
Lecture:	Manycore GPU	Architectures	
and	CUDA	Programming,	Review

1

CSCE	569	Parallel	Computing

Department	of	Computer	Science	and	Engineering
Yonghong Yan

yanyh@cse.sc.edu
https://passlab.github.io/CSCE569/

Computer	Graphics

GPU:	Graphics	Processing	Unit

2

What	is	GPU	Today?

• It	is	a	processor optimized	for	2D/3D	graphics,	video,	visual	
computing,	and	display.

• It	is	highly	parallel,	highly	multithreaded	multiprocessor	
optimized	for	visual	computing.

• It	provide	real-time	visual	interaction	with	computed	
objects	via	graphics	images,	and	video.

• It	serves	as	both	a	programmable	graphics	processor	and	a	
scalable	parallel	computing	platform.
– Heterogeneous	systems:	combine	a	GPU	with	a	CPU

• It	is	called	as	Many-core

3

GPU	Architecture	Revolution	

• Unified	Scalar	Shader Architecture

• Highly	Data	Parallel	Stream	Processing	

4
An	Introduction	to	Modern	GPU	Architecture,	Ashu Rege,	NVIDIA	Director	of	Developer	Technology
ftp://download.nvidia.com/developer/cuda/seminar/TDCI_Arch.pdf

Image:	http://www.ntu.edu.sg/home/ehchua/programming/opengl/CG_BasicsTheory.html

Unified	Shader Architecture

5

FIGURE A.2.5 Basic unified GPU architecture. Example GPU with 112 streaming processor (SP) cores organized in 14
streaming multiprocessors (SMs); the cores are highly multithreaded. It has the basic Tesla architecture of an NVIDIA
GeForce 8800. The processors connect with four 64-bit-wide DRAM partitions via an interconnection network. Each SM has
eight SP cores, two special function units (SFUs), instruction and constant caches, a multithreaded instruction unit, and a
shared memory. Copyright © 2009 Elsevier, Inc. All rights reserved.

Multicores	in	NVIDIA	GPUs

• NVIDIAGPU	Streaming	
Multiprocessors	(SM)	are	
analogous	to	CPU	cores
– Single	computational	unit
– Think	of	an	SM	as	a	single	

vector	processor
– Composed	of	multiple	

“cores”,	load/store	units,	
special	function	units	(sin,	
cosine,	etc.)

– Each	core	contains	integer	
and	floating-point	arithmetic	
logic	units

6

77

GPU	Computing	– The	Basic	Idea	

• Use	GPU	for	more	than	just	generating	graphics
– The	computational	resources	are	there,	they	are	most	of	the	

time	underutilized

– The	ironical	fact:	It	takes	about	20	years	(80/90s	– 2007)	to	
realize	that	a	GPU	that	can	do	graphics	well	should	do	image	
processing	well	too.	

Streaming	Processing

To	be	efficient,	GPUs	must	have	high	throughput,	i.e.	
processing	millions	of	pixels	in	a	single	frame,	but	may	be	

high	latency

• “Latency	is	a	time	delay	between	the	moment	something	is	
initiated,	and	the	moment	one	of	its	effects	begins	or	
becomes	detectable”	

• For	example,	the	time	delay	between	a	request	for	texture	
reading	and	texture	data	returns	

• Throughput	is	the	amount	of	work	done	in	a	given	amount	
of	time
– CPUs	are	low	latency	low	throughput	processors	
– GPUs	are	high	latency	high	throughput	processors	

8

Streaming	Processing	to	Enable	Massive	
Parallelism

• Given	a	(typically	large)	set	of	data(“stream”)
• Run	the	same	series	of	operations	(“kernel”	or	“shader”)	on	
all	of	the	data	(SIMD)	

• GPUs	use	various	optimizations	to	improve	throughput:	
• Some	on	chip	memory	and	local	caches	to	reduce	
bandwidth	to	external	memory	

• Batch	groups	of	threads	to	minimize	incoherent	memory	
access	
– Bad	access	patterns	will	lead	to	higher	latency	and/or	thread	

stalls.
• Eliminate	unnecessary	operations	by	exiting	or	killing	
threads	

9

GPU	Performance	Gains	Over	CPU

10

Parallelism	in	CPUs	v.	GPUs	

• Multi-/many- core/CPUs	use	
task	parallelism
– MIMD,	i.e.	Multiple	tasks	map	

to	multiple	threads

– Tasks	run	different	instructions

– 10s	of	relatively	heavyweight	
threads	run	on	10s	of	cores

– Each	thread	managed	and	
scheduled	explicitly

– Each	thread	has	to	be	
individually	programmed	
(MPMD)

