
Lecture:	Memory	Hierarchy	and	Cache	
Coherence

1

CSCE	569	Parallel	Computing

Department	of	Computer	Science	and	Engineering
Yonghong Yan

yanyh@cse.sc.edu
http://cse.sc.edu/~yanyh

Parallelism	in	Hardware

• Instruction-Level	Parallelism
– Pipeline
– Out-of-order	execution,	and	
– Superscalar

• Thread-Level	Parallelism
– Chip	multithreading,	multicore
– Coarse-grained	and	fine-grained	multithreading
– SMT

• Data-Level	Parallelism
– SIMD/Vector
– GPU/SIMT

2

Computer	Architecture,	A	Quantitative	
Approach.	5TH Edition,	The	Morgan	Kaufmann,	
September	30,	2011	by	John	L.	Hennessy		
(Author),	David	A.	Patterson	

Topics

• Programming	on	shared	memory	system	(Chapter	7)
– Cilk/Cilkplus and	OpenMP Tasking
– PThread,	mutual	exclusion,	locks,	synchronizations
• Parallel	architectures	and	memory
– Parallel	computer	architectures
• Thread	Level	Parallelism
• Data	Level	Parallelism
• Synchronization

– Memory	hierarchy	and	cache	coherency
• Manycore GPU	architectures	and	programming
– GPUs	architectures
– CUDA	programming
– Introduction	to	offloading	model	in	OpenMP

3

Outline

• Memory,	Locality	of	reference	and	Caching
• Cache	coherence	in	shared	memory	system

4

Memory	until	now	…

• We’ve	relied	on	a	very	simple	model	of	memory	for	most	
this	class
– Main	Memory	is	a	linear	array	of	bytes	that	can	be	accessed	

given	a	memory	address
– Also	used	registers	to	store	values

• Reality	is	more	complex.	There	is	an	entire	memory	system.
– Different	memories	exist	at	different	levels	of	the	computer
– Each	vary	in	their	speed,	size,	and	cost

5

µProc
60%/yr.
(2X/1.5yr)

DRAM
9%/yr.
(2X/10	yrs)1

10

100

1000

19
80

19
81

19
83

19
84

19
85

19
86

19
87

19
88

19
89

19
90

19
91

19
92

19
93

19
94

19
95

19
96

19
97

19
98

19
99

20
00

DRAM

CPU
19

82

Processor-Memory
Performance	Gap:
(grows	50%	/	year)

Pe
rf
or
m
an

ce

Time

“Moore’s	Law”

Processor-DRAM	Memory	Gap	(latency)	àMemory	Wall

Why	Cares	About	the	Memory	Hierarchy?

6

Architecture	Approach:	Memory	Hierarchy

• Keep	most	recent	accessed	data	and	its	adjacent	data	in	
the	smaller/faster	caches	that	are	closer	to	processor

• Mechanisms	for	replacing	data

7

Control

Datapath

Secondary
Storage
(Disk)

Processor

R
egisters

Main
Memory
(DRAM)

2nd/3rd

Level
Cache

(SRAM)

O
n-C

hip
C

ache

1s 10,000,000s
(10s ms)

Speed (ns): 10s 100s

100s GsSize (bytes): Ks Ms

Tertiary
Storage
(Tape)

10,000,000,000s
(10s sec)

Ts

Random-Access Memory (RAM)

• Key	features
– RAM	is	packaged	as	a	chip.
– Basic	storage	unit	is	a	cell	(one	bit	per	cell).
– Multiple	RAM	chips	form	a	memory.

• Static	RAM	(SRAM)
– Each	cell	stores	bit	with	a	six-transistor	circuit.
– Retains	value	indefinitely,	as	long	as	it	is	kept	powered.
– Relatively	insensitive	to	disturbances	such	as	electrical	noise.
– Faster	and	more	expensive	than	DRAM.

8

Random-Access Memory (RAM)

• Dynamic	RAM	(DRAM)
– Each	cell	stores	bit	with	a	capacitor	and	transistor.
– Value	must	be	refreshed	every	10-100	ms.
– Sensitive	to	disturbances.
– Slower	and	cheaper	than	SRAM.

