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Manycore GPU	Architectures	and	
Programming:	Outline

• Introduction
– GPU	architectures,	GPGPUs,	and	CUDA
• GPU	Execution	model
• CUDA	Programming	model
• Working	with	Memory	in	CUDA
– Global	memory,	shared	and	constant	memory
• Streams	and	concurrency
• CUDA	instruction	intrinsic	and	library
• Performance,	profiling,	debugging,	and	error	handling
• Directive-based	high-level	programming	model
– OpenMP	and	OpenACC
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HPC	Systems	with	Accelerators

• Accelerator	architectures	
become	popular
– GPUs	and	Xeon	Phi
• Multiple	accelerators	are	
common
– 2,	4,	or	8

3https://www.anandtech.com/show/12587/nvidias-dgx2-sixteen-v100-gpus-30-tb-of-nvme-only-400k

Programming	on	NVIDIA	GPUs
1. CUDA	and	OpenCL

– Low-level
2. Library,	e.g.	cublas,	cufft,	cuDNN
3. OpenMP,	OpenACC,	and	others

– Rely	on	compiler	support
4. Application	framework

– TensorFlow,	etc



OpenMP	4.0	for	Accelerators
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AXPY	Example	with	OpenMP:	Multicore

• y	=	α·x	+	y
– x and	y are	vectors	of	size	n
– α is	scalar

• Data	(x,	y	and	a)	are	shared
– Parallelization	is	relatively	easy
• Other	examples
– sum:	reduction
– Stencil:	halo	region	exchange	and	synchronization
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AXPY	Offloading	To	a	GPU	using	CUDA

6

Memory	allocation	on	device

Memcpy from	host	to	device

Launch	parallel	execution

Memcpy from	device	to	host

Deallocation of	dev memory



AXPY	Example	with	OpenMP:	single	device

• y	=	α·x	+	y
– x and	y are	vectors	of	size	n
– α is	scalar

• target directive:	annotate	an	offloading	code	region
• map clause:	map	data	between	host	and	device	àmoving	data
– to|tofrom|from:	mapping	directions
– Use	array	region
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OpenMP Computation	and	Data	Offloading

• #pragma	omp target		device(id)	map()	if()
– target:	create	a	data	environment	and	offload	

computation	on	the	device
– device	(int_exp):	specify	a	target	device
– map(to|from|tofrom|alloc:var_list)	:	data	

mapping	between	the	current	data	environment	
and	a	device	data	environment

• #pragma	target	data	device	(id)	map()	if()
– Create	a	device	data	environment:	to	be	

reused/inherited

omp target

CPU	thread

omp parallel

Accelerator	threads
CPU	thread

8

Main 
Memory 

Application 
data 

target 

Application 
data 

acc. cores 

Copy in 
remote 
data 

Copy out 
remote data 

Tasks 
offloaded to 
accelerator 



target	and	map Examples
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Accelerator:	Explicit	Data	Mapping

• Relatively	small	number	of	
truly	shared	memory	
accelerators	so	far

• Require	the	user	to	
explicitly	map data	to	and	
from	the	device	memory

• Use	array	region

10

long	a	=	0x858;
long	b	=	0;
int anArray[100]

#pragma	omp target	data	map(to:a)	\\
map(tofrom:b,anArray[0:64])

{
/* a,	b	and	anArray are	mapped	
*	to	the	device	*/

/*	work	on	the	device	*/
#pragma	omp target	…	
{

…
}|

}
/*	b	and	anArray are	mapped	
*	back	to	the	host	*/



target	date	Example
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Accelerator:	Hierarchical	Parallelism

• Organize	massive	number	of	threads
– teams	of	threads,	e.g.	map	to	CUDA	grid/block
• Distribute	loops	over	teams

12

#pragma	omp target

#pragma	omp teams	num_teams(2)
num_threads(8)

{
//-- creates	a	“league”	of	teams					
//-- only	local	barriers	permitted

#pragma	omp distribute
for	(int i=0;	i<N;	i++)	{

}

}



teams and	distribute Loop	Example

Double-nested	loops	are	mapped	to	the	two	levels	of	thread	hierarchy	(league	
and	team)
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while ((k<=mits)&&(error>tol))
{ 
// a loop copying u[][] to uold[][] is omitted here
…

#pragma omp parallel for private(resid,j,i) reduction(+:error)
for (i=1;i<(n-1);i++)
for (j=1;j<(m-1);j++)
{
resid = (ax*(uold[i-1][j] + uold[i+1][j])\

+ ay*(uold[i][j-1] + uold[i][j+1])+ b * uold[i][j] - f[i][j])/b;
u[i][j] = uold[i][j] - omega * resid;
error = error + resid*resid ;

} // the rest code omitted  ...
}

#pragma omp target data device (gpu0) map(to:n, m, omega, ax, ay, b, \
f[0:n][0:m]) map(tofrom:u[0:n][0:m]) map(alloc:uold[0:n][0:m])