11

• Manycore GPUs	use	data	
parallelism
– SIMD	model	(Single	Instruction	

Multiple	Data)

– Same	instruction	on	different	
data

– 10,000s	of	lightweight	threads	
on	100s	of	cores

– Threads	are	managed	and	
scheduled	by	hardware

– Programming	done	for	batches	
of	threads	(e.g.	one	pixel	
shader per	group	of	pixels,	or	
draw	call)

Graphics	Processing	Unit	(GPU)

12

Image:	http://www.ntu.edu.sg/home/ehchua/programming/opengl/CG_BasicsTheory.html

Simple	Processing	Flow

1. Copy	input	data	from	CPU	memory	to	
GPU	memory

PCI	Bus

13

Simple	Processing	Flow

1. Copy	input	data	from	CPU	memory	to	
GPU	memory

2. Load	GPU	program	and	execute,
caching	data	on	chip	for	performance

PCI	Bus

14

Simple	Processing	Flow

1. Copy	input	data	from	CPU	memory	to	
GPU	memory

2. Load	GPU	program	and	execute,
caching	data	on	chip	for	performance

3. Copy	results	from	GPU	memory	to	
CPU	memory

PCI	Bus

15

Offloading	Computation
#define N 1024
#define RADIUS 3
#define BLOCK_SIZE 16

__global__ void stencil_1d(int *in, int *out) {
__shared__ int temp[BLOCK_SIZE + 2 * RADIUS];
int gindex = threadIdx.x + blockIdx.x * blockDim.x;
int lindex = threadIdx.x + RADIUS;

// Read input elements into shared memory
temp[lindex] = in[gindex];
if (threadIdx.x < RADIUS) {

temp[lindex - RADIUS] = in[gindex - RADIUS];
temp[lindex + BLOCK_SIZE] = in[gindex + BLOCK_SIZE];

}

// Synchronize (ensure all the data is available)
__syncthreads();

// Apply the stencil
int result = 0;
for (int offset = -RADIUS ; offset <= RADIUS ; offset++)

result += temp[lindex + offset];

// Store the result
out[gindex] = result;

}

void fill_ints(int *x, int n) {
fill_n(x, n, 1);

}

int main(void) {
int *in, *out; // host copies of a, b, c
int *d_in, *d_out; // device copies of a, b, c
int size = (N + 2*RADIUS) * sizeof(int);

// Alloc space for host copies and setup values
in = (int *)malloc(size); fill_ints(in, N + 2*RADIUS);
out = (int *)malloc(size); fill_ints(out, N + 2*RADIUS);

// Alloc space for device copies
cudaMalloc((void **)&d_in, size);
cudaMalloc((void **)&d_out, size);

// Copy to device
cudaMemcpy(d_in, in, size, cudaMemcpyHostToDevice);
cudaMemcpy(d_out, out, size, cudaMemcpyHostToDevice);

// Launch stencil_1d() kernel on GPU
stencil_1d<<<N/BLOCK_SIZE,BLOCK_SIZE>>>(d_in + RADIUS, d_out +

RADIUS);

// Copy result back to host
cudaMemcpy(out, d_out, size, cudaMemcpyDeviceToHost);

// Cleanup
free(in); free(out);
cudaFree(d_in); cudaFree(d_out);
return 0;

}

serial	code

parallel	exe	on	GPU
serial	code

parallel	fn

16

CUDA(Compute	Unified	Device	Architecture)

Both	an	architecture and	programming	model
• Architecture	and	execution	model

– Introduced	in	NVIDIA	in	2007
– Get	highest	possible	execution	performance	requires	

understanding	of	hardware	architecture
• Programming	model

– Small	set	of	extensions	to	C
– Enables	GPUs	to	execute	programs	written	in	C
– Within	C	programs,	call	SIMT	“kernel”	routines	that	are	

executed	on	GPU.
• Hello	world	introduction	today

– More	in	later	lectures

17

PCI	Bus

GPU	Execution	Model

• The	GPU	is	a	physically	separate	processor	from	the	CPU
– Discrete	vs.	Integrated

• The	GPU	Execution	Model	offers	different	abstractions	from	
the	CPU	to	match	the	change	in	architecture

18

GPU	Multi-Threading

• Uses	the	Single-Instruction,	Multiple-Thread	model
– Many	threads	execute	the	same	instructions	in	lock-step
– Implicit	synchronization	after	every	instruction	(think	vector	

parallelism)
– A	SMIT	group:	wrap,	32	threads.	