9

How to	Exploit	Memory	Hierarchy:	
Program	Behavior:	Principle	of	Locality

• Programs	tend	to	reuse	data	and	instructions	near	those	they	have	used	
recently,	or	that	were	recently	referenced	themselves
– Spatial	locality: Items	with	nearby	addresses	tend	to	be	referenced	close	

together	in	time
– Temporal	locality: Recently	referenced	items	are	likely	to	be	referenced	

in	the	near	future

Locality	Example:
• Data

–Reference	array	elements	in	succession	
(stride-1	reference	pattern):

–Reference	sum each	iteration:
• Instructions

–Reference	instructions	in	sequence:
–Cycle	through	loop	repeatedly:	

sum = 0;
for (i = 0; i < n; i++)

sum += a[i];
return sum;

Spatial	locality

Spatial	locality
Temporal	locality

Temporal	locality

10

Sources	of	locality

• Temporal	locality
– Code	within	a	loop
– Same	instructions	fetched	repeatedly
• Spatial	locality
– Data	arrays
– Local	variables	in	stack
– Data	allocated	in	chunks	(contiguous	bytes)

for	(i=0;	i<N;	i++)	{
A[i]	=	B[i]	+	C[i]	*	a;

}

11

int sumarrayrows(int a[M][N])
{

int i, j, sum = 0;

for (i = 0; i < M; i++)
for (j = 0; j < N; j++)

sum += a[i][j];
return sum;

}

int sumarraycols(int a[M][N])
{

int i, j, sum = 0;

for (j = 0; j < N; j++)
for (i = 0; i < M; i++)

sum += a[i][j];
return sum;

}

Miss rate = 1/4 = 25% Miss rate = 100%

Writing	Cache	Friendly	Code

• Repeated	references	to	variables	are	good	(temporal	
locality)

• Stride-1	reference	patterns	are	good	(spatial	locality)
• Examples:
– cold	cache,	4-byte	words,	4-word	cache	blocks

12

Matrix	Multiplication	Example

• Major	cache	effects	to	consider
– Total	cache	size
• Exploit	temporal	locality	and	blocking)

– Block	size
• Exploit	spatial	locality

• Description:
– Multiply	N	x	N	matrices
– O(N3)	total	operations
– Accesses
• N	reads	per	source	element
• N	values	summed	per	destination
– but	may	be	able	to	hold	in	register

/* ijk */
for (i=0; i<n; i++) {

for (j=0; j<n; j++) {
sum = 0.0;
for (k=0; k<n; k++)

sum += a[i][k] * b[k][j];
c[i][j] = sum;

}
}

Variable sum
held in register

13

Miss	Rate	Analysis	for	Matrix	Multiply

• Assume:	
– Cache	line	size	=	32	Bytes	(big	enough	for	4	64-bit	words)	
– Matrix	dimension	(N)	is	very	large
• Approximate	1/N	as	0.0	

– Cache	is	not	even	big	enough	to	hold	multiple	rows
• Analysis	method:	
– Look	at	access	pattern	of	inner	loop

14

Layout	of	C	Arrays	in	Memory	(review)

• C	arrays	allocated	in	row-major	order
– each	row	in	contiguous	memory	locations
• Stepping	through	columns	in	one	row:
– for(i = 0; i < N; i++)

sum += a[0][i];
– accesses	successive	elements
– if	block	size	(B)	>	4	bytes,	exploit	spatial	locality
• compulsory	miss	rate	=	4	bytes	/	B

• Stepping	through	rows	in	one	column:
– for(i = 0; i < n; i++)

sum += a[i][0];
– accesses	distant	elements
– no	spatial	locality!
• compulsory	miss	rate	=	1	(i.e.	100%)

15

Matrix	Multiplication	(ijk)

16

Matrix	Multiplication	(jik)

17

Matrix	Multiplication	(kij)

18

Matrix	Multiplication	(ikj)

19

Matrix	Multiplication	(jki)

20

Matrix	Multiplication	(kji)

21

Summary	of	Matrix	Multiplication

22

for (i=0; i<n; i++) {
for (j=0; j<n; j++) {

sum = 0.0;
for (k=0; k<n; k++)
sum += a[i][k] *

b[k][j]; c[i][j] = sum;

}

}

ijk (& jik): kij (& ikj): jki (& kji):
• 2 loads, 0 stores
• misses/iter = 1.25

for (k=0; k<n; k++) {
for (i=0; i<n; i++) {

r = a[i][k];
for (j=0; j<n; j++)
c[i][j] += r * b[k][j];

