thread #4!

Example	1:	pthread_create

• pthread_exit is	used	to	explicitly	exit	a	thread
– Called	after	a	thread	has	completed	its	work	and	is	no	longer	

required	to	exist
• If	main()finishes	before	the	threads	it	has	created

– If	exits	with	pthread_exit(),	the	other	threads	will	continue	to	
execute

– Otherwise,	they	will	be	automatically	terminated	when	
main()finishes

• The	programmer	may	optionally	specify	a	termination	
status,	which	is	stored	as	a	void	pointer	for	any	thread	that	
may	join	the	calling	thread

• Cleanup:	the	pthread_exit()routine	does	not	close	
files	
– Any	files	opened	inside	the	thread	will	remain	open	after	the	thread	

is	terminated

Terminating	Threads

Thread	Attribute
int pthread_create(

pthread_t *thread,
const pthread_attr_t *attr,
void *(*start_routine)(void *),
void * arg);

• Attribute	contains	details	about
– whether	scheduling	policy	is	inherited	or	explicit
– scheduling	policy,	scheduling	priority
– stack	size,	stack	guard	region	size

• pthread_attr_init and	pthread_attr_destroy are	used	
to	initialize/destroy	the	thread	attribute	object

• Other	routines	are	then	used	to	query/set	specific	attributes	in	the	
thread	attribute	object

16

• The	pthread_create() routine	permits	the	programmer	to	
pass	one argument	to	the	thread	start	routine

• For	cases	where	multiple	arguments	must	be	passed:
– Create	a	structure	which	contains	all	of	the	arguments
– Then	pass	a	pointer	to	the	object	of	that	structure	in	the	

pthread_create()routine.	
– All	arguments	must	be	passed	by	reference	and	cast	to	(void	*)

• Make	sure	that	all	passed	data	is	thread	safe:	data	racing
– it	can	not	be	changed	by	other	threads
– It	can	be	changed	in	a	determinant	way

• Thread	coordination

Passing	Arguments	to	Threads

#include <pthread.h>
#define NUM_THREADS 8

struct thread_data {
int thread_id;
char *message;

};

struct thread_data thread_data_array[NUM_THREADS];

void *PrintHello(void *threadarg) {
int taskid;
char *hello_msg;

sleep(1);
struct thread_data *my_data = (struct thread_data *) threadarg;
taskid = my_data->thread_id;
hello_msg = my_data->message;
printf("Thread %d: %s\n", taskid, hello_msg);
pthread_exit(NULL);

}

Example	2:	Argument	Passing

int main(int argc, char *argv[]) {
pthread_t threads[NUM_THREADS];
int t;
char *messages[NUM_THREADS];
messages[0] = "English: Hello World!";
messages[1] = "French: Bonjour, le monde!";
messages[2] = "Spanish: Hola al mundo";
messages[3] = "Klingon: Nuq neH!";
messages[4] = "German: Guten Tag, Welt!";
messages[5] = "Russian: Zdravstvytye, mir!";
messages[6] = "Japan: Sekai e konnichiwa!";
messages[7] = "Latin: Orbis, te saluto!";

for(t=0;t<NUM_THREADS;t++) {
struct thread_data * thread_arg = &thread_data_array[t];
thread_arg->thread_id = t;
thread_arg->message = messages[t];
pthread_create(&threads[t], NULL, PrintHello, (void *) thread_arg);

}
pthread_exit(NULL);

}

Example	2:	Argument	Passing

Thread	3:	Klingon:	Nuq neH!
Thread	0:	English:	Hello	World!
Thread	1:	French:	Bonjour,	le	monde!
Thread	2:	Spanish:	Hola al	mundo
Thread	5:	Russian:	Zdravstvytye,	mir!
Thread	4:	German:	Guten Tag,	Welt!
Thread	6:	Japan:	Sekai e	konnichiwa!
Thread	7:	Latin:	Orbis,	te saluto!

