
Lecture:	Manycore GPU	Architectures	and	
Programming,	Part	4

-- Introducing	OpenMP and	HOMP	for	Accelerators

1

CSCE	569	Parallel	Computing

Department	of	Computer	Science	and	Engineering
Yonghong Yan

yanyh@cse.sc.edu
https://passlab.github.io/CSCE569/

Manycore GPU	Architectures	and	
Programming:	Outline

• Introduction
– GPU	architectures,	GPGPUs,	and	CUDA
• GPU	Execution	model
• CUDA	Programming	model
• Working	with	Memory	in	CUDA
– Global	memory,	shared	and	constant	memory
• Streams	and	concurrency
• CUDA	instruction	intrinsic	and	library
• Performance,	profiling,	debugging,	and	error	handling
• Directive-based	high-level	programming	model
– OpenMP	and	OpenACC

2

HPC	Systems	with	Accelerators

• Accelerator	architectures	
become	popular
– GPUs	and	Xeon	Phi
• Multiple	accelerators	are	
common
– 2,	4,	or	8

3https://www.anandtech.com/show/12587/nvidias-dgx2-sixteen-v100-gpus-30-tb-of-nvme-only-400k

Programming	on	NVIDIA	GPUs
1. CUDA	and	OpenCL

– Low-level
2. Library,	e.g.	cublas,	cufft,	cuDNN
3. OpenMP,	OpenACC,	and	others

– Rely	on	compiler	support
4. Application	framework

– TensorFlow,	etc

OpenMP	4.0	for	Accelerators

4

AXPY	Example	with	OpenMP:	Multicore

• y	=	α·x	+	y
– x and	y are	vectors	of	size	n
– α is	scalar

• Data	(x,	y	and	a)	are	shared
– Parallelization	is	relatively	easy
• Other	examples
– sum:	reduction
– Stencil:	halo	region	exchange	and	synchronization

5

AXPY	Offloading	To	a	GPU	using	CUDA

6

Memory	allocation	on	device

Memcpy from	host	to	device

Launch	parallel	execution

Memcpy from	device	to	host

Deallocation of	dev memory

AXPY	Example	with	OpenMP:	single	device

• y	=	α·x	+	y
– x and	y are	vectors	of	size	n
– α is	scalar

• target directive:	annotate	an	offloading	code	region
• map clause:	map	data	between	host	and	device	àmoving	data
– to|tofrom|from:	mapping	directions
– Use	array	region

7

OpenMP Computation	and	Data	Offloading

• #pragma	omp target		device(id)	map()	if()
– target:	create	a	data	environment	and	offload	

computation	on	the	device
– device	(int_exp):	specify	a	target	device
– map(to|from|tofrom|alloc:var_list)	:	data	

mapping	between	the	current	data	environment	
and	a	device	data	environment

• #pragma	target	data	device	(id)	map()	if()
– Create	a	device	data	environment:	to	be	

reused/inherited

omp target

CPU	thread

omp parallel

Accelerator	threads
CPU	thread

8

Main
Memory

Application
data

target

Application
data

acc. cores

Copy in
remote
data

Copy out
remote data

Tasks
offloaded to
accelerator

target	and	map Examples

9

Accelerator:	Explicit	Data	Mapping

• Relatively	small	number	of	
truly	shared	memory	
accelerators	so	far

• Require	the	user	to	
explicitly	map data	to	and	
from	the	device	memory

• Use	array	region

10

long	a	=	0x858;
long	b	=	0;
int anArray[100]

#pragma	omp target	data	map(to:a)	\\
map(tofrom:b,anArray[0:64])

{
/* a,	b	and	anArray are	mapped	
*	to	the	device	*/

/*	work	on	the	device	*/
#pragma	omp target	…	
{

…
}|

}
/*	b	and	anArray are	mapped	
*	back	to	the	host	*/

target	date	Example

11

Accelerator:	Hierarchical	Parallelism

• Organize	massive	number	of	threads
– teams	of	threads,	e.g.	map	to	CUDA	grid/block
• Distribute	loops	over	teams

12

#pragma	omp target

#pragma	omp teams	num_teams(2)
num_threads(8)

{
//-- creates	a	“league”	of	teams					
//-- only	local	barriers	permitted

#pragma	omp distribute
for	(int i=0;	i<N;	i++)	{

}

}

teams and	distribute Loop	Example

Double-nested	loops	are	mapped	to	the	two	levels	of	thread	hierarchy	(league	
and	team)

13

while ((k<=mits)&&(error>tol))
{
// a loop copying u[][] to uold[][] is omitted here
…