SIMT

19

GPU	Multi-Threading

• In	SIMT,	all	threads	share	instructions	but	operate	on	their	
own	private	registers,	allowing	threads	to	store	thread-local	
state

SIMT

20

GPU	Multi-Threading

if (a > b) {

max = a;

} else {

max = b;

}

a = 4
b = 3

a = 3
b = 4

D
isabled

D
is

ab
le

d

• SIMT	threads	can	be	
“disabled”	when	they	need	
to	execute	instructions	
different	from	others	in	their	
group

• Improves	the	flexibility	of	the	
SIMT	model,	relative	to	
similar	vector-parallel	models	
(SIMD)

21

Execution	Model	to	Hardware

• GPUs	can	execute	multiple	SIMT	groups	on	each	SM
– For	example:	on	NVIDIA	GPUs	a	SIMT	group	is	32	threads,	each	

Kepler SM	has	192	CUDA	cores	è simultaneous	execution	of	6	SIMT	
groups	on	an	SM

• SMs	can	support	more	concurrent	SIMT	groups	than	core	count	
would	suggest
– Each	thread	persistently	stores	its	own	state	in	a	private	register	set
– Many	SIMT	groups	will	spend	time	blocked	on	I/O,	not	actively	

computing
– Keeping	blocked	SIMT	groups	scheduled	on	an	SM	would	waste	

cores
– Groups	can	be	swapped	in	and	out	without	worrying	about	losing	

state

22

CUDA	Thread	Hierarchy

• Allows	flexibility	and	
efficiency	in	
processing	1D,	2-D,	
and	3-D	data	on	GPU.	

• Linked	to	internal	
organization

• Threads	in	one	block	
execute	together.

23

Can be 1, 2 or 3
dimensions

stencil_1d<<<N/BLOCK_SIZE,BLOCK_SIZE>>>(d_in + RADIUS, d_out + RADIUS);

How	are	GPU	threads	organized?

• On	the	GPU,	the	number	of	blocks	and	threads	per	block	is	
exposed	through	intrinsic	thread	coordinate	variables:
– Dimensions
– IDs

Variable Meaning
gridDim.x, gridDim.y,

gridDim.z
Number	of	blocks	in	a	kernel	
launch.

blockIdx.x, blockIdx.y,
blockIdx.z

Unique	ID	of	the	block	that	
contains	the	current	thread.

blockDim.x, blockDim.y,
blockDim.z

Number	of	threads	in	each	block.

threadIdx.x, threadIdx.y,
threadIdx.z

Unique	ID	of	the	current	thread	
within	its	block.

24

How	are	GPU	threads	organized?

to	calculate	a	globally	unique	ID	for	a	thread	on	the	GPU	
inside	a	one-dimensional	grid	and	one-dimensional	block:
kernel<<<4, 8>>>(...);

__global__ void kernel(...) {

int id = blockIdx.x * blockDim.x + threadIdx.x;

...

}

25

Block 0 Block 1 Block 2 Block 3

blockIdx.x = 2;
blockDim.x = 8;
threadIdx.x = 2;

0		1		2		3		4		5		6		7

8

How	is	GPU	memory	managed?

• CUDA	Memory	Management	API
– Allocation	of	GPU	memory
– Transfer	of	data	from	the	host	to	GPU	memory
– Free-ing GPU	memory
– Foo(int A[][N])	{	}

Host	Function CUDA	Analogue

malloc cudaMalloc

memcpy cudaMemcpy

free cudaFree

26

AXPY	Offloading	To	a	GPU	using	CUDA

27

Memory	allocation	on	device

Memcpy from	host	to	device

Launch	parallel	execution

Memcpy from	device	to	host

Deallocation of	dev memory

More	Examples	and	Exercises

• Matvec:
– Version	1:	each	thread	computes	one	element	of	the	final	

vector
– Version	2:

• Matmul in	assignment	#4
– Version	1:	each	thread	computes	one	row	of	the	final	matrix	C

28

Inspecting	CUDA	Programs

• Debugging	CUDA	program:	
– cuda-gdb debugging	tool, like	gdb

• Profiling	a	program	to	examine	the	performance
– Nvprof tool,	like	gprof
– Nvprof ./vecAdd