Wait	for	Thread	Termination

Suspend	execution	of	calling	thread	until	thread terminates
#include <pthread.h>
int pthread_join(

pthread_t thread,

void **value_ptr);
• thread:	the	joining	thread
• value_ptr:	ptr to	location	for	return	code	a	terminating	thread	passes	to	

pthread_exit

• It	is	a	logical	error	to	attempt	simultaneous	multiple	joins	on	the	same	thread20

#include <pthread.h>
#define NUM_THREADS 4

void *BusyWork(void *t) {
int i;
long tid = (long)t;
double result=0.0;
printf("Thread %ld starting...\n",tid);

for (i=0; i<1000000; i++) {
result = result + sin(i) * tan(i);

}

printf("Thread %ld done. Result = %e\n",tid, result);
pthread_exit((void*) t);

}

Example	3:	PThreads Joining

int main (int argc, char *argv[])
{

pthread_t thread[NUM_THREADS];
pthread_attr_t attr;
long t;
void *status;

/* Initialize and set thread detached attribute */
pthread_attr_init(&attr);
pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_JOINABLE);

for(t=0; t<NUM_THREADS; t++) {
printf("Main: creating thread %ld\n", t);
pthread_create(&thread[t], &attr, BusyWork, (void *)t);

}
/* Free attribute and wait for the other threads */
pthread_attr_destroy(&attr);
for(t=0; t<NUM_THREADS; t++) {

pthread_join(thread[t], &status);
printf(“Main: joined with thread %ld, status: %ld\n", t, (long)status);

}
printf("Main: program completed. Exiting.\n");
pthread_exit(NULL);

}

Example	3:	PThreads joining
Main:	creating	thread	0
Main:	creating	thread	1
Thread	0	starting...
Main:	creating	thread	2
Thread	1	starting...
Main:	creating	thread	3
Thread	2	starting...
Thread	3	starting...
Thread	1	done.	Result	=	-3.153838e+06
Thread	0	done.	Result	=	-3.153838e+06
Main:	joined	with	thread	0,	status:	0
Main:	joined	with	thread	1,	status:	1
Thread	2	done.	Result	=	-3.153838e+06
Main:	joined	with	thread	2,	status:	2
Thread	3	done.	Result	=	-3.153838e+06
Main:	joined	with	thread	3,	status:	3
Main:	program	completed.	Exiting.

• All	threads	have	access	to	the	same	global,	shared	memory	
• Threads	also	have	their	own	private	data	
• Programmers	are	responsible	for	synchronizing	access	

(protecting)	globally	shared	data.

Shared	Memory	and	Threads

Thread	Consequences

24

• Shared	State!
– Accidental	changes	to	global	variables	can	be	fatal.
– Changes	made	by	one	thread	to	shared	system	resources	(such	as	

closing	a	file)	will	be	seen	by	all	other	threads
– Two	pointers	having	the	same	value	point	to	the	same	data
– Reading	and	writing	to	the	same	memory	locations	is	possible
– Therefore	requires	explicit	synchronization	by	the	programmer

• Many	library	functions	are	not	thread-safe
– Library	Functions	that	return	pointers	to	static	internal	memory.	E.g.	

gethostbyname()
• Lack	of	robustness	

– Crash	in	one	thread	will	crash	the	entire	process

• Thread-safeness:	in	a	nutshell,	refers	an	application's	ability	to	
execute	multiple	threads	simultaneously	without	"clobbering"	
shared	data	or	creating	"race"	conditions

• Example:		an	application	creates	several	threads,	each	of	which	
makes	a	call	to	the	same	library	routine:	
– This	library	routine	accesses/modifies	a	global	structure	or	

location	in	memory.	
– As	each	thread	calls	this	routine	it	is	possible	that	they	may	try	

to	modify	this	global	structure/memory	location	at	the	same	
time.	

– If	the	routine	does	not	employ	some	sort	of	synchronization	
constructs	to	prevent	data	corruption,	then	it	is	not	thread-
safe.	

Thread-safeness

Thread-safeness

The	implication	to	users	of	external	library	routines:

• If	you	aren't	100%	certain	the	routine	is	thread-safe,	then	you	
take	your	chances	with	problems	that	could	arise.	

• Recommendation
– Be	careful	if	your	application	uses	libraries	or	other	objects	that	

don't	explicitly	guarantee	thread-safeness.
– When	in	doubt,	assume	that	they	are	not	thread-safe	until	

proven	otherwise
– This	can	be	done	by	"serializing"	the	calls	to	the	uncertain	

routine,	etc.	

