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Topics

Introduction

Programming on shared memory system (Chapter 7)
— OpenMP

Principles of parallel algorithm design (Chapter 3)

Programming on large scale systems (Chapter 6)
— MPI (point to point and collectives)
— Introduction to PGAS languages, UPC and Chapel

Analysis of parallel program executions (Chapter 5)
— Performance Metrics for Parallel Systems
e Execution Time, Overhead, Speedup, Efficiency, Cost
— Scalability of Parallel Systems
— Use of performance tools



«@ Parallel architectures and memory
— Parallel computer architectures
* Thread Level Parallelism
* Data Level Parallelism
s Senenopizateon
— Memory hierarchy and cache coherency
* Manycore GPU architectures and programming
— GPUs architectures
— CUDA programming
— Introduction to offloading model in OpenMP



Lecture: Parallel Architecture —
Thread Level Parallelism

Note:
e Parallelism in hardware
* Not (just) multi-/many-core architecture



Binary Code and Instructions

o Syambellemsiuclien Lwplemenmilion
loc 000000bl:

c9

c3

90

55

89e5

83e4f0
83ec20
dd05£0840408
dd5c2418
dd442418
dd5c2404
c70424e0840408
e8f5feffff
c9

c3

90

90

90
RR

leave
ret
nop
push
mov
and
sub
fld
fstp
fld
fstp
mov
call
leave
ret
nop
nop
nop
niiach

belr e, d andn d, 1o o
belr e, siconsiys andn re, siconsis,
beet e, rd or d, re, d
beet siconet =z, rd or rd, siconetie, d
bixt ™), Teg andec rey, 13, %gl
b=t e, siconst,. andec re, siconst,., %gl
btog e, rd xor d, re, d
e, siconsiys r re, siconsiie, d
ebp e o %0, g, i
ebp ,€sp i; {32“} at: gg, {aﬁmn{
esp, OXEEffffFfO dr [addrass] ot %g0, [addrase]
cm ™, T subec  rey, w3, %
ERPy 0x20 u:n]r; ™, ei::natm subec  re, n'mf;f %g0
OWORD PTR ds:0x80484f0 Qda sub  md, L, rd
QWORD PTR [esp+0x18] g = mee=™ =5 oo o
OWORD PTR [esp+0x18 ] dec  sicongiie, rd subcc nd, smiconsiis, d
inc d add d, 1 d
QWORD PTR [espt0x4] o sosnefs, nd adl 1, casuslss, 8
i d addec d, 1, d
DWORD PTR [esp],0x804848%° ety 22 Mee  vd, eicometis, nd
func ffff£f£d0 mov 1, or %0, re, rd
- moy  siconet,s, ™d or g0, ricongi ., rd
mov  efafereg, rd rd stafarag, rd
mov 1w, efaferag wT %g0, re, siafarag
movy siconet s, safereg  wT %g0, riconekis, slafareg
neg e, rd sub %g0, re, rd
neg nd sub %g0, d, rd
not d xnor  d, Kgl, rd
not e, rd xnor  re, %al, ™d
ahn set iconef, rd or %gl],_i::::f, d
sethi  %hi(iconet), rd
sethi ~ %hi(iconet), rd

 Compile a program using -save-temps flags to see the binary
code or disassembly a binary code using objdump -D

rd, Klo(iconat), rd

|

%g0, re, Rgl



Stages to Execute an Instruction
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Pipeline and Superscalar

Instr. No. Pipeline Stage
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5 IF | ID [ EX
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What do we do with that many transistors?