}
}

for (j=0; j<n; j++) {
for (k=0; k<n; k++) {
r = b[k][j];
for (i=0; i<n; i++)
c[i][j] += a[i][k] * r;

}
}

• 2 loads, 1 store
• misses/iter = 0.5

• 2 loads, 1 store
• misses/iter = 2.0

Outline

• Memory,	Locality	of	reference	and	Caching
• Cache	coherence	in	shared	memory	system

23

Shared	Memory	Systems

• All	processes	have	access	to	the	same	address	space
– E.g.	PC	with	more	than	one	processor
• Data	exchange	between	processes	by	writing/reading	
shared	variables
– Shared	memory	systems	are	easy	to	program
– Current	standard	in	scientific	programming:	OpenMP
• Two	versions	of	shared	memory	systems	available	today
– Centralized	Shared	Memory	Architectures	
– Distributed	Shared	Memory	architectures

Centralized	Shared	Memory	Architecture

• Also	referred	to	as	Symmetric	Multi-Processors	(SMP)
• All	processors	share	the	same	physical	main	memory

• Memory	bandwidth	per	processor	is	limiting	factor	for	this	
type	of	architecture

• Typical	size:	2-32	processors

Memory

CPU CPU

CPU CPU

Distributed	Shared	Memory	Architectures

• Also	referred	to	as	Non-Uniform	Memory	Architectures	
(NUMA)

• Some	memory	is	closer	to	a	certain	processor	than	other	
memory
– The	whole	memory	is	still	addressable	from	all	processors
– Depending	on	what	data	item	a	processor	retrieves,	the	access	

time	might	vary	strongly

Memory

CPU CPU

Memory

CPU CPU

Memory

CPU CPU

Memory

CPU CPU

NUMA	Architectures	(II)

• Reduces	the	memory	bottleneck	compared	to	SMPs
• More	difficult	to	program	efficiently
– E.g.	first	touch	policy:	data	item	will	be	located	in	the	memory	

of	the	processor	which	uses	a	data	item	first
• To	reduce	effects	of	non-uniform	memory	access,	caches	
are	often	used
– ccNUMA:	cache-coherent	non-uniform	memory	access	

architectures
• Largest	example	as	of	today:	SGI	Origin	with	512	processors

Distributed	Shared	Memory	Systems

Cache	Coherence

• Real-world	shared	memory	systems	have	caches	between	
memory	and	CPU

• Copies	of	a	single	data	item	can	exist	in	multiple	caches
• Modification	of	a	shared	data	item	by	one	CPU	leads	to	
outdated	copies	in	the	cache	of	another	CPU

Memory

CPU	0

Cache

CPU	1

Cache

Original	data	item

Copy	of	data	item
in	cache	of	CPU	0 Copy	of	data	item

in	cache	of	CPU	1

Cache	Coherence	(II)

• Typical	solution:
– Caches	keep	track	on	whether	a	data	item	is	shared	between	

multiple	processes
– Upon	modification	of	a	shared	data	item,	‘notification’	of	

other	caches	has	to	occur
– Other	caches	will	have	to	reload	the	shared	data	item	on	the	

next	access	into	their	cache
• Cache	coherence	is	only an	issue	in	case	multiple	tasks	
access	the	same	item
– Multiple	threads
– Multiple	processes	have	a	joint	shared	memory	segment
– Process	is	being	migrated	from	one	CPU	to	another

Cache	Coherence	Protocols

• Snooping	Protocols
– Send	all	requests	for	data	to	all	processors
– Processors	snoop	a	bus	to	see	if	they	have	a	copy	and	respond	accordingly	
– Requires	broadcast,	since	caching	information	is	at	processors
– Works	well	with	bus	(natural	broadcast	medium)
– Dominates	for	centralized	shared	memory	machines

• Directory-Based	Protocols	
– Keep	track	of	what	is	being	shared	in	 centralized	location
– Distributed	memory	=>	distributed	directory	for	scalability

(avoids	bottlenecks)
– Send	point-to-point	requests	to	processors	via	network
– Scales	better	than	Snooping
– Commonly	used	for	distributed	shared	memory	machines

Categories	of	Cache	Misses

• Up	to	now:
– Compulsory	Misses:	first	access	to	a	block	cannot	be	in	the	cache	(cold	

start	misses)
– Capacity	Misses:	cache	cannot	contain	all	blocks	required	for	the	execution
– Conflict	Misses:		cache	block	has	to	be	discarded	because	of	block	

replacement	strategy
• In	multi-processor	systems:
– Coherence	Misses:	cache	block	has	to	be	discarded	because	another	

processor	modified	the	content
• true	sharing	miss:	another	processor	modified	the	content	of	the	request	
element

• false	sharing	miss:	another	processor	invalidated	the	block,	although	the	
actual	item	of	interest	is	unchanged.