Thread-safeness

Example	4:	Data	Racing

28

#include <pthread.h>
#define NUM_THREADS5

void *PrintHello(void *thread_id) { /* thread func */
long tid = *((long*)thread_id);
printf("Hello World! It's me, thread #%ld!\n", tid);
pthread_exit(NULL);

}

int main(int argc, char *argv[]) {
pthread_t threads[NUM_THREADS];
long t;
for(t=0;t<NUM_THREADS;t++) {

printf("In main: creating thread %ld\n", t);
int rc = pthread_create(&threads[t], NULL, PrintHello, (void *)&t);
if (rc) {

printf("ERROR; return code from pthread_create() is %d\n", rc);
exit(-1);

}
}

pthread_exit(NULL);
}

In	main:	creating	thread	0
In	main:	creating	thread	1
In	main:	creating	thread	2
In	main:	creating	thread	3
Hello	World!	It's	me,	thread	#3!
Hello	World!	It's	me,	thread	#3!
Hello	World!	It's	me,	thread	#3!
In	main:	creating	thread	4
Hello	World!	It's	me,	thread	#4!
Hello	World!	It's	me,	thread	#5!

• The	primary	motivation
– To	realize	potential	program	performance	gains

• Compared	to	the	cost	of	creating	and	managing	a	process
– A thread	can	be	created	with	much	less	OS	overhead

• Managing	threads	requires	fewer	system	resources	than	
managing	processes

• All	threads	within	a	process	share	the	same	address	space
• Inter-thread	communication	is	more	efficient	and,	in	many	cases,	

easier	to	use	than	inter-process	communication	

Why	PThreads (not	processes)?

• Timing	results	for	the	fork() subroutine	and	the	
pthreads_create() subroutine
– Timings	reflect	50,000	process/thread	creations
– units	are	in	seconds
– no	optimization	flags	

pthread_create vs fork

• Potential	performance	gains	and	practical	advantages	over	non-
threaded	applications:	
– Overlapping	CPU	work	with	I/O

• For	example,	a	program	may	have	sections	where	it	is	performing	a	long	
I/O	operation

• While	one	thread	is	waiting	for	an	I/O	system	call	to	complete,	CPU	
intensive	work	can	be	performed	by	other	threads.

• Priority/real-time	scheduling	
– Tasks	which	are	more	important	can	be	scheduled	to	supersede	or	

interrupt	lower	priority	tasks.	

• Asynchronous	event	handling	
– Tasks	which	service	events	of	indeterminate	frequency	and	duration	can	be	

interleaved
– For	example,	a	web	server	can	both	transfer	data	from	previous	requests	

and	manage	the	arrival	of	new	requests.	

Why	pthreads

AXPY	with	PThreads

• y	=	α·x	+	y
– x and	y are	vectors	of	size	N

• In	C,	x[N],	y[N]
– α is	scalar

• Decomposition	and	mapping	to	pthreads

32

A	task	will	be	mapped	to	a	
pthread

AXPY	with	PThreads

33

Data	Racing	in	a	Multithread	Program
Consider:	
/* each thread to update shared variable
best_cost */

if (my_cost < best_cost)
best_cost = my_cost;

– two	threads,	
– the	initial	value	of	best_cost is	100,	
– the	values	of	my_cost are	50	and	75	for	threads	t1	and	t2

best_cost = my_cost;

• The	value	of	best_cost could	be	50	or	75!	
• The	value	75	does	not	correspond	to	any	serialization	of	the	two	

threads.	

34

T1 T2

if (my_cost (50) <
best_cost)

best_cost = my_cost;

if (my_cost (75) < best_cost)

best_cost = my_cost;

Critical	Section	and	Mutual	Exclusion	

• Critical	section	=	a	segment	that	must	be	executed	by	
only	one	thread	at	any	time

• Mutex locks	protect	critical	sections	in	Pthreads
– locked	and	unlocked
– At	any	point	of	time,	only	one	thread	can	acquire	a	mutex lock

• Using	mutex locks
– request	lock	before	executing	critical	section
– enter	critical	section	when	lock	granted
– release	lock	when	leaving	critical	section

if (my_cost < best_cost)
best_cost = my_cost;

35

Mutual	Exclusion	using	Pthread Mutex
int pthread_mutex_lock (pthread_mutex_t *mutex_lock);
int pthread_mutex_unlock (pthread_mutex_t *mutex_lock);
int pthread_mutex_init (pthread_mutex_t *mutex_lock,

const pthread_mutexattr_t *lock_attr);

pthread_mutex_t cost_lock;	
int main()	{	

...	
pthread_mutex_init(&cost_lock,	NULL);	
pthread_create(&thhandle,	NULL,	find_best,	…)