#pragma omp target device(gpu0) map(to:n, m, omega, ax, ay, b, f[0:n][0:m], \
uold[0:n][0:m]) map(tofrom:u[0:n][0:m])

Jacobi	Example:	The	Impact	of	Compiler	
Transformation	to	Performance
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Early	Experiences	With	The	OpenMP	Accelerator	Model;	Chunhua Liao,	Yonghong	Yan,	Bronis R.	de	Supinski,	Daniel	J.	Quinlan	
and	Barbara	Chapman;	International	Workshop	on	OpenMP	(IWOMP)	2013,	September	2013
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Loop Mapping Algorithms

Map-gv-gv in GPU Topology

#pragma acc loop gang (2) vector (2)

for ( i = x1; i < X1; i++ ) {

#pragma acc loop gang (3) vector (4)

for ( j = y1; j < Y1; j++ ) {...... }

}

X.Tian et al. LCPC Workshop 2013 17 / 26

• Need	to	achieve	coalesced	memory	access	on	GPUs

Compiler	Transformation	of	Nested	Loops	for	GPGPUs,	Xiaonan Tian,	Rengan Xu,	Yonghong	Yan,	Sunita Chandrasekaran,	and	Barbara	
Chapman	Journal	of	Concurrency	and	Computation:	Practice	and	Experience,	August	2015	

Compiling a High-level Directive-Based Programming Model for GPGPUs 11
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Fig. 9: Double nested loop mapping.
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Fig. 10: Triple nested loop mapping.

Table 2: Threads used in each loop with double loop mappings
Benchmark Double Loop Map2 1 Map2 2 Map2 3 Map2 4

Jacobi (2048x2048)
Outer loop 2048 1024x2 2046 1023x2
Inner loop 128 128 16x128 16x128

DGEMM (8192x8192)
Outer loop 8192 4096x2 8192 4096x2
Inner loop 128 128 64x128 64x128

Gaussblur (1024x1024)
Outer loop 1024 512x2 1020 510x2
Inner loop 128 128 8x128 8x128

shows the performance comparison in di�erent benchmarks with di�erent dou-
ble nested loop mappings. All of Jacobi, DGEMM and Gaussblur have double
nested parallel loops but they show di�erent performance behavior. In Jacobi,
the data accessed from the inner loop are contiguous in memory while they are
non-contiguous when accessed from the outer loop. In all of our four double
nested loop mappings, the inner loop uses vector which means the threads ex-
ecuting the inner loop are consecutive. In both vector and gang vector cases,
the threads are consecutive and the only di�erence is the length of concurrent
threads. In Jacobi inner loop, consecutive threads access aligned and consecu-
tive data and therefore the memory access is coalesced. In this case the memory
access pattern and the loop mapping mechanism match perfectly. That is why
the performance using all of the four loop mappings are close. Table 2 shows
the number of threads used in each loop mapping. Because Map2 1 and Map2 2
have less threads than Map2 3 and Map2 4 in the inner loop, the execution time
is slightly longer. Map2 1 and Map2 2 have the same performance since their
threads are the same in both the outer loop and inner loop. The performance
behavior of Gaussblur is similar to Jacobi because their memory access pattern
and threads management are similar.

In DGEMM, the performance of Map2 2 and Map2 4 are better than the
other two mappings which is because they both have enough parallelism in each
block to hide memory access latency. The performance penalty in Map2 1 is due
to less parallelism in each block. Map2 3 has the worst performance as it does

Loop Mapping Algorithms

Map-gv-gv in GPU Topology

#pragma acc loop gang (2) vector (2)

for ( i = x1; i < X1; i++ ) {

#pragma acc loop gang (3) vector (4)

for ( j = y1; j < Y1; j++ ) {...... }

}

X.Tian et al. LCPC Workshop 2013 17 / 26

Mapping	Nested	Loops	to	GPUs
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OpenACC%Certification%Suite%
%

We are also developing a certification suite to test emerging OpenACC implementations for completeness and 
semantic correctness to ensure that these implementations achieve a high degree of conformity with the 
standard. The certification suite consists of applications from several well-known benchmark suites such as 
NAS, PARBOIL, Rodinia and others. The applications were chosen based on several domains and include a 
variety of computational methods.  
 
The certification suite has been evaluated on an NVIDIA Kepler GPU and an Intel Xeon CPU with 8 cores. 
Table 2 shows a comparison of the speedup of OpenACC for a variety of applications to sequential version, 
OpenMP Version 3.1 (8 cores) and CUDA (4.2 &5.0). 

 
Table 2: Speedup of OpenACC for various applications. 

