Lecture: Manycore GPU Architectures and Programming, Part 3
-- Streaming, Library and Tuning

CSCE 569 Parallel Computing

Department of Computer Science and Engineering
Yonghong Yan
yanyh@cse.sc.edu
https://passlab.github.io/CSCE569/
Manycore GPU Architectures and Programming: Outline

- Introduction
 - GPU architectures, GPGPUs, and CUDA
- GPU Execution model
- CUDA Programming model
- Working with Memory in CUDA
 - Global memory, shared and constant memory

 Streams and concurrency
- CUDA instruction intrinsic and library
- Performance, profiling, debugging, and error handling
- Directive-based high-level programming model
 - OpenACC and OpenMP
Offloading Processing Flow

1. Copy input data from CPU memory to GPU memory
1. Copy input data from CPU memory to GPU memory
2. Load GPU program and execute, caching data on chip for performance
Offloading Processing Flow

1. Copy input data from CPU memory to GPU memory
2. Load GPU program and execute, caching data on chip for performance
3. Copy results from GPU memory to CPU memory
Overlapping Communication and Computation

• Three sequential steps for a single kernel execution

• Multiple kernels
 – Asynchrony is a first-class citizen of most GPU programming frameworks
 – Computation-communication overlap is a common technique in GPU programming
Abstract Concurrency

• Different kinds of action overlap are possible in CUDA?
 1. Overlapped host computation and device computation
 2. Overlapped host computation and host-device data transfer
 3. Overlapped host-device data transfer and device computation
 4. Concurrent device computation

• CUDA Streams to achieve each of these types of overlap
CUDA Streams

- CUDA Streams: a FIFO queue of CUDA actions to be performed
 - Placing a new action at the head of a stream is **asynchronous**
 - Executing actions from the tail as CUDA resources allow
 - Every action (kernel launch, `cudaMemcpy`, etc) runs in an implicit or explicit stream
CUDA Streams

- Two types of streams in a CUDA program
 - The implicitly declared stream (NULL stream)
 - Explicitly declared streams (non-NULL streams)

- Up until now, all code has been using the NULL stream by default

```c
cudaMemcpy(...);
kernelf <<<...>>> (...);
cudaMemcpy(...);
```

- Non-NULL streams require manual allocation and management by the CUDA programmer
CUDA Streams

• To create a CUDA stream:

  ```
  cudaError_t cudaStreamCreate(cudaStream_t *stream);
  ```

• To destroy a CUDA stream:

  ```
  cudaError_t cudaStreamDestroy(cudaStream_t stream);
  ```

• To wait for all actions in a CUDA stream to finish:

  ```
  cudaError_t cudaStreamSynchronize(cudaStream_t stream);
  ```

• To check if all actions in a CUDA stream have finished:

  ```
  cudaError_t cudaStreamQuery(cudaStream_t stream);
  ```
CUDA Streams

- `cudaMemcpyAsync`: Asynchronous memcpy

  ```c
  cudaError_t cudaMemcpyAsync(void *dst, const void *src, size_t count, cudaMemcpyKind kind, cudaStream_t stream = 0);
  ```

- `cudaMemcpyAsync` does the same as `cudaMemcpy`, but may return before the transfer is actually complete.

- Pinned host memory is a requirement for `cudaMemcpyAsync`

 - Memory that is resident in physical memory pages, and cannot be swapped out, also referred as page-locked

 - Recall malloc normally reserve virtual address space first and then actually physical pages are allocated

 - DMA is involved for data transfer
CUDA Streams

- Performing a `cudaMemcpyAsync`:

  ```c
  int *h_arr, *d_arr;
  cudaStream_t stream;
  cudaMemcpy((void **)&d_arr, nbytes);
  cudaMemcpyHost((void **)&h_arr, nbytes);
  cudaStreamCreate(&stream);
  cudaMemcpyAsync(d_arr, h_arr, nbytes, cudaMemcpyHostToDevice, stream);
  ...
  cudaMemcpyAsync(d_arr, h_arr, nbytes, cudaMemcpyHostToDevice, stream);
  cudaStreamSynchronize(stream);
  cudaFree(d_arr); cudaFreeHost(h_arr);
  cudaStreamDestroy(stream);
  ```

 - Page-locked memory allocation
 - Call return before transfer complete
 - Do something while data is being moved
 - Sync to make sure operations complete
CUDA Streams

• Associate kernel launches with a non-NULL stream

```c
kernel<<<nblocks, threads_per_block, smem_size, stream>>>(...);
```

• The effects of `cudaMemcpyAsync` and kernel launching
 – Operations are put in the stream queue for execution
 – Actually operations may not happen yet

• Host-side timer to time those operations
 – Not the actual time of the operations
• Vector sum example, \(A + B = C \)

• Partition the vectors and use CUDA streams to overlap copy and compute
• How can this be implemented in code?

