
Lecture:	Parallel	Architecture	– Thread	Level	
Parallelism	and	Data	Level	Parallelism

1

CSCE	569	Parallel	Computing

Department	of	Computer	Science	and	Engineering
Yonghong Yan

yanyh@cse.sc.edu
http://cse.sc.edu/~yanyh

Topics

• Introduction
• Programming	on	shared	memory	system	(Chapter	7)
– OpenMP
• Principles	of	parallel	algorithm	design	(Chapter	3)	
• Programming	on	large	scale	systems	(Chapter	6)
– MPI	(point	to	point	and	collectives)
– Introduction	to	PGAS	languages,	UPC	and	Chapel
• Analysis	of	parallel	program	executions	(Chapter	5)
– Performance	Metrics	for	Parallel	Systems
• Execution	Time,	Overhead,	Speedup,	Efficiency,	Cost	

– Scalability	of	Parallel	Systems
– Use	of	performance	tools

2

Topics

• Programming	on	shared	memory	system	(Chapter	7)
– Cilk/Cilkplus and	OpenMP Tasking
– PThread,	mutual	exclusion,	locks,	synchronizations
• Parallel	architectures	and	memory
– Parallel	computer	architectures
• Thread	Level	Parallelism
• Data	Level	Parallelism
• Synchronization

– Memory	hierarchy	and	cache	coherency
• Manycore GPU	architectures	and	programming
– GPUs	architectures
– CUDA	programming
– Introduction	to	offloading	model	in	OpenMP

3

Lecture:	Parallel	Architecture	–
Thread	Level	Parallelism

4

Note:
• Parallelism	in	hardware
• Not	(just)	multi-/many-core	architecture	

Binary	Code	and	Instructions

5

• Compile	a	program	using	-save-temps	flags	to	see	the	binary	
code	or	disassembly	a	binary	code	using	objdump -D

Stages	to	Execute	an	Instruction

6

Pipeline

7

Pipeline	and	Superscalar

8

What	do	we	do	with	that	many	transistors?	

• Optimizing	the	execution	of	a	single	instruction	stream	through
– Pipelining
• Overlap	the	execution	of	multiple	instructions
• Example:	all	RISC	architectures;	Intel	x86	underneath	the	
hood

– Out-of-order	execution:	
• Allow	instructions	to	overtake	each	other	in	accordance	with	
code	dependencies	(RAW,	WAW,	WAR)
• Example:	all	commercial	processors	(Intel,	AMD,	IBM,	SUN)

– Branch	prediction	and	speculative	execution:	
• Reduce	the	number	of	stall	cycles	due	to	unresolved	
branches
• Example:	(nearly)	all	commercial	processors

What	do	we	do	with	that	many	transistors?	(II)

– Multi-issue	processors:		
• Allow	multiple	instructions	to	start	execution	per	clock	cycle
• Superscalar	(Intel	x86,	AMD,	…)	vs.	VLIW	architectures

– VLIW/EPIC	architectures:	
• Allow	compilers	to	indicate	independent	instructions	per	
issue	packet
• Example:	Intel	Itanium

– Vector	units:
• Allow	for	the	efficient	expression	and	execution	of	vector	
operations
• Example:	SSE	- SSE4,	AVX	instructions

Limitations	of	optimizing	a	single	instruction	
stream	(II)

• Problem:	within	a	single	instruction	stream	we	do	not	find	
enough	independent	instructions	to	execute	simultaneously	due	
to
– data	dependencies
– limitations	of	speculative	execution	across	multiple	branches
– difficulties	to	detect	memory	dependencies	among	instruction	

(alias	analysis)
• Consequence:	significant	number	of	functional	units	are	idling	at	

any	given	time	
• Question:	Can	we	maybe	execute	instructions	from	another	

instructions	stream	
– Another	thread?
– Another	process?

