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Parallelism	in	Hardware

• Instruction-Level	Parallelism
– Pipeline
– Out-of-order	execution,	and	
– Superscalar

• Thread-Level	Parallelism
– Chip	multithreading,	multicore
– Coarse-grained	and	fine-grained	multithreading
– SMT

• Data-Level	Parallelism
– SIMD/Vector
– GPU/SIMT
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Topics

• Programming	on	shared	memory	system	(Chapter	7)
– Cilk/Cilkplus and	OpenMP Tasking
– PThread,	mutual	exclusion,	locks,	synchronizations
• Parallel	architectures	and	memory
– Parallel	computer	architectures
• Thread	Level	Parallelism
• Data	Level	Parallelism
• Synchronization

– Memory	hierarchy	and	cache	coherency
• Manycore GPU	architectures	and	programming
– GPUs	architectures
– CUDA	programming
– Introduction	to	offloading	model	in	OpenMP
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Outline

• Memory,	Locality	of	reference	and	Caching
• Cache	coherence	in	shared	memory	system
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Memory	until	now	…

• We’ve	relied	on	a	very	simple	model	of	memory	for	most	
this	class
– Main	Memory	is	a	linear	array	of	bytes	that	can	be	accessed	

given	a	memory	address
– Also	used	registers	to	store	values

• Reality	is	more	complex.	There	is	an	entire	memory	system.
– Different	memories	exist	at	different	levels	of	the	computer
– Each	vary	in	their	speed,	size,	and	cost
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Architecture	Approach:	Memory	Hierarchy

• Keep	most	recent	accessed	data	and	its	adjacent	data	in	
the	smaller/faster	caches	that	are	closer	to	processor

• Mechanisms	for	replacing	data
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Random-Access Memory (RAM)

• Key	features
– RAM	is	packaged	as	a	chip.
– Basic	storage	unit	is	a	cell	(one	bit	per	cell).
– Multiple	RAM	chips	form	a	memory.

• Static	RAM	(SRAM)
– Each	cell	stores	bit	with	a	six-transistor	circuit.
– Retains	value	indefinitely,	as	long	as	it	is	kept	powered.
– Relatively	insensitive	to	disturbances	such	as	electrical	noise.
– Faster	and	more	expensive	than	DRAM.
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Random-Access Memory (RAM)

• Dynamic	RAM	(DRAM)
– Each	cell	stores	bit	with	a	capacitor	and	transistor.
– Value	must	be	refreshed	every	10-100	ms.
– Sensitive	to	disturbances.
– Slower	and	cheaper	than	SRAM.
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How to	Exploit	Memory	Hierarchy:	
Program	Behavior:	Principle	of	Locality

• Programs	tend	to	reuse	data	and	instructions	near	those	they	have	used	
recently,	or	that	were	recently	referenced	themselves
– Spatial	locality: Items	with	nearby	addresses	tend	to	be	referenced	close	

together	in	time
– Temporal	locality: Recently	referenced	items	are	likely	to	be	referenced	

in	the	near	future

Locality	Example:
• Data

–Reference	array	elements	in	succession	
(stride-1	reference	pattern):

–Reference	sum each	iteration:
• Instructions

–Reference	instructions	in	sequence:
–Cycle	through	loop	repeatedly:	

sum = 0;
for (i = 0; i < n; i++)

sum += a[i];
return sum;

Spatial	locality

Spatial	locality
Temporal	locality

Temporal	locality
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Sources	of	locality

• Temporal	locality
– Code	within	a	loop
– Same	instructions	fetched	repeatedly
• Spatial	locality
– Data	arrays
– Local	variables	in	stack
– Data	allocated	in	chunks	(contiguous	bytes)

for	(i=0;	i<N;	i++)	{
A[i]	=	B[i]	+	C[i]	*	a;

}
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int sumarrayrows(int a[M][N])
{

int i, j, sum = 0;

for (i = 0; i < M; i++)
for (j = 0; j < N; j++)

sum += a[i][j];
return sum;

}

int sumarraycols(int a[M][N])
{

int i, j, sum = 0;

for (j = 0; j < N; j++)
for (i = 0; i < M; i++)

sum += a[i][j];
return sum;

}

Miss rate = 1/4 = 25% Miss rate = 100%

Writing	Cache	Friendly	Code

• Repeated	references	to	variables	are	good	(temporal	
locality)

• Stride-1	reference	patterns	are	good	(spatial	locality)
• Examples:
– cold	cache,	4-byte	words,	4-word	cache	blocks
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Matrix	Multiplication	Example

• Major	cache	effects	to	consider
– Total	cache	size
• Exploit	temporal	locality	and	blocking)

– Block	size
• Exploit	spatial	locality

• Description:
– Multiply	N	x	N	matrices
– O(N3)	total	operations
– Accesses
• N	reads	per	source	element
• N	values	summed	per	destination
– but	may	be	able	to	hold	in	register

/* ijk */
for (i=0; i<n; i++) {

for (j=0; j<n; j++) {
sum = 0.0;
for (k=0; k<n; k++)

sum += a[i][k] * b[k][j];
c[i][j] = sum;