...	
}	
void	*find_best(void	*list_ptr)	{	
...	
pthread_mutex_lock(&cost_lock);	//	enter	CS
if	(my_cost <	best_cost)	
best_cost =	my_cost;	

pthread_mutex_unlock(&cost_lock);	//	leave	CS
}	

Critical	Section

pthread_mutex_lock blocks	the	calling	
thread	if	another	thread	holds	the	lock

When	pthread_mutex_lock call	returns
1. Mutex is	locked,	enter	CS
2. Any	other	locking	attempt	(call	to	

thread_mutex_lock)	will	cause	the	
blocking	of	the	calling	thread

When	pthread_mutex_unlock returns
1. Mutex is	unlocked,	leave	CS
2. One	thread	who	blocks	on	

thread_mutex_lock call	will	acquire	
the	lock	and	enter	CS

36

Producer-Consumer	Using	Locks	
Constrains:	
• The	producer	threads

– must	not	overwrite	the	shared	buffer	when	the	previous	task	
has	not	been	picked	up	by	a	consumer	thread.	

• The	consumer	threads
– must	not	pick	up	tasks	until	there	is	something	present	in	the	

shared	data	structure.	
– Individual	consumer	thread	should	pick	up	tasks	one	at	a	time

Contention:
– Between	producers
– Between	consumers
– Between	producers	and	consumers

37

Producer-Consumer	Using	Locks	
pthread_mutex_t task_queue_lock;
int task_available;
main() {

....
task_available = 0;
pthread_mutex_init(&task_queue_lock, NULL);
....

}

38

void *producer(void *producer_thread_data) {
....
while (!done()) {

inserted = 0;
create_task(&my_task);
while (inserted == 0) {

pthread_mutex_lock(&task_queue_lock);
if (task_available == 0) {

insert_into_queue(my_task);
task_available = 1; inserted = 1;

}
pthread_mutex_unlock(&task_queue_lock);

}
}

}

void *consumer(void *consumer_thread_data) {
int extracted;
struct task my_task;
while (!done()) {

extracted = 0;
while (extracted == 0) {

pthread_mutex_lock(&task_queue_lock);
if (task_available == 1) {

extract_from_queue(&my_task);
task_available = 0; extracted = 1;

}
pthread_mutex_unlock(&task_queue_lock);

}
process_task(my_task);

}
}

Critical	
Section

Note	the	purpose	of	inserted	and
extraced variables

Three	Types	of	Mutexes

• Normal
– Deadlocks	if	a	thread	already	has	a	lock	and	tries	a	second	lock	on	it.	

• Recursive
– Allows	a	single	thread	to	lock	a	mutex as	many	times	as	it	wants.	

• It	simply	increments	a	count	on	the	number	of	locks.	
– A	lock	is	relinquished	by	a	thread	when	the	count	becomes	zero.	

• Error	check
– Reports	an	error	when	a	thread	with	a	lock	tries	to	lock	it	again	(as	

opposed	to	deadlocking	in	the	first	case,	or	granting	the	lock,	as	in	
the	second	case).	

• The	type	of	the	mutex can	be	set	in	the	attributes	object	before	
it	is	passed	at	time	of	initialization
– pthread_mutex_attr_init

39

Overheads	of	Locking	

40

• Locks	enforce	serialization
– Thread	must	execute	critical	sections	one	after	another	

• Large	critical	sections	can	lead	to	significant	performance	
degradation.	

• Reduce	the	blocking	overhead	associated	with	locks	using:	

int pthread_mutex_trylock (
pthread_mutex_t *mutex_lock);

– acquire	lock	if	available
– return	EBUSY	if	not	available
– enables	a	thread	to	do	something	else	if	lock	unavailable

• pthread trylock typically	much	faster	than	lock on	certain	systems
– It	does	not	have	to	deal	with	queues	associated	with	locks	for	multiple	

threads	waiting	on	the	lock.	