Hardware	Multi-Threading	(SMT)

• Three	types	of	hardware	multi-threading	(single-core	only):
– Coarse-grained	MT
– Fine-grained	MT
– Simultaneous	Multi-threading

Superscalar Coarse	MT Fine	MT SMT

Thread-level	parallelism

• Problems	for	executing	instructions	from	multiple	threads	
at	the	same	time
– The	instructions	in	each	thread	might	use	the	same	register	

names
– Each	thread	has	its	own	program	counter
• Virtual	memory	management	allows	for	the	execution	of	
multiple	threads	and	sharing	of	the	main	memory

• When	to	switch	between	different	threads:
– Fine	grain	multithreading:	switches	between	every	instruction
– Course	grain	multithreading:	switches	only	on	costly	stalls	(e.g.	

level	2	cache	misses)

Simultaneous	Multi-threading

• Convert	Thread-level	parallelism	to	instruction-level	
parallelism

• Dynamically	scheduled	processors	already	have	most	
hardware	mechanisms	in	place	to	support	SMT	(e.g.	
register	renaming)

• Required	additional	hardware:
– Register	file	per	thread
– Program	counter	per	thread
• Operating	system	view:
– If	a	CPU	supports	n simultaneous	threads,	the	Operating	

System	views	them	as	n processors
– OS	distributes	most	time	consuming	threads	‘fairly’	across	the	

n processors	that	it	sees.

Example	for	SMT	architectures	(I)

• Intel	Hyperthreading:
– First	released	for	Intel	Xeon	processor	family	in	2002
– Supports	two	architectural	sets	per	CPU,	
– Each	architectural	set	has	its	own
• General	purpose	registers
• Control	registers
• Interrupt	control	registers
• Machine	state	registers

– Adds	less	than	5%	to	the	relative	chip	size
Reference:	D.T.	Marr	et.	al.	“Hyper-Threading	Technology	Architecture	and	Microarchitecture”,	
Intel	Technology	Journal,	6(1),	2002,	pp.4-15.	
ftp://download.intel.com/technology/itj/2002/volume06issue01/vol6iss1_hyper_threading_t
echnology.pdf

Example	for	SMT	architectures	(II)

• IBM	Power	5
– Same	pipeline	as	IBM	Power	4	processor	but	with	SMT	support
– Further	improvements:
• Increase	associativity	of	the	L1	instruction	cache
• Increase	the	size	of	the	L2	and	L3	caches
• Add	separate	instruction	prefetch and	buffering	units	for	
each	SMT
• Increase	the	size	of	issue	queues
• Increase	the	number	of	virtual	registers	used	internally	by	
the	processor.

Simultaneous	Multi-Threading

• Works	well	if
– Number	of	compute	intensive	threads	does	not	exceed	the	number	of	

threads	supported	in	SMT
– Threads	have	highly	different	characteristics	(e.g.	one	thread	doing	mostly	

integer	operations,	another	mainly	doing	floating	point	operations)
• Does	not	work	well	if
– Threads	try	to	utilize	the	same	function	units
– Assignment	problems:	
• e.g.	a	dual	processor	system,	each	processor	supporting	2	threads	
simultaneously	(OS	thinks	there	are	4	processors)

• 2	compute	intensive	application	processes	might	end	up	on	the	same	
processor	instead	of	different	processors	(OS	does	not	see	the	difference	
between	SMT	and	real	processors!)

Lecture:	Parallel	Architecture	--
Data	Level	Parallelism

18

Classification	of	Parallel	Architectures

Flynn’s	Taxonomy
• SISD:	Single	instruction	single	data
– Classical	von	Neumann	architecture
• SIMD:	Single	instruction	multiple	data
– Vector,	GPU,	etc
• MISD:	Multiple	instructions	single	data
– Non	existent,	just	listed	for	completeness
• MIMD:	Multiple	instructions	multiple	data
– Most	common	and	general	parallel	machine
– Multi-/many- processors/cores/threads/computers

Single	Instruction	Multiple	Data

• Also	known	as	Array-processors
• A	single	instruction	stream	is	broadcasted	to	multiple	
processors,	each	having	its	own	data	stream
– Still	used	in	some	graphics	cards	today

Instructions
stream

processor processor processor processor

Data Data Data Data

Control	unit

SIMD	In	Real

• Hardware	for	data-level	parallelism

• Three	major	implementations
– SIMD	extensions	to	conventional	CPU
– Vector	architectures
– GPU	variant

21

for (i=0; i<n; i++) {

a[i] = b[i] + c[i];