* Optimizing the execution of a single instruction stream through
— Pipelining
* Overlap the execution of multiple instructions

* Example: all RISC architectures; Intel x86 underneath the
hood

— Qut-of-order execution:

e Allow instructions to overtake each other in accordance with
code dependencies (RAW, WAW, WAR)

e Example: all commercial processors (Intel, AMD, IBM, SUN)
— Branch prediction and speculative execution:

* Reduce the number of stall cycles due to unresolved
branches

 Example: (nearly) all commercial processors



What do we do with that many transistors? (ll)

— Multi-issue processors:
* Allow multiple instructions to start execution per clock cycle
e Superscalar (Intel x86, AMD, ...) vs. VLIW architectures

— VLIW/EPIC architectures:
* Allow compilers to indicate independent instructions per
issue packet
* Example: Intel Itanium
— Vector units:
* Allow for the efficient expression and execution of vector
operations
 Example: SSE - SSE4, AVX instructions



Limitations of optimizing a single instruction
stream (ll)

* Problem: within a single instruction stream we do not find
enough independent instructions to execute simultaneously due
to

— data dependencies
— limitations of speculative execution across multiple branches
— difficulties to detect memory dependencies among instruction
(alias analysis)

* Consequence: significant number of functional units are idling at
any given time

* Question: Can we maybe execute instructions from another
Instructions stream
— Another thread?
— Another process?



Hardware Multi-Threading (SMT)

* Three types of hardware multi-threading (single-core only):
— Coarse-grained MT
— Fine-grained MT
— Simultaneous Multi-threading

Superscalar Coarse MT Fine MT SMT




Thread-level parallelism

* Problems for executing instructions from multiple threads
at the same time

— The instructions in each thread might use the same register
names

— Each thread has its own program counter

* Virtual memory management allows for the execution of
multiple threads and sharing of the main memory

* When to switch between different threads:
— Fine grain multithreading: switches between every instruction

— Course grain multithreading: switches only on costly stalls (e.g.
level 2 cache misses)



Simultaneous Multi-threading

Convert Thread-level parallelism to instruction-level
parallelism

Dynamically scheduled processors already have most
hardware mechanisms in place to support SMT (e.g.
register renaming)

Required additional hardware:
— Register file per thread
— Program counter per thread

Operating system view:
— If a CPU supports n simultaneous threads, the Operating
System views them as n processors

— OS distributes most time consuming threads ‘fairly’ across the
n processors that it sees.



Example for SMT architectures ()

* Intel Hyperthreading:
— First released for Intel Xeon processor family in 2002
— Supports two architectural sets per CPU,
— Each architectural set has its own
* General purpose registers
e Control registers
* Interrupt control registers
* Machine state registers
— Adds less than 5% to the relative chip size

Reference: D.T. Marr et. al. “Hyper-Threading Technology Architecture and Microarchitecture”,
Intel Technology Journal, 6(1), 2002, pp.4-15.
ftp://download.intel.com/technology/itj/2002/volume06issue01/vol6iss1 _hyper threading_t
echnology.pdf



Example for SMT architectures (ll)

* |IBM Power 5
— Same pipeline as IBM Power 4 processor but with SMT support
— Further improvements:
* Increase associativity of the L1 instruction cache
* Increase the size of the L2 and L3 caches

e Add separate instruction prefetch and buffering units for
each SMT

Increase the size of issue queues

Increase the number of virtual registers used internally by
the processor.



Simultaneous Multi-Threading

* Works well if

— Number of compute intensive threads does not exceed the number of
threads supported in SMT

— Threads have highly different characteristics (e.g. one thread doing mostly
integer operations, another mainly doing floating point operations)
* Does not work well if
— Threads try to utilize the same function units
— Assignment problems:

* e.g. adual processor system, each processor supporting 2 threads
simultaneously (OS thinks there are 4 processors)

e 2 compute intensive application processes might end up on the same
processor instead of different processors (OS does not see the difference
between SMT and real processors!)