}
}

Variable sum
held in register
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Miss	Rate	Analysis	for	Matrix	Multiply

• Assume:	
– Cache	line	size	=	32	Bytes	(big	enough	for	4	64-bit	words)	
– Matrix	dimension	(N)	is	very	large
• Approximate	1/N	as	0.0	

– Cache	is	not	even	big	enough	to	hold	multiple	rows
• Analysis	method:	
– Look	at	access	pattern	of	inner	loop
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Layout	of	C	Arrays	in	Memory	(review)

• C	arrays	allocated	in	row-major	order
– each	row	in	contiguous	memory	locations
• Stepping	through	columns	in	one	row:
– for(i = 0; i < N; i++)

sum += a[0][i];
– accesses	successive	elements
– if	block	size	(B)	>	4	bytes,	exploit	spatial	locality
• compulsory	miss	rate	=	4	bytes	/	B

• Stepping	through	rows	in	one	column:
– for(i = 0; i < n; i++)

sum += a[i][0];
– accesses	distant	elements
– no	spatial	locality!
• compulsory	miss	rate	=	1	(i.e.	100%)
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Matrix	Multiplication	(ijk)
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Matrix	Multiplication	(jik)
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Matrix	Multiplication	(kij)
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Matrix	Multiplication	(ikj)
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Matrix	Multiplication	(jki)
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Matrix	Multiplication	(kji)
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Summary	of	Matrix	Multiplication
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for (i=0; i<n; i++) {
for (j=0; j<n; j++) {

sum = 0.0;
for (k=0; k<n; k++)
sum += a[i][k] *

b[k][j]; c[i][j] = sum;

}

}

ijk (& jik): kij (& ikj): jki (& kji):
• 2 loads, 0 stores
• misses/iter = 1.25

for (k=0; k<n; k++) {
for (i=0; i<n; i++) {

r = a[i][k];
for (j=0; j<n; j++)
c[i][j] += r * b[k][j];

}
}

for (j=0; j<n; j++) {
for (k=0; k<n; k++) {
r = b[k][j];
for (i=0; i<n; i++)
c[i][j] += a[i][k] * r;

}
}

• 2 loads, 1 store
• misses/iter = 0.5

• 2 loads, 1 store
• misses/iter = 2.0



Outline

• Memory,	Locality	of	reference	and	Caching
• Cache	coherence	in	shared	memory	system
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Shared	Memory	Systems

• All	processes	have	access	to	the	same	address	space
– E.g.	PC	with	more	than	one	processor
• Data	exchange	between	processes	by	writing/reading	
shared	variables
– Shared	memory	systems	are	easy	to	program
– Current	standard	in	scientific	programming:	OpenMP
• Two	versions	of	shared	memory	systems	available	today
– Centralized	Shared	Memory	Architectures	
– Distributed	Shared	Memory	architectures



Centralized	Shared	Memory	Architecture

• Also	referred	to	as	Symmetric	Multi-Processors	(SMP)
• All	processors	share	the	same	physical	main	memory

• Memory	bandwidth	per	processor	is	limiting	factor	for	this	
type	of	architecture

• Typical	size:	2-32	processors

Memory

CPU CPU

CPU CPU



Distributed	Shared	Memory	Architectures

• Also	referred	to	as	Non-Uniform	Memory	Architectures	
(NUMA)

• Some	memory	is	closer	to	a	certain	processor	than	other	
memory
– The	whole	memory	is	still	addressable	from	all	processors
– Depending	on	what	data	item	a	processor	retrieves,	the	access	

time	might	vary	strongly

Memory

CPU CPU

Memory

CPU CPU

Memory

CPU CPU

Memory

CPU CPU



NUMA	Architectures	(II)

• Reduces	the	memory	bottleneck	compared	to	SMPs
• More	difficult	to	program	efficiently
– E.g.	first	touch	policy:	data	item	will	be	located	in	the	memory	

of	the	processor	which	uses	a	data	item	first
• To	reduce	effects	of	non-uniform	memory	access,	caches	
are	often	used
– ccNUMA:	cache-coherent	non-uniform	memory	access	

architectures
• Largest	example	as	of	today:	SGI	Origin	with	512	processors



Distributed	Shared	Memory	Systems



Cache	Coherence

• Real-world	shared	memory	systems	have	caches	between	
memory	and	CPU

• Copies	of	a	single	data	item	can	exist	in	multiple	caches
• Modification	of	a	shared	data	item	by	one	CPU	leads	to	
outdated	copies	in	the	cache	of	another	CPU

Memory

CPU	0

Cache

CPU	1

Cache

Original	data	item

Copy	of	data	item
in	cache	of	CPU	0 Copy	of	data	item

in	cache	of	CPU	1



Cache	Coherence	(II)