 

Applications Domains OpenACC Directive 
Combinations 

Lines of Code 
Added vs Serial Speedup Over 

OpenMP OpenACC Seq OpenMP CUDA 

Needleman-
Wunsch Bioinformatics 

data copy, copyin                                             
kernels present 
loop gang, vector, private 

6 5 2.98 1.28 0.24 

Stencil Cellular 
Automation 

data copyin, copy, deviceptr                        
kernels present 
loop collapse, independent 

1 3 40.55 15.87 0.92 

Computational 
Fluid Dyanmics 

(CFD) 
Fluid Mechanics 

data copyin, copy, deviceptr 
data present, deviceptr                                        
kernels deviceptr 
kernels loop, gang, vector, private                                              
loop gang, vector 
acc_malloc(), acc_free()                                                       

8 46 35.86 4.59 0.38 

2D Heat (grid 
size 4096*4096) Heat Conduction 

data copyin, copy, deviceptr                
kernels present                                    
loop collapse, independent 

1 3 99.52 28.63 0.90 

Clever (10Ovals) Data Mining 

data copyin                                          
kernels present, create, copyin, 
copy  
loop independent 

10 3 4.25 1.22 0.60 

FeldKemp 
(FDK) 

Image 
Processing 

kernels copyin, copyout                         
loop, collapse, independent 1 2 48.30 6.51 0.75 

 
We observed that the certification suite exhibits a set of behaviors. For example, OpenACC speedup ranges 
from 2.98 to 99.52 over the sequential version and from 1.22 to 28.63 over 8-core OpenMP version. The 
applications have been chosen based on their computations and communication patterns.  
 
We also observed that OpenACC is yet to achieve good speedup compared with that of the CUDA version of 
the applications. It may be because the OpenACC compilers do not generate an optimized GPU code. Deeper 
analysis of the OpenACC code may lead to further enhancements to the code and better speedup. However 
with respect to the sequential and OpenMP version of the applications, we notice improved speedup in each 
case. We are aware that OpenMP, a directive-based model, is good at retaining most of the code structure, and 
still be able to express parallelism. The LOC (Lines of Code) column shows that OpenACC also offers similar 
advantages. For the application CFD, we notice that LOC was significantly different to that of OpenMP, this is 
primarily because we have used acc_malloc(), acc_free() and runtime routines, but it is evident that OpenACC 
offers better speedup.  
 
Consequently, we think current OpenACC implementations allow applications to be ported to GPUs in a 
successful manner in terms of programmability and portability.  

Compiler	vs Hand-Written

NAS	Parallel	Benchmarks	for	GPGPUs	using	a	Directive-based	Programming	Model, Rengan Xu,	Xiaonan Tian,	Sunita Chandrasekaran,	Yonghong	Yan	and	Barbara	Chapman	27th	

International	Workshop	on	Languages	and	Compilers	for	Parallel	Computing	(LCPC2014)



AXPY	Example	with	OpenMP:	Multiple	device
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• Parallel	region
– One	CPU	thread	per	

device
• Manually	partition	array	

x	and	y
• Each	thread	offload	

subregion of	x	and	y
• Chunk	the	loop	in	

alignment	with	the	data	
partition



Hybrid	OpenMP	(HOMP)	for	Multiple	
Accelerators
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HOMP:	Automated	Distribution	of	Parallel	Loops	and	Data	in	Highly	Parallel	Accelerator-Based	Systems,	Yonghong	Yan,	Jiawen Liu,	

and	Kirk	W.	Cameron,	The	IEEE	International	Parallel	&	Distributed	Processing	Symposium	(IPDPS)	2017



Three	Challenges	to	Implement	HOMP

1. Load	balance	when	distributing	loop	iterations	across
computational	different	devices	(CPU,	GPU,	and	MIC)

– We	developed	7	algorithms	of	loop	distribution	and	the	runtime	
select	algorithms	based	on	computation/data	intensity

2. Only	copy	the	associated	data	to	the	device	that	are	needed	
for	the	loop	chunks	assigned	to	that	device

– Runtime	support	for	ALIGN	interface	to	move	or	share	data	between	
memory	spaces

1. Select	devices	for	computations	for	the	optimal	performance	
because	more	devices	≠	better	performance
– CUTOFF	ratio	to	select	device
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Offloading	Execution	Time	(ms)	on	2	CPUs	+	4	
GPUs	+	2	MICs		and	using	CUTOFF_RATIO
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Speedup	From	CUTOFF

• Apply	15%	CUTOFF	ratio	to	modeling	and	profiling
– Only	those	devices	who	may	compute	more	than	15%	of	total	

iterations	will	be	used
• Thinking	of	8	devices	(1/8	=	12.5%)
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Benchmarks Devices	used CUTOFF	Speedup
axpy-10B 2	CPU	+	4	GPUs 1.35
bm2d-256 2	CPU	+	4	GPUs 1.01
matul-6144 4	GPUs 2.68
matvec-48k 4	GPUs 0.56
stencil2d-256 4	GPUs 3.43
sum-300M 2	CPUs	+	4	GPUs 2.09