41

Condition	Variables	for	Synchronization

A	condition	variable:	associated	with	a	predicate and	a	mutex
– A	sync	variable	for	a	condition,	e.g.	mybalance >	500

• A	thread	can	block	itself	until	a	condition	becomes	true
– When	blocked,	release	mutex so	others	can	acquire	it

• When	a	condition	becomes	true,	observed	by	another	
thread,	the	condition	variable	is	used	to	signal	other	
threads	who	are	blocked

• A	condition	variable	always	has	a	mutex associated	with	
it.	
– A	thread	locks	this	mutex and	tests	the	condition

42

Condition	Variables	for	Synchronization
/*	the	opaque	data	structure	*/
pthread_cond_t

/*	initialization	and	destroying	*/
int pthread_cond_init(pthread_cond_t *cond,

const pthread_condattr_t *attr);
int pthread_cond_destroy(pthread_cond_t *cond);

/*	block	and	release	lock	until	a	condition	is	true	*/
int pthread_cond_wait(pthread_cond_t *cond,

pthread_mutex_t *mutex);
int pthread_cond_timedwait(pthread_cond_t *cond,
pthread_mutex_t *mutex, const struct timespec *wtime);

/*	signal	one	or	all	waiting	threads	that	condition	is	true	*/
int pthread_cond_signal(pthread_cond_t *cond);
int pthread_cond_broadcast(pthread_cond_t *cond);

pthread_cond_t cond_queue_empty, cond_queue_full;
pthread_mutex_t task_queue_cond_lock;
int task_available;
/* other data structures here */

main() {
/* declarations and initializations */
task_available = 0;
pthread_cond_init(&cond_queue_empty, NULL);
pthread_cond_init(&cond_queue_full, NULL);
pthread_mutex_init(&task_queue_cond_lock, NULL);
/* create and join producer and consumer threads */

}

43

Producer-Consumer	Using	Condition	Variables

• Two	conditions:
• Queue	is	full:	(task_available ==	1)	ß cond_queue_full
• Queue	is	empty:	(task_available ==	0)	ß cond_queue_empty

• A	mutex for	protecting	accessing	the	queue	(CS):	task_queue_cond_lock

void *producer(void *producer_thread_data) {
int inserted;
while (!done()) {

create_task();
pthread_mutex_lock(&task_queue_cond_lock);

while (task_available == 1)
pthread_cond_wait(&cond_queue_empty,

&task_queue_cond_lock);

insert_into_queue();
task_available = 1; CS

pthread_cond_signal(&cond_queue_full);

pthread_mutex_unlock(&task_queue_cond_lock);
}

}

44

Producer-Consumer	Using	Condition	Variables	

Release	mutex (unlock)	
when	blocked/wait

Acquire	mutex (lock)	when	
awaken

Producer:	
1. Wait	for	queue	to	become	empty,	notified	by	consumer	through	cond_queue_empty
2. insert	into	queue
3. Signal	consumer	through	cond_queue_full

1

2

3

void *consumer(void *consumer_thread_data) {
while (!done()) {
pthread_mutex_lock(&task_queue_cond_lock);

while (task_available == 0)
pthread_cond_wait(&cond_queue_full,
&task_queue_cond_lock);

my_task = extract_from_queue();
task_available = 0;

pthread_cond_signal(&cond_queue_empty);

pthread_mutex_unlock(&task_queue_cond_lock);
process_task(my_task);

}
}

45

Consumer:	
1. Wait	for	queue	to	become	full,	notified	by	producer	through	cond_queue_full
2. Extract	task	from	queue	
3. Signal	producer	through	cond_queue_empty

Release	mutex (unlock)	
when	blocked/wait

Acquire	mutex (lock)	when	
awaken

Producer-Consumer	Using	Condition	Variables	

1

2

3

Thread	and	Synchronization	Attributes	

• Three	major	objects
– pthread_t
– pthread_mutex_t
– pthread_cond_t

• Default	attributes	when	being	created/initialized
– NULL

• An	attributes	object	is	a	data-structure	that	describes	entity	
(thread,	mutex,	condition	variable)	properties.	
– Once	these	properties	are	set,	the	attributes	object	can	be	

passed	to	the	method	initializing	the	entity.	
– Enhances	modularity,	readability,	and	ease	of	modification.	