• Typical	solution:
– Caches	keep	track	on	whether	a	data	item	is	shared	between	

multiple	processes
– Upon	modification	of	a	shared	data	item,	‘notification’	of	

other	caches	has	to	occur
– Other	caches	will	have	to	reload	the	shared	data	item	on	the	

next	access	into	their	cache
• Cache	coherence	is	only an	issue	in	case	multiple	tasks	
access	the	same	item
– Multiple	threads
– Multiple	processes	have	a	joint	shared	memory	segment
– Process	is	being	migrated	from	one	CPU	to	another



Cache	Coherence	Protocols

• Snooping	Protocols
– Send	all	requests	for	data	to	all	processors
– Processors	snoop	a	bus	to	see	if	they	have	a	copy	and	respond	accordingly	
– Requires	broadcast,	since	caching	information	is	at	processors
– Works	well	with	bus	(natural	broadcast	medium)
– Dominates	for	centralized	shared	memory	machines

• Directory-Based	Protocols	
– Keep	track	of	what	is	being	shared	in	 centralized	location
– Distributed	memory	=>	distributed	directory	for	scalability

(avoids	bottlenecks)
– Send	point-to-point	requests	to	processors	via	network
– Scales	better	than	Snooping
– Commonly	used	for	distributed	shared	memory	machines



Categories	of	Cache	Misses

• Up	to	now:
– Compulsory	Misses:	first	access	to	a	block	cannot	be	in	the	cache	(cold	

start	misses)
– Capacity	Misses:	cache	cannot	contain	all	blocks	required	for	the	execution
– Conflict	Misses:		cache	block	has	to	be	discarded	because	of	block	

replacement	strategy
• In	multi-processor	systems:
– Coherence	Misses:	cache	block	has	to	be	discarded	because	another	

processor	modified	the	content
• true	sharing	miss:	another	processor	modified	the	content	of	the	request	
element

• false	sharing	miss:	another	processor	invalidated	the	block,	although	the	
actual	item	of	interest	is	unchanged.



• False	sharing
– When	at	least	one	thread	write	to	a	

cache	line	while	others	access	it
• Thread	0:		=	A[1]				(read)
• Thread	1:	A[0]	=	…	(write)

• Solution:	use	array	padding

int a[max_threads];
#pragma omp parallel for schedule(static,1)
for(int i=0; i<max_threads; i++)

a[i] +=i;

int a[max_threads][cache_line_size];
#pragma omp parallel for schedule(static,1)
for(int i=0; i<max_threads; i++)

a[i][0] +=i;

False	Sharing	in	OpenMP

Getting OpenMP Up To Speed



RvdP/V1 Tutorial IWOMP 2010 – CCS Un. of Tsukuba, June 14, 2010

False Sharing

CPUs Caches Memory

A store into a shared cache line invalidates the other 
copies of that line:

The system is not able to 
distinguish between changes 

within one individual line
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NUMA	and	First	Touch	Policy

• Data	placement	policy	on	NUMA	architectures

• First	Touch	Policy
– The	process	that	first	touches	a	page	of	memory	causes	that	

page	to	be	allocated	in	the	node	on	which	the	process	is	
running
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Getting OpenMP Up To Speed



RvdP/V1 Tutorial IWOMP 2010 – CCS Un. of Tsukuba, June 14, 2010

A generic cc-NUMA architecture


















 











NUMA	First-touch	Placement/1
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Getting OpenMP Up To Speed



RvdP/V1 Tutorial IWOMP 2010 – CCS Un. of Tsukuba, June 14, 2010

About “First Touch” placement/1

for (i=0; i<100; i++)
    a[i] = 0;


















 

a[0]
  :
a[99]

First Touch
All array elements are in the memory of 

the processor executing this thread



int a[100];
Only	reserve	the	vm

address



NUMA	First-touch	Placement/2
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Getting OpenMP Up To Speed



RvdP/V1 Tutorial IWOMP 2010 – CCS Un. of Tsukuba, June 14, 2010

About “First Touch” placement/2

for (i=0; i<100; i++)
    a[i] = 0;
















 

a[0]
  :
a[49]

#pragma omp parallel for num_threads(2)

First Touch
Both memories each have “their half” of 

the array

a[50]
  :
a[99]

 



Work	with	First-Touch	in	OpenMP

• First-touch	in	practice
– Initialize	data	consistently	with	the	computations
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#pragma	omp parallel	for
for(i=0;	i<N;	i++)	{
a[i]	=	0.0;	b[i]	=	0.0	;	c[i]	=	0.0;	

}
readfile(a,b,c);

#pragma	omp parallel	for
for(i=0;	i<N;	i++)	{
a[i]	=	b[i]	+	c[i];

}



Concluding	Observations

• Programmer	can	optimize	for	cache	performance
– How	data	structures	are	organized
– How	data	are	accessed
• Nested	loop	structure
• Blocking	is	a	general	technique

• All	systems	favor	“cache	friendly	code”
– Getting	absolute	optimum	performance	is	very	platform	

specific
• Cache	sizes,	line	sizes,	associativities,	etc.

– Can	get	most	of	the	advantage	with	generic	code
• Keep	working	set	reasonably	small	(temporal	locality)
• Use	small	strides	(spatial	locality)

– Work	with	cache	coherence	protocol	and	NUMA	first	touch	
policy
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