Lecture: Parallel Architecture --
Data Level Parallelism
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Classification of Parallel Architectures

Flynn’s Taxonomy

* SISD: Single instruction single data
— Classical von Neumann architecture

* SIMD: Single instruction multiple data
— Vector, GPU, etc

°* MISD: Multiple instructions single data
— Non existent, just listed for completeness

°* MIMD: Multiple instructions multiple data
— Most common and general parallel machine
— Multi-/many- processors/cores/threads/computers



* Also known as Array-processors

Single Instruction Multiple Data

* Asingle instruction stream is broadcasted to multiple
processors, each having its own data stream

— Still used in some graphics cards today

Instructions

stream

Data

Data

Data

Data
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Control unit
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SIMD In Real

* Hardware for data-level parallelism

for (i1=0; 1i<n; 1i++)

ali] = bl1i]
}

°* Three major implementations
— SIMD extensions to conventional CPU
— Vector architectures
— GPU variant

+ c[1i];

{
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SIMD Instructions

Originally developed for Multimedia applications
Same operation executed for multiple data items

Uses a fixed length register and partitions the carry chain to allow
utilizing the same functional unit for multiple operations

— E.g. a 64 bit adder can be utilized for two 32-bit add
operations simultaneously

Instructions originally not intended to be used by compiler, but just for
handcrafting specific operations in device drivers

All elements in a register have to be on the same memory page to
avoid page faults within the instruction



Intel SIMD Instructions

* MMX (Mult-Media Extension) - 1996
— Existing 64 bit floating point register could be used for eight 8-
bit operations or four 16-bit operations
® SSE (Streaming SIMD Extension) — 1999
— Successor to MMX instructions

— Separate 128-bit registers added for sixteen 8-bit, eight 16-bit,
or four 32-bit operations

® SSE2 —-2001, SSE3 — 2004, SSE4 - 2007
— Added support for double precision operations

* AVX (Advanced Vector Extensions) - 2010
— 256-bit registers added



Vector Processors

* \ector processors abstract operations on vectors, e.g.
replace the following loop

for (i=0; i<n; 1i++) {
ali] = b[1i] + c[1];
}

by

a = b + C; —p ADDV.D V10, V8, VO

* Some languages offer high-level support for these
operations (e.g. Fortran90 or newer)



AVX Instructions

VADDPD Add four packed double-precision operands

VSUBPD Subtract four packed double-precision operands

VMULPD Multiply four packed double-precision operands

VDIVPD Divide four packed double-precision operands

VEFMADDPD Multiply and add four packed double-precision operands

VEMSUBPD Multiply and subtract four packed double-precision operands

VCMPxx Compare four packed double-precision operands for EQ,
NEQ, LT, LTE, GT, GE..

VMOVAPD Move aligned four packed double-precision operands

VBROADCASTSD Broadcast one double-precision operand to four locations in a

256-bit register



Main concepts

* Advantages of vector instructions
— Assingle instruction specifies a great deal of work

— Since each loop iteration must not contain data dependence to
other loop iterations

* No need to check for data hazards between loop iterations

* Only one check required between two vector instructions
* Loop branches eliminated



Basic vector architecture

* A modern vector processor contains
— Regular, pipelined scalar units
— Regular scalar registers
— Vector units — (inventors of pipelining! )
— Vector register: can hold a fixed number of entries (e.g. 64)
— Vector load-store units



Comparison MIPS code vs. vector code

Example: Y=aX+Y for 64 elements

L.D FO, a /* load scalar a*/
DADDIU R4, Rx, #512 /* last address */
L: L.D F2, 0(Rx) /* load X (i) */
MUL.D F2, F2, FO /* calc. a times X (i) */
L.D F4, O(Ry) /* load Y (i) */
ADD.D F4, F4, F2 /* aX(I) + Y (i) */
S.D F4, O (Ry) /* store Y (i) */
DADDIU Rx, Rx, #8 /* increment X*/
DADDIU Ry, Ry, #8 /* increment Y */
DSUBU R20, R4, Rx /* compute bound */

BNEZ R20, L



Comparison MIPS code vs. vector code (ll)

Example: Y=aX+Y for 64 elements

L.D FO,
LV V1,
MULVS .D

LV V3,

ADDV.D V4, V2, V3

SV

V4,

a

0 (Rx)
V2, V1,

0 (Ry)

0 (Ry)

FO

/*
/*
/*
/*
/*
/*

load scalar a*/

load vector X */
vector scalar mult*/
load vector Y */
vector add */

store vector Y */



Vector length control

* What happens if the length is not matching the length of
the vector registers?