46

Attributes	Objects	for	Threads	

47

• Initialize	an	attribute	objects	using	
pthread_attr_init

• Individual	properties	associated	with	the	attributes	
object	can	be	changed	using	the	following	functions:	
pthread_attr_setdetachstate,
pthread_attr_setguardsize_np,
pthread_attr_setstacksize,
pthread_attr_setinheritsched,
pthread_attr_setschedpolicy, and
pthread_attr_setschedparam

Attributes	Objects	for	Mutexes

48

• Initialize	an	attributes	object	using	function:	
pthread_mutexattr_init.	

• pthread_mutexattr_settype_np for	setting	the	mutex type
pthread_mutexattr_settype_np (pthread_mutexattr_t
*attr,int type);

• Specific	types:	
– PTHREAD_MUTEX_NORMAL_NP	
– PTHREAD_MUTEX_RECURSIVE_NP
– PTHREAD_MUTEX_ERRORCHECK_NP	

Attributes	Objects	for	Condition	Variable

• Initialize	an	attribute	object	using	
pthread_condattr_init

• int pthread_condattr_setpshared(pthread_condattr_t
*cattr,	int pshared)	to	specifies	the	scope	of	a	condition	
variable	to	either	process	private	(intraprocess)	or	system	
wide	(interprocess)	via	pshared
– PTHREAD_PROCESS_SHARED
– PTHREAD_PROCESS_PRIVATE

49

• PthreadMutex and	Condition	Variables	are	two	basic	sync	
operations.	

• Higher	level	constructs	can	be	built	using	basic	constructs.	
– Read-write	locks
– Barriers

• Pthread has	its	corresponding	implementation
– pthread_rwlock_t
– pthread_barrier_t

• We	will	discuss	our	own	implementations

50

Composite	Synchronization	Constructs

51

Read-Write	Locks	

• Concurrent	access	to	data	structure:
– Read	frequently	but
– Written	infrequently

• Behavior:
– Concurrent	read:	A	read	request	is	granted	when	there	are	

other	reads	or	no	write	(pending	write	request).	
– Exclusive	write:	A	write	request	is	granted	only	if	there	is	no	

write	or	pending	write	request,	or	reads.	
• Interfaces:

– The	rw lock	data	structure:	struct mylib_rwlock_t
– Read	lock:	mylib_rwlock_rlock
– write	lock:	mylib_rwlock_wlock
– Unlock:	mylib_rwlock_unlock.	

• Two	types	of	mutual	exclusions
– 0/1	mutex for	protecting	access	to	write
– Counter	mutex (semaphore)	for	counting	read	access

• Component	sketch
– a	count	of	the	number	of	readers,	
– 0/1	integer	specifying	whether	a	writer	is	present,	
– a	condition	variable	readers_proceed that	is	signaled	when	readers	

can	proceed,	
– a	condition	variable	writer_proceed that	is	signaled	when	one	of	the	

writers	can	proceed,	
– a	count	pending_writers of	pending	writers,	and	
– a	pthread_mutex_t read_write_lock associated	with	the	shared	data	

structure

52

Read-Write	Locks	

53

Read-Write	Locks
typedef struct {
int readers;
int writer;
pthread_cond_t readers_proceed;
pthread_cond_t writer_proceed;
int pending_writers;
pthread_mutex_t read_write_lock;

} mylib_rwlock_t;

void mylib_rwlock_init (mylib_rwlock_t *l) {
l->readers=0; l->writer=0; l->pending_writers=0;
pthread_mutex_init(&(l->read_write_lock), NULL);
pthread_cond_init(&(l->readers_proceed), NULL);
pthread_cond_init(&(l->writer_proceed), NULL);

}

Read-Write	Locks	

void mylib_rwlock_rlock(mylib_rwlock_t *l) {
pthread_mutex_lock(&(l->read_write_lock));

while ((l->pending_writers > 0) || (l->writer > 0))
pthread_cond_wait(&(l->readers_proceed),
&(l->read_write_lock));

l->readers ++;

pthread_mutex_unlock(&(l->read_write_lock));
}

54

Reader	lock:	
1. if	there	is	a	write	or	pending	writers,	perform	condition	wait,
2. else	increment	count	of	readers	and	grant	read	lock

1

2

Read-Write	Locks	
void mylib_rwlock_wlock(mylib_rwlock_t *l) {
pthread_mutex_lock(&(1->read_write_lock));
1->pending_writers ++;

while ((1->writer > 0) || (1->readers > 0)) {
pthread_cond_wait(&(1->writer_proceed),