29

GPU	Memory	Hierarchy

30

SIMT Thread Groups on a GPU

SIMT Thread Groups on an SM

SIMT Thread Group

Registers Local Memory

On-Chip Shared
Memory/Cache

Global Memory

Constant Memory

Texture Memory

• More	complex	than	
the	CPU	memory
– Many different types	

of	memory,	each	with	
special-purpose	
characteristics
• SRAM
• DRAM

– More	explicit control	
over	data	movement

Storing	Data	on	the	GPU

L1 Cache

L2 Cache

Global Memory

31

• Global	Memory	(DRAM)
– Large,	high-latency	memory
– Stored	in	device	memory	(along	

with	constant	and	texture	memory)
– Can	be	declared	statically	with	
__device__

– Can	be	allocated	dynamically	with	
cudaMalloc

– Explicitly	managed	by	the	
programmer

– Optimized	for	all	threads	in	a	warp	
accessing	neighbouring	memory	
cells

Global	Memory	Access	Patterns

• Achieving	aligned and	coalesced global	memory	accesses	is	
key	to	optimizing	an	application’s	use	of	global	memory	
bandwidth

– Coalesced:	the	threads	within	a	warp	reference	memory	
addresses	that	can	all	be	serviced	by	a	single	global	memory	
transaction	(think	of	a	memory	transaction	as	the	process	of	
bring	a	cache	line	into	the	cache)

– Aligned:	the	global	memory	accesses	by	threads	within	a	warp	
start	at	an	address	boundary	that	is	an	even	multiple	of	the	
size	of	a	global	memory	transaction

32

Global	Memory	Access	Patterns

• Aligned	and	Coalesced	Memory	Access	(w/	L1	cache)
– 32-thread	wrap,	128-bytes	memory	transaction

• With	128-byte	access,	a	single	transaction	is	required	and	
all	of	the	loaded	bytes	are	used

33

Global	Memory	Access	Patterns

• Misaligned	and	Coalesced	Memory	Access (w/	L1	cache)

• With	128-byte	access,	two	memory	transactions	are	
required	to	load	all	requested	bytes.	Only	half	of	the	loaded	
bytes	are	used.

34

Global	Memory	Access	Patterns

• Misaligned	and	Uncoalesced Memory	Access (w/	L1	cache)

• With	uncoalesced loads,	many	more	bytes	loaded	than	
requested

35

Shared	Memory	on	the	GPU

Shared Memory

Tr
an

sf
er

36

• Shared	Memory	(SRAM)
– Declared	with	the	__shared__

keyword
– Low-latency,	high	bandwidth
– Shared	by	all	threads	in	a	thread	block
– Explicitly	allocated	and	managed	by	

the	programmer,	manual	L1	cache
– Stored	on-SM,	same	physical	memory	

as	the	GPU	L1	cache
– On-SM	memory	is	statically	

partitioned	between	L1	cache	and	
shared	memory

GPU	Memory	Hierarchy

37

SIMT Thread Groups on a GPU

SIMT Thread Groups on an SM

SIMT Thread Group

Registers Local Memory

On-Chip Shared
Memory/Cache

Global Memory

Constant Memory

Texture Memory

• More	complex	than	
the	CPU	memory
– Many different types	

of	memory,	each	with	
special-purpose	
characteristics
• SRAM
• DRAM

– More	explicit control	
over	data	movement

Shared	Memory	Allocation

• Dynamically	Allocated	Shared	Memory
– Size	in	bytes	is	set	at	kernel	launch	with	a	third	kernel	launch	

configurable
– Can	only	have	one	dynamically	allocated	shared	memory	array	

per	kernel
– Must	be	one-dimensional	arrays

__global__ void kernel(...) {
extern __shared__ int s_arr[];
...

}

kernel<<<nblocks, threads_per_block,
shared_memory_bytes>>>(...);

38

Matrix	Vector	Multiplication

39

Matrix	Multiplication	V1	and	V2	in	Assignment	
#4

• https://docs.nvidia.com/cuda/cuda-c-programming-
guide/#shared-memory

40

GPU	Memory	Performance

Communication
Medium

Latency Bandwidth

On-Chip Shared
Memory

A few clock cycles Thousands of GB/s

GPU Global
Memory

Hundreds of clock
cycles

Hundreds of GB/s

PCI Bus Hundreds to
thousands of clock

cycles

Tens of GB/s

• Data	transfer	from	CPU	to	GPU	over	the	PCI	bus	adds
– Conceptual	complexity
– Performance	overhead

41