* A vector-length register (VLR) contains the number of
elements used within a vector register

® Strip mining: split a large loop into loops less or equal the
maximum vector length (MVL)



Vector length control (Il)

low =0;
VL = (n mod MVL);
for (3J=0; J < n/MVL; J++ ) {
for (i=low; 1 < low + VL; 1i++ ) {
Y(1) = a * X(1i) + Y(1);

}
low += VL;
VL = MVL;



Vector stride

* Memory on typically organized in multiple banks

— Allow for independent management of different memory
addresses

— Memory bank time an order of magnitude larger than CPU
clock cycle

* Example: assume 8 memory banks and 6 cycles of memory
bank time to deliver a data item

— Overlapping of multiple data requests by the hardware



Vector stride (Il)

* What happens if the code does not access subsequent
elements of the vector

for (1=0; i<n; i+=2) {

ali] = bl1] + cl[1i];
} 7
— Vector load ‘compacts’ the data items in the vector register
(gather)

* No affect on the execution of the loop

* You might however use only a subset of the memory banks -
> longer load time

* Worst case: stride is a multiple of the number of memory
banks



Conditional execution

* Consider the following loop

for (i=0; i< N; 1i++ ) {
if (A1) !'= 0 ) |
A(1) = A(1) - B(1);

}

}
* Loop can usually not been vectorized because of the

conditional statement

* Vector-mask control: boolean vector of length MLV to
control whether an instruction is executed or not

— Per element of the vector



LV

LV

L.D
SNEVS.
SUBV.D
CVM

SV

D

V1,

Conditional execution (Il)

V1,
V2,
FO,
V1,
V1,

Ra

Ra
Rb
#0
FO
V1

/* load vector A into V1 */

/* load vector B into V2 */

/* set FO to zero */

/* set VM(i)=1 if V1(i)!'!=FO0 */
, V2 /* sub using vector mask*/
/* clear vector mask to 1 */
/* store V1 */



Support for sparse matrices

* Access of non-zero elements in a sparse matrix often
described by
A(K(1)) = A(K(1)) + C (M(1))
— K(i) and M(i) describe which elements of A and C are non-zero
— Number of non-zero elements have to match, location not
necessarily
* Gather-operation: take an index vector and fetch the
according elements using a base-address
— Mapping from a non-contiguous to a contiguous
representation

* Scatter-operation: inverse of the gather operation



Support for sparse matrices (ll)

LV Vk, Rk /* load index vector K into V1 */
LVI Va, (Ra+Vk) /* Load vector indexed A(K(i)) */
LV Vm, Rm /* load index vector M into V2 */

LVI Ve, (Rc+vm) /* Load vector indexed C(M(i)) */
ADDV.D Va, Va, Vc /* set VM(i)=1 if V1 (i) !=F0 */
SVI Va, (Ra+Vk) /* store vector indexed A(K(i)) */

®* Note:

— Compiler needs the explicit hint, that each element of K is
pointing to a distinct element of A

— Hardware alternative: a hash table keeping track of the
address acquired

 Start of a new vector iteration (convoy) as soon as an
address appears the second time



Lecture: Parallel Architecture —
Synchronization between processors,
cores and HW threads
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Synchronization between processors

* Required on all levels of multi-threaded programming
— Lock/unlock
— Mutual exclusion
— Barrier synchronization

* Key hardware capability: *cp++

— Uninterruptable instruction capable of automatically retrieving
or changing a value



Race Condition

int count = 0;
int * cp = &count;

*cp++; /* by two threads */

Thread 1 Thread 2 Integer value Thread 1 Thread 2 Integer value
0 0
read value — 0 read value - 0
increase value 0 read value |« 0
write back - 1 increase value 0
read value |« 1 increase value 0
increase value 1 write back - 1
write back - 2 write back | — 1