• False	sharing
– When	at	least	one	thread	write	to	a	

cache	line	while	others	access	it
• Thread	0:		=	A[1]				(read)
• Thread	1:	A[0]	=	…	(write)

• Solution:	use	array	padding

int a[max_threads];
#pragma omp parallel for schedule(static,1)
for(int i=0; i<max_threads; i++)

a[i] +=i;

int a[max_threads][cache_line_size];
#pragma omp parallel for schedule(static,1)
for(int i=0; i<max_threads; i++)

a[i][0] +=i;

False	Sharing	in	OpenMP

Getting OpenMP Up To Speed

RvdP/V1 Tutorial IWOMP 2010 – CCS Un. of Tsukuba, June 14, 2010

False Sharing

CPUs Caches Memory

A store into a shared cache line invalidates the other
copies of that line:

The system is not able to
distinguish between changes

within one individual line

33

A

T0

T1

NUMA	and	First	Touch	Policy

• Data	placement	policy	on	NUMA	architectures

• First	Touch	Policy
– The	process	that	first	touches	a	page	of	memory	causes	that	

page	to	be	allocated	in	the	node	on	which	the	process	is	
running

34

Getting OpenMP Up To Speed

RvdP/V1 Tutorial IWOMP 2010 – CCS Un. of Tsukuba, June 14, 2010

A generic cc-NUMA architecture

NUMA	First-touch	Placement/1

35

Getting OpenMP Up To Speed

RvdP/V1 Tutorial IWOMP 2010 – CCS Un. of Tsukuba, June 14, 2010

About “First Touch” placement/1

for (i=0; i<100; i++)
 a[i] = 0;

a[0]
 :
a[99]

First Touch
All array elements are in the memory of

the processor executing this thread

int a[100];
Only	reserve	the	vm

address

NUMA	First-touch	Placement/2

36

Getting OpenMP Up To Speed

RvdP/V1 Tutorial IWOMP 2010 – CCS Un. of Tsukuba, June 14, 2010

About “First Touch” placement/2

for (i=0; i<100; i++)
 a[i] = 0;

a[0]
 :
a[49]

#pragma omp parallel for num_threads(2)

First Touch
Both memories each have “their half” of

the array

a[50]
 :
a[99]

Work	with	First-Touch	in	OpenMP

• First-touch	in	practice
– Initialize	data	consistently	with	the	computations

37

#pragma	omp parallel	for
for(i=0;	i<N;	i++)	{
a[i]	=	0.0;	b[i]	=	0.0	;	c[i]	=	0.0;	

}
readfile(a,b,c);

#pragma	omp parallel	for
for(i=0;	i<N;	i++)	{
a[i]	=	b[i]	+	c[i];

}

Concluding	Observations

• Programmer	can	optimize	for	cache	performance
– How	data	structures	are	organized
– How	data	are	accessed
• Nested	loop	structure
• Blocking	is	a	general	technique

• All	systems	favor	“cache	friendly	code”
– Getting	absolute	optimum	performance	is	very	platform	

specific
• Cache	sizes,	line	sizes,	associativities,	etc.

– Can	get	most	of	the	advantage	with	generic	code
• Keep	working	set	reasonably	small	(temporal	locality)
• Use	small	strides	(spatial	locality)

– Work	with	cache	coherence	protocol	and	NUMA	first	touch	
policy

38

References

• Computer	Architecture,	A	Quantitative	Approach.	5TH
Edition,	The	Morgan	Kaufmann,	September	30,	2011	by	
John	L.	Hennessy		(Author),	David	A.	Patterson	

• A	Primer	on	Memory	Consistency	and	Cache	Coherence	
Daniel	J.	Sorin Mark	D.	Hill	David	A.	Wood,	SYNTHESIS	
LECTURES	ON	COMPUTER	ARCHITECTURE	Mark	D.	Hill,	
Series	Editor,	2011

39