}

SIMD	Instructions

• Originally	developed	for	Multimedia	applications
• Same	operation	executed	for	multiple	data	items
• Uses	a	fixed	length	register	and	partitions	the	carry	chain	to	allow	

utilizing	the	same	functional	unit	for	multiple	operations
– E.g.	a	64	bit	adder	can	be	utilized	for	two	32-bit	add	

operations	simultaneously
• Instructions	originally	not	intended	to	be	used	by	compiler,	but	just	for	

handcrafting	specific	operations	in	device	drivers
• All	elements	in	a	register	have	to	be	on	the	same	memory	page	to	

avoid	page	faults	within	the	instruction

Intel	SIMD	Instructions

• MMX	(Mult-Media	Extension)	- 1996
– Existing	64	bit	floating	point	register	could	be	used	for	eight	8-

bit	operations	or	four	16-bit	operations
• SSE	(Streaming	SIMD	Extension)	– 1999
– Successor	to	MMX	instructions
– Separate	128-bit	registers	added	for	sixteen	8-bit,	eight	16-bit,	

or	four	32-bit	operations
• SSE2	– 2001,	SSE3	– 2004,	SSE4	- 2007
– Added	support	for	double	precision	operations
• AVX	(Advanced	Vector	Extensions)		- 2010
– 256-bit	registers	added	

Vector	Processors

• Vector	processors	abstract	operations	on	vectors,	e.g.	
replace	the	following	loop

by

• Some	languages	offer	high-level	support	for	these	
operations	(e.g.	Fortran90	or	newer)

for (i=0; i<n; i++) {

a[i] = b[i] + c[i];

}

a = b + c; ADDV.D V10, V8, V6

AVX	Instructions

AVX	Instruction Description
VADDPD Add four	packed	double-precision	operands
VSUBPD Subtract four	packed	double-precision	operands
VMULPD Multiply	four	packed	double-precision	operands
VDIVPD Divide	four	packed	double-precision	operands
VFMADDPD Multiply and	add	four	packed	double-precision	operands
VFMSUBPD Multiply	and	subtract	four	packed	double-precision	operands
VCMPxx Compare four	packed	double-precision	operands	for	EQ,

NEQ, LT, LTE, GT, GE…
VMOVAPD Move	aligned four	packed	double-precision	operands
VBROADCASTSD Broadcast one	double-precision	operand	to	four	locations	in	a	

256-bit	register

Main	concepts

• Advantages	of	vector	instructions
– A	single	instruction	specifies	a	great	deal	of	work
– Since	each	loop	iteration	must	not	contain	data	dependence	to	

other	loop	iterations
• No	need	to	check	for	data	hazards	between	loop	iterations
• Only	one	check	required	between	two	vector	instructions
• Loop	branches	eliminated

Basic	vector	architecture

• A	modern	vector	processor	contains
– Regular,	pipelined	scalar	units
– Regular	scalar	registers
– Vector	units	– (inventors	of	pipelining!)
– Vector	register:	can	hold	a	fixed	number	of	entries	(e.g.	64)
– Vector	load-store	units

Comparison	MIPS	code	vs.	vector	code

Example:	Y=aX+Y for	64	elements

L.D F0, a /* load scalar a*/
DADDIU R4, Rx, #512 /* last address */

L: L.D F2, 0(Rx) /* load X(i) */
MUL.D F2, F2, F0 /* calc. a times X(i)*/
L.D F4, 0(Ry) /* load Y(i) */
ADD.D F4, F4, F2 /* aX(I) + Y(i) */
S.D F4, 0(Ry) /* store Y(i) */
DADDIU Rx, Rx, #8 /* increment X*/
DADDIU Ry, Ry, #8 /* increment Y */
DSUBU R20, R4, Rx /* compute bound */
BNEZ R20, L

Comparison	MIPS	code	vs.	vector	code	(II)

Example:	Y=aX+Y for	64	elements

L.D F0, a /* load scalar a*/
LV V1, 0(Rx) /* load vector X */
MULVS.D V2, V1, F0 /* vector scalar mult*/
LV V3, 0(Ry) /* load vector Y */
ADDV.D V4, V2, V3 /* vector add */
SV V4, 0(Ry) /* store vector Y */

Vector	length	control

• What	happens	if	the	length	is	not	matching	the	length	of	
the	vector	registers?