#pragma omp parallel for private(resid,j,i) reduction(+:error)
for (i=1;i<(n-1);i++)
for (j=1;j<(m-1);j++)
{
resid = (ax*(uold[i-1][j] + uold[i+1][j])\

+ ay*(uold[i][j-1] + uold[i][j+1])+ b * uold[i][j] - f[i][j])/b;
u[i][j] = uold[i][j] - omega * resid;
error = error + resid*resid ;

} // the rest code omitted ...
}

#pragma omp target data device (gpu0) map(to:n, m, omega, ax, ay, b, \
f[0:n][0:m]) map(tofrom:u[0:n][0:m]) map(alloc:uold[0:n][0:m])

#pragma omp target device(gpu0) map(to:n, m, omega, ax, ay, b, f[0:n][0:m], \
uold[0:n][0:m]) map(tofrom:u[0:n][0:m])

Jacobi	Example:	The	Impact	of	Compiler	
Transformation	to	Performance

14

Early	Experiences	With	The	OpenMP	Accelerator	Model;	Chunhua Liao,	Yonghong	Yan,	Bronis R.	de	Supinski,	Daniel	J.	Quinlan	
and	Barbara	Chapman;	International	Workshop	on	OpenMP	(IWOMP)	2013,	September	2013

0

10

20

30

40

50

60

70

80

90

100

128x128 256x256 512x512 1024x1024 2048x2048
Matrix size (float)

Jacobi Execution Time (s)

first version

target-data

Loop collapse using linearization with static-even scheduling

Loop collapse using 2-D mapping (16x16 block)

Loop collapse using 2-D mapping (8x32 block)

Loop collapse using linearization with round-robin scheduling

15

Loop Mapping Algorithms

Map-gv-gv in GPU Topology

#pragma acc loop gang (2) vector (2)

for (i = x1; i < X1; i++) {

#pragma acc loop gang (3) vector (4)

for (j = y1; j < Y1; j++) {...... }

}

X.Tian et al. LCPC Workshop 2013 17 / 26

• Need	to	achieve	coalesced	memory	access	on	GPUs

Compiler	Transformation	of	Nested	Loops	for	GPGPUs,	Xiaonan Tian,	Rengan Xu,	Yonghong	Yan,	Sunita Chandrasekaran,	and	Barbara	
Chapman	Journal	of	Concurrency	and	Computation:	Practice	and	Experience,	August	2015	

Compiling a High-level Directive-Based Programming Model for GPGPUs 11

���

���

���

���

���

���

���

���

���

���

���

	
��� ����� �
������

��
�
��
��
�

������
��

�
 �!�
�
 �!�
�
 �!�
�
 �!�

Fig. 9: Double nested loop mapping.

����

��

���

����

�����

����	
� ���	
� �������

�

�
��
��
�

���	����

�����
�����
�����

Fig. 10: Triple nested loop mapping.

Table 2: Threads used in each loop with double loop mappings
Benchmark Double Loop Map2 1 Map2 2 Map2 3 Map2 4

Jacobi (2048x2048)
Outer loop 2048 1024x2 2046 1023x2
Inner loop 128 128 16x128 16x128

DGEMM (8192x8192)
Outer loop 8192 4096x2 8192 4096x2
Inner loop 128 128 64x128 64x128

Gaussblur (1024x1024)
Outer loop 1024 512x2 1020 510x2
Inner loop 128 128 8x128 8x128

shows the performance comparison in di�erent benchmarks with di�erent dou-
ble nested loop mappings. All of Jacobi, DGEMM and Gaussblur have double
nested parallel loops but they show di�erent performance behavior. In Jacobi,
the data accessed from the inner loop are contiguous in memory while they are
non-contiguous when accessed from the outer loop. In all of our four double
nested loop mappings, the inner loop uses vector which means the threads ex-
ecuting the inner loop are consecutive. In both vector and gang vector cases,
the threads are consecutive and the only di�erence is the length of concurrent
threads. In Jacobi inner loop, consecutive threads access aligned and consecu-
tive data and therefore the memory access is coalesced. In this case the memory
access pattern and the loop mapping mechanism match perfectly. That is why
the performance using all of the four loop mappings are close. Table 2 shows
the number of threads used in each loop mapping. Because Map2 1 and Map2 2
have less threads than Map2 3 and Map2 4 in the inner loop, the execution time
is slightly longer. Map2 1 and Map2 2 have the same performance since their
threads are the same in both the outer loop and inner loop. The performance
behavior of Gaussblur is similar to Jacobi because their memory access pattern
and threads management are similar.