&(1->read_write_lock));
}

1->pending_writers --;
1->writer ++;

pthread_mutex_unlock(&(1->read_write_lock));
}

55

Writer	lock:	
1. If	there	are	readers	or	writers,	increment	pending	writers	

count	and	wait.	
2. On	being	woken,	decrement	pending	writers	count	and	

increment	writer	count	

1

2

Read-Write	Locks	

void mylib_rwlock_unlock(mylib_rwlock_t *l) {
pthread_mutex_lock(&(1->read_write_lock));
if (1->writer > 0) /* only writer */
1->writer = 0;

else if (1->readers > 0) /* only reader */
1->readers --;

pthread_mutex_unlock(&(1->read_write_lock));

if ((1->readers == 0) && (1->pending_writers > 0))
pthread_cond_signal(&(1->writer_proceed));

else if (1->readers > 0)
pthread_cond_broadcast(&(1->readers_proceed));

}

56

Reader/Writer	unlock:	
1. If	there	is	a	write	lock	then	unlock
2. If	there	are	read	locks,	decrement	count	of	read	locks.	
3. If	the	read	count	becomes	0	and	there	is	a	pending	writer,	notify	writer	
4. Otherwise	if	there	are	pending	readers,	let	them	all	go	through	

1

2

3

4

Barrier

• A	barrier	holds	one	or	multiple	threads	until	all	
threads	participating	in	the	barrier	have	reached	the	
barrier	point	

57

Barrier

• Needs	a	counter,	a	mutex and	a	condition	variable
– The	counter	keeps	track	of	the	number	of	threads	that	have	

reached	the	barrier.	
• If	the	count	is	less	than	the	total	number	of	threads,	the	
threads	execute	a	condition	wait.	

– The	last	thread	entering	(master)	wakes	up	all	the	threads	
using	a	condition	broadcast.

58

typedef struct {
int count;
pthread_mutex_t count_lock;
pthread_cond_t ok_to_proceed;

} mylib_barrier_t;

void mylib_barrier_init(mylib_barrier_t *b) {
b->count = 0;
pthread_mutex_init(&(b->count_lock), NULL);
pthread_cond_init(&(b->ok_to_proceed), NULL);

}

Barriers	

void mylib_barrier (mylib_barrier_t *b, int num_threads) {
pthread_mutex_lock(&(b->count_lock));

b->count ++;
if (b->count == num_threads) {

b->count = 0;
pthread_cond_broadcast(&(b->ok_to_proceed));

} else
while (pthread_cond_wait(&(b->ok_to_proceed),
&(b->count_lock)) != 0);

pthread_mutex_unlock(&(b->count_lock));
}

59

Barrier
1. Each	thread	increments	the	counter	and	check	whether	all	reach
2. The	thread	(master)	who	detect	that	all	reaches	signal	others	to	proceed
3. If	not	all	reach,	the	thread	waits

1

2

3

Flat/Linear	vs Tree/Log	Barrier

60

• Linear/Flat	barrier.
– O(n)	for	n	thread
– A	single	master	to	collect	information	of	all	threads	and	notify	them	to	

continue
• Tree/Log	barrier

– Organize	threads	in	a	tree	logically
– Multiple	submaster to	collect	and	notify
– Runtime	grows	as	O(log	p).

Barrier

• Execution	time	of	1000	sequential	and	logarithmic	barriers	as	a	function	of	
number	of	threads	on	a	32	processor	SGI	Origin	2000.

61

References

• Adapted	from	slides	“Programming	Shared	Address	Space	
Platforms”	by	Ananth Grama.	Bradford	Nichols,	Dick	Buttlar,	
Jacqueline	Proulx Farrell.	

• “Pthreads Programming:	A	POSIX	Standard	for	Better	
Multiprocessing.”	O'Reilly	Media,	1996.

• Chapter	7.	“Introduction	to	Parallel	Computing”	by	Ananth
Grama,	Anshul Gupta,	George	Karypis,	and	Vipin Kumar.	Addison	
Wesley,	2003

• Other	pthread topics
– int pthread_key_create(pthread_key_t *key,	void	(*destroy)(void	*))
– int pthread_setspecific(pthread_key_t key,	const void	*value)
– void	*pthread_getspecific(pthread_key_t key)

62