• A	vector-length	register	(VLR)	contains	the	number	of	
elements	used	within	a	vector	register

• Strip	mining:	split	a	large	loop	into	loops	less	or	equal	the	
maximum	vector	length	(MVL)

Vector	length	control	(II)

low =0;

VL = (n mod MVL);

for (j=0; j < n/MVL; j++) {

for (i=low; i < low + VL; i++) {

Y(i) = a * X(i) + Y(i);

}

low += VL;

VL = MVL;

}

Vector	stride

• Memory	on	typically	organized	in	multiple	banks
– Allow	for	independent	management	of	different	memory	

addresses
– Memory	bank	time	an	order	of	magnitude	larger	than	CPU	

clock	cycle
• Example:	assume	8	memory	banks	and	6	cycles	of	memory	
bank	time	to	deliver	a	data	item
– Overlapping	of	multiple	data	requests	by	the	hardware

Vector	stride	(II)

• What	happens	if	the	code	does	not	access	subsequent	
elements	of	the	vector

– Vector	load	‘compacts’	the	data	items	in	the	vector	register	
(gather)
• No	affect	on	the	execution	of	the	loop
• You	might	however	use	only	a	subset	of	the	memory	banks	-
>	longer	load	time
• Worst	case:	stride	is	a	multiple	of	the	number	of	memory	
banks

for (i=0; i<n; i+=2) {
a[i] = b[i] + c[i];

}

Conditional	execution

• Consider	the	following	loop
for (i=0; i< N; i++) {

if (A(i) != 0) {

A(i) = A(i) – B(i);

}

}

• Loop	can	usually	not	been	vectorized	because	of	the	
conditional	statement

• Vector-mask	control:	boolean	vector	of	length	MLV	to	
control	whether	an	instruction	is	executed	or	not
– Per	element	of	the	vector

Conditional	execution	(II)

LV V1, Ra /* load vector A into V1 */

LV V2, Rb /* load vector B into V2 */

L.D F0, #0 /* set F0 to zero */

SNEVS.D V1, F0 /* set VM(i)=1 if V1(i)!=F0 */

SUBV.D V1, V1, V2 /* sub using vector mask*/

CVM /* clear vector mask to 1 */

SV V1, Ra /* store V1 */

Support	for	sparse	matrices

• Access	of	non-zero	elements	in	a	sparse	matrix	often	
described	by	
A(K(i)) = A(K(i)) + C (M(i))
– K(i)	and	M(i)	describe	which	elements	of	A	and	C	are	non-zero
– Number	of	non-zero	elements	have	to	match,	location	not	

necessarily
• Gather-operation:	take	an	index	vector	and	fetch	the	
according	elements	using	a	base-address
– Mapping	from	a	non-contiguous	to	a	contiguous	

representation
• Scatter-operation:	inverse	of	the	gather	operation

Support	for	sparse	matrices	(II)
LV Vk, Rk /* load index vector K into V1 */
LVI Va, (Ra+Vk) /* Load vector indexed A(K(i)) */
LV Vm, Rm /* load index vector M into V2 */
LVI Vc, (Rc+Vm) /* Load vector indexed C(M(i)) */
ADDV.D Va, Va, Vc /* set VM(i)=1 if V1(i)!=F0 */
SVI Va, (Ra+Vk) /* store vector indexed A(K(i)) */

• Note:	
– Compiler	needs	the	explicit	hint,	that	each	element	of	K	is	

pointing	to	a	distinct	element	of	A
– Hardware	alternative:	a	hash	table	keeping	track	of	the	

address	acquired
• Start	of	a	new	vector	iteration	(convoy)	as	soon	as	an	
address	appears	the	second	time

Lecture:	Parallel	Architecture	–
Synchronization	between	processors,	
cores	and	HW	threads

42

Synchronization	between	processors

• Required	on	all	levels	of	multi-threaded	programming
– Lock/unlock
– Mutual	exclusion
– Barrier	synchronization

• Key	hardware	capability:	*cp++
– Uninterruptable	instruction	capable	of	automatically	retrieving	

or	changing	a	value

Race	Condition
int count	=	0;
int *	cp =	&count;
….	
cp++;	/	by	two	threads	*/

44Pictures	from	wikipedia:	http://en.wikipedia.org/wiki/Race_condition

Simple	Example	(IIIb)

void *thread_func (void *arg){
int * cp (int *) arg;

pthread_mutex_lock (&mymutex);
*cp++; // read, increment and write shared variable

pthread_mutex_unlock (&mymutex);

return NULL;
}

Synchronization	

• Lock/unlock	operations	on	the	hardware	level,	e.g.
– Lock	returning	1	if	lock	is	free/available
– Lock	returning	0	if	lock	is	unavailable