Pictures from wikipedia: http://en.wikipedia.org/wiki/Race_condition a4



Simple Example (lllb)

void *thread func (void *arg) {
int * cp (int *) arg;

pthread mutex lock (&mymutex) ;
*cp++; // read, increment and write shared variabl

pthread mutex unlock (&mymutex) ;

return NULL;



Synchronization

* Lock/unlock operations on the hardware level, e.g.
— Lock returning 1 if lock is free/available
— Lock returning O if lock is unavailable

* Implementation using atomic exchange (compare and swap)
— Process sets the value of a register/memory location to the
required operation
— Setting the value must not be interrupted in order to avoid
race conditions
— Access by multiple processes/threads will be resolved by write
serialization



Synchronization (Il)

® Other synchronization primitives:
— Test-and-set
— Fetch-and-increment

* Problems with all three algorithms:

— Require a read and write operation in a single, uninterruptable
sequence

— Hardware can not allow any operations between the read and
the write operation

— Complicates cache coherence
— Must not deadlock



Load linked/store conditional

* Pair of instructions where the second instruction returns a
value indicating, whether the pair of instructions was
executed as if the instructions were atomic

* Special pair of load and store operations

— Load linked (LL)
— Store conditional (SC): returns 1 if successful, 0 otherwise

®* Store conditional returns an error if

— Contents of memory location specified by LL changed before
calling SC
— Processor executes a context switch



Load linked/store conditional (ll)

* Assembler code sequence to atomically exchange the
contents of register R4 and the memory location specified
by R1

try: MOV R3, R4
LL R2, O0(R1)
SC R3, 0(R1)
BEQZ R3, try

MOV R4, R2



Load linked/store conditional (lll)

* Implementing fetch-and-increment using load linked and
conditional store

try: LL R2, O0(R1)
DADDUI R3, R2, #1
SC R3, 0O (R1)
BEQZ R3, try

* Implementation of LL/SC by using a special Link Register,
which contains the address of the operation



Spin locks

* Alock that a processor continuously tries to acquire, spinning around in a
loop until it succeeds.

* Trivial implementation

DADDULI R2, RO, #1
lockit: EXCH R2, O0(R1) 'atomic exchange
BNEZ R2, lockit

* Since the EXCH operation includes a read and a modify operation
— Value will be loaded into the cache
e Good if only one processor tries to access the lock
e Bad if multiple processors in an SMP try to get the lock (cache coherence)
— EXCH includes a write attempt, which will lead to a write-miss for SMPs



Spin locks (I1)

* For cache coherent SMPs, slight modification of the loop
required

lockit: LD R2, O(R1) !load the lock
BNEZ R2, lockit !'lock available?
DADDUI R2, RO, #1 !load locked wvalue
EXCH R2, O0(R1) 'atomic exchange
BNEZ R2, lockit 'EXCH successful?



Spin locks (l11)

e ..orusingLL/SC

lockit: LL R2, 0(R1) !load the lock
BNEZ R2, lockit !'lock available?
DADDUI R2, RO, #1 !load locked wvalue
sC R2, 0(R1) 'atomic exchange
BNEZ R2, lockit !SC successful?



Lecture: Parallel Architecture —
Moore’s Law

54



Moore’s Law

Long-term trend on the number of transistor per integrated circuit
Number of transistors double every ~18 month
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The “Future” of Moore’s Law

The chips are down for Moore’s law

— http://www.nature.com/news/the-chips-are-down-for-moore-
s-law-1.19338

Special Report: 50 Years of Moore's Law

— http://spectrum.ieee.org/static/special-report-50-years-of-
moores-law

Moore’s law really is dead this time

— http://arstechnica.com/information-
technology/2016/02/moores-law-really-is-dead-this-time/

Rebooting the IT Revolution: A Call to Action (SIA/SRC,

2015)

— https://www.semiconductors.org/clientuploads/Resources/RIT
R%20WEB%20version%20FINAL.pdf
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