In DGEMM, the performance of Map2 2 and Map2 4 are better than the
other two mappings which is because they both have enough parallelism in each
block to hide memory access latency. The performance penalty in Map2 1 is due
to less parallelism in each block. Map2 3 has the worst performance as it does

Loop Mapping Algorithms

Map-gv-gv in GPU Topology

#pragma acc loop gang (2) vector (2)

for (i = x1; i < X1; i++) {

#pragma acc loop gang (3) vector (4)

for (j = y1; j < Y1; j++) {...... }

}

X.Tian et al. LCPC Workshop 2013 17 / 26

Mapping	Nested	Loops	to	GPUs

16

OpenACC%Certification%Suite%
%

We are also developing a certification suite to test emerging OpenACC implementations for completeness and
semantic correctness to ensure that these implementations achieve a high degree of conformity with the
standard. The certification suite consists of applications from several well-known benchmark suites such as
NAS, PARBOIL, Rodinia and others. The applications were chosen based on several domains and include a
variety of computational methods.

The certification suite has been evaluated on an NVIDIA Kepler GPU and an Intel Xeon CPU with 8 cores.
Table 2 shows a comparison of the speedup of OpenACC for a variety of applications to sequential version,
OpenMP Version 3.1 (8 cores) and CUDA (4.2 &5.0).

Table 2: Speedup of OpenACC for various applications.

Applications Domains OpenACC Directive
Combinations

Lines of Code
Added vs Serial Speedup Over

OpenMP OpenACC Seq OpenMP CUDA

Needleman-
Wunsch Bioinformatics

data copy, copyin
kernels present
loop gang, vector, private

6 5 2.98 1.28 0.24

Stencil Cellular
Automation

data copyin, copy, deviceptr
kernels present
loop collapse, independent

1 3 40.55 15.87 0.92

Computational
Fluid Dyanmics

(CFD)
Fluid Mechanics

data copyin, copy, deviceptr
data present, deviceptr
kernels deviceptr
kernels loop, gang, vector, private
loop gang, vector
acc_malloc(), acc_free()

8 46 35.86 4.59 0.38

2D Heat (grid
size 4096*4096) Heat Conduction

data copyin, copy, deviceptr
kernels present
loop collapse, independent

1 3 99.52 28.63 0.90

Clever (10Ovals) Data Mining

data copyin
kernels present, create, copyin,
copy
loop independent

10 3 4.25 1.22 0.60

FeldKemp
(FDK)

Image
Processing

kernels copyin, copyout
loop, collapse, independent 1 2 48.30 6.51 0.75

We observed that the certification suite exhibits a set of behaviors. For example, OpenACC speedup ranges
from 2.98 to 99.52 over the sequential version and from 1.22 to 28.63 over 8-core OpenMP version. The
applications have been chosen based on their computations and communication patterns.

We also observed that OpenACC is yet to achieve good speedup compared with that of the CUDA version of
the applications. It may be because the OpenACC compilers do not generate an optimized GPU code. Deeper
analysis of the OpenACC code may lead to further enhancements to the code and better speedup. However
with respect to the sequential and OpenMP version of the applications, we notice improved speedup in each
case. We are aware that OpenMP, a directive-based model, is good at retaining most of the code structure, and
still be able to express parallelism. The LOC (Lines of Code) column shows that OpenACC also offers similar
advantages. For the application CFD, we notice that LOC was significantly different to that of OpenMP, this is
primarily because we have used acc_malloc(), acc_free() and runtime routines, but it is evident that OpenACC
offers better speedup.

Consequently, we think current OpenACC implementations allow applications to be ported to GPUs in a
successful manner in terms of programmability and portability.

Compiler	vs Hand-Written

NAS	Parallel	Benchmarks	for	GPGPUs	using	a	Directive-based	Programming	Model, Rengan Xu,	Xiaonan Tian,	Sunita Chandrasekaran,	Yonghong	Yan	and	Barbara	Chapman	27th	

International	Workshop	on	Languages	and	Compilers	for	Parallel	Computing	(LCPC2014)

AXPY	Example	with	OpenMP:	Multiple	device

17

• Parallel	region
– One	CPU	thread	per	

device
• Manually	partition	array	

x	and	y
• Each	thread	offload	

subregion of	x	and	y
• Chunk	the	loop	in	

alignment	with	the	data	
partition

Hybrid	OpenMP	(HOMP)	for	Multiple	
Accelerators

18

HOMP:	Automated	Distribution	of	Parallel	Loops	and	Data	in	Highly	Parallel	Accelerator-Based	Systems,	Yonghong	Yan,	Jiawen Liu,	

and	Kirk	W.	Cameron,	The	IEEE	International	Parallel	&	Distributed	Processing	Symposium	(IPDPS)	2017