• Implementation	using	atomic	exchange	(compare	and	swap)
– Process	sets	the	value	of	a	register/memory	location	to	the	

required	operation
– Setting	the	value	must	not	be	interrupted	in	order	to	avoid	

race	conditions
– Access	by	multiple	processes/threads	will	be	resolved	by	write	

serialization

Synchronization	(II)

• Other	synchronization	primitives:
– Test-and-set
– Fetch-and-increment

• Problems	with	all	three	algorithms:
– Require	a	read	and	write	operation	in	a	single,	uninterruptable	

sequence
– Hardware	can	not	allow	any	operations	between	the	read	and	

the	write	operation
– Complicates	cache	coherence
– Must	not	deadlock

Load	linked/store	conditional

• Pair	of	instructions	where	the	second	instruction	returns	a	
value	indicating,	whether	the	pair	of	instructions	was	
executed	as	if	the	instructions	were	atomic

• Special	pair	of	load	and	store	operations
– Load	linked	(LL)
– Store	conditional	(SC):	returns	1	if	successful,	0	otherwise
• Store	conditional	returns	an	error	if
– Contents	of	memory	location	specified	by	LL	changed	before	

calling	SC
– Processor	executes	a	context	switch

Load	linked/store	conditional	(II)

• Assembler	code	sequence	to	atomically	exchange	the	
contents	of	register	R4	and	the	memory	location	specified	
by	R1

try: MOV R3, R4

LL R2, 0(R1)

SC R3, 0(R1)

BEQZ R3, try

MOV R4, R2

Load	linked/store	conditional	(III)

• Implementing	fetch-and-increment	using	load	linked	and	
conditional	store

try: LL R2, 0(R1)

DADDUI R3, R2, #1
SC R3, 0(R1)

BEQZ R3, try

• Implementation	of	LL/SC	by	using	a	special	Link	Register,	
which	contains	the	address	of	the	operation

Spin	locks

• A	lock	that	a	processor	continuously	tries	to	acquire,	spinning	around	in	a	
loop	until	it	succeeds.

• Trivial	implementation

DADDUI R2, R0, #1

lockit: EXCH R2, 0(R1) !atomic exchange

BNEZ R2, lockit

• Since	the	EXCH	operation	includes	a	read	and	a	modify	operation
– Value	will	be	loaded	into	the	cache
• Good	if	only	one	processor	tries	to	access	the	lock
• Bad	if	multiple	processors	in	an	SMP	try	to	get	the	lock	(cache	coherence)

– EXCH	includes	a	write	attempt,	which	will	lead	to	a	write-miss	for	SMPs

Spin	locks	(II)

• For	cache	coherent	SMPs,	slight	modification	of	the	loop	
required

lockit: LD R2, 0(R1) !load the lock

BNEZ R2, lockit !lock available?

DADDUI R2, R0, #1 !load locked value

EXCH R2, 0(R1) !atomic exchange

BNEZ R2, lockit !EXCH successful?

Spin	locks	(III)

• …or	using	LL/SC
lockit: LL R2, 0(R1) !load the lock

BNEZ R2, lockit !lock available?

DADDUI R2, R0, #1 !load locked value

SC R2, 0(R1) !atomic exchange

BNEZ R2, lockit !SC successful?

Lecture:	Parallel	Architecture	–
Moore’s	Law

54

Moore’s	Law

Source:	http://en.wikipedia.org/wki/Images:Moores_law.svg

• Long-term	trend on	the	number	of	transistor	per	integrated	circuit
• Number	of	transistors	double	every	~18	month

The	“Future”	of	Moore’s	Law

• The	chips	are	down	for	Moore’s	law
– http://www.nature.com/news/the-chips-are-down-for-moore-

s-law-1.19338
• Special	Report:	50	Years	of	Moore's	Law
– http://spectrum.ieee.org/static/special-report-50-years-of-

moores-law
• Moore’s	law	really	is	dead	this	time
– http://arstechnica.com/information-

technology/2016/02/moores-law-really-is-dead-this-time/
• Rebooting	the	IT	Revolution:	A	Call	to	Action	(SIA/SRC,	
2015)
– https://www.semiconductors.org/clientuploads/Resources/RIT

R%20WEB%20version%20FINAL.pdf

56