Three	Challenges	to	Implement	HOMP

1. Load	balance	when	distributing	loop	iterations	across
computational	different	devices	(CPU,	GPU,	and	MIC)

– We	developed	7	algorithms	of	loop	distribution	and	the	runtime	
select	algorithms	based	on	computation/data	intensity

2. Only	copy	the	associated	data	to	the	device	that	are	needed	
for	the	loop	chunks	assigned	to	that	device

– Runtime	support	for	ALIGN	interface	to	move	or	share	data	between	
memory	spaces

1. Select	devices	for	computations	for	the	optimal	performance	
because	more	devices	≠	better	performance
– CUTOFF	ratio	to	select	device

19

Offloading	Execution	Time	(ms)	on	2	CPUs	+	4	
GPUs	+	2	MICs		and	using	CUTOFF_RATIO

20

1423.10'
412.29'
653.72'
1017.77'
767.02'
514.63'
306.26'
3508.77'
885.80'
277.19'
274.32'
1695.45'
1723.84'
272.80'
20989.67'
3664.08'
21587.16'
3809.59'
3544.63'
10393.55'
6532.80'
1422.96'
1459.78'
400.75'
1060.35'
953.50'
793.04'
555.21'
709.63'
5054.33'
1482.90'
1504.45'
432.17'
752.22'
211.11'
779.83'
261.99'
545.66'
407.61'
291.86'
100.93'

0.00' 200.00' 400.00' 600.00' 800.00' 1000.00' 1200.00' 1400.00' 1600.00' 1800.00' 2000.00'

BLOCK'
SCHED_DYNAMIC'
MODEL_1_AUTO'
MODEL_2_AUTO'

SCHED_PROFILE_AUTO'
MODEL_PROFILE_AUTO'

MODEL_PROFILE_AUTO'(15%'CUTOFF)'
SCHED_DYNAMIC'
SCHED_GUIDED'
MODEL_1_AUTO'
MODEL_2_AUTO'

SCHED_PROFILE_AUTO'
MODEL_PROFILE_AUTO'

MODEL_1_AUTO(15%'CUTOFF)'
BLOCK'

SCHED_DYNAMIC'
SCHED_GUIDED'
MODEL_1_AUTO'
MODEL_2_AUTO'

SCHED_PROFILE_AUTO'
MODEL_PROFILE_AUTO'

MODEL_2_AUTO(15%'CUTOFF)'
BLOCK'

SCHED_DYNAMIC'
MODEL_1_AUTO'
MODEL_2_AUTO'

SCHED_PROFILE_AUTO'
MODEL_PROFILE_AUTO'

SCHED_PROFILE_AUTO(15%'CUTOFF)'
BLOCK'

MODEL_1_AUTO'
MODEL_2_AUTO'

MODEL_1_AUTO(15%'CUTOFF)'
BLOCK'

SCHED_DYNAMIC'
SCHED_GUIDED'
MODEL_1_AUTO'
MODEL_2_AUTO'

SCHED_PROFILE_AUTO'
MODEL_PROFILE_AUTO'

MODEL_PROFILE_AUTO(15%'CUTOFF)'

ax
py
I1
0B

'
bm

2d
I2
56
'

m
at
ul
I6
14
4'

m
at
ve
cI
48
k'

st
en

ci
l2
dI
25

6'
su
m
I3
00
M
'

TOTAL%OFF%TIME(ms)%

Execu2on%Time%(ms)%on%2%CPUs%+%4%GPUs%+%2%MICs%

The	algorithm	that	delivers	the	best	performance	without	CUTOFF

1.35

1.01

2.68

0.56

3.43

2.09

3.43
The	algorithm	with	15%	CUTOFF_RATIO	that	delivers	the	best	performance
and	its	speedup	against	the	best	algorithm	that	does	not	use	CUTOFF	

Speedup	From	CUTOFF

• Apply	15%	CUTOFF	ratio	to	modeling	and	profiling
– Only	those	devices	who	may	compute	more	than	15%	of	total	

iterations	will	be	used
• Thinking	of	8	devices	(1/8	=	12.5%)

21

Benchmarks Devices	used CUTOFF	Speedup
axpy-10B 2	CPU	+	4	GPUs 1.35
bm2d-256 2	CPU	+	4	GPUs 1.01
matul-6144 4	GPUs 2.68
matvec-48k 4	GPUs 0.56
stencil2d-256 4	GPUs 3.43
sum-300M 2	CPUs	+	4	GPUs 2.09