cudaStream_t stream[nstreams];
/* initialize stream here */
int eles_per_stream = N / nstreams;

for (int i = 0; i < nstreams; i++) {
 int offset = i * eles_per_stream;
 cudaMemcpyAsync(&d_A[offset], &h_A[offset], eles_per_stream *
 sizeof(int), cudaMemcpyHostToDevice, streams[i]);
 cudaMemcpyAsync(&d_B[offset], &h_B[offset], eles_per_stream *
 sizeof(int), cudaMemcpyHostToDevice, streams[i]);

 vector_sum<<<..._i>>>(d_A + offset,
 d_B + offset, d_C + offset);
 cudaMemcpyAsync(&h_C[offset], &d_C[offset], eles_per_stream *
 sizeof(int), cudaMemcpyDeviceToHost, streams[i]);
}

for (int i = 0; i < nstreams; i++)
 cudaStreamSynchronize(streams[i]);
CUDA Events

• Timing asynchronous operations
 – Host-side timer: only measure the time for the call, not the actual time for the data movement or kernel execution

• Events in streams, which mark specific points in stream execution

• Events are manually created and destroyed:

 \[
 \text{cudaError_t} \ \text{cudaEventCreate} (\text{cudaEvent_t} *\text{event}) ; \\
 \text{cudaError_t} \ \text{cudaEventDestroy} (\text{cudaEvent_t} *\text{event}) ;
 \]
CUDA Events

• To add an event to a CUDA stream:
  ```
cudaError_t cudaEventRecord(cudaEvent_t event, cudaStream_t stream);
  ```
 – Event marks the point-in-time after all preceding actions in stream complete, and before any actions added after `cudaEventRecord` run.

• Host to wait for some CUDA actions to finish
  ```
cudaError_t cudaEventSynchronize(cudaEvent_t event);
  ```
 – Wait for all the operations before this events to complete, but not those after
CUDA Events

• Check if an event has been reached without waiting for it:

```c
cudaError_t cudaEventQuery(cudaEvent_t event);
```

• Get the elapsed milliseconds between two events:

```c
cudaError_t cudaEventElapsedTime(float *ms, cudaEvent_t start, cudaEvent_t stop);
```
CUDA Events

• In codes:

```c
float time;
cudaEvent_t start, stop;
cudaEventCreate(&start); cudaEventCreate(&stop);

cudaEventRecord(start);
kernel<<<grid, block>>>(arguments);
cudaEventRecord(stop);
cudaEventSynchronize(stop);

cudaEventElapsedTime(&time, start, stop);
cudaEventDestroy(start);
cudaEventDestroy(stop);
```
Implicit and Explicit Synchronization

• Two types of host-device synchronization:
 – **Implicit synchronization** causes the host to wait on the GPU, but as a side effect of other CUDA actions
 – **Explicit synchronization** causes the host to wait on the GPU because the programmer has asked for that behavior
Implicit and Explicit Synchronization

• Five CUDA operations that include implicit synchronization:
 1. A pinned host memory allocation (cudaMallocHost, cudaHostAlloc)
 2. A device memory allocation (cudaMalloc)
 3. A device memset (cudaMemset)
 4. A memory copy between two addresses on the same device (cudaMemcpy(..., cudaMemcpyDeviceToDevice))
 5. A modification to the L1/shared memory configuration (cudaThreadSetCacheConfig, cudaDeviceSetCacheConfig)
Implicit and Explicit Synchronization

- Four ways to explicitly synchronize in CUDA:
 1. Synchronize on a device
     ```
     cudaError_t cudaDeviceSynchronize();
     ```
 2. Synchronize on a stream
     ```
     cudaError_t cudaStreamSynchronize();
     ```
 3. Synchronize on an event
     ```
     cudaError_t cudaEventSynchronize();
     ```
 4. Synchronize across streams using an event
     ```
     cudaError_t cudaStreamWaitEvent(cudaStream_t stream, cudaEvent_t event);
     ```
Implicit and Explicit Synchronization

- `cudaStreamWaitEvent` adds inter-stream dependencies
 - Causes the specified stream to wait on the specified event before executing any further actions
 - event does not need to be an event recorded in stream

    ```
    cudaEventRecord(event, stream1);
    ...
    cudaStreamWaitEvent(stream2, event);
    ...
    ```

- No actions added to stream2 after the call to `cudaStreamWaitEvent` will execute until event is satisfied
Suggested Readings

1. Chapter 6 in *Professional CUDA C Programming*
Manycore GPU Architectures and Programming: Outline

• Introduction
 – GPU architectures, GPGPUs, and CUDA
• GPU Execution model
• CUDA Programming model
• Working with Memory in CUDA
 – Global memory, shared and constant memory
• Streams and concurrency

CUDA instruction, intrinsic, and library
• Performance, profiling, debugging, and error handling
• Directive-based high-level programming model
 – OpenACC and OpenMP
CUDA Libraries

• Pre-packaged and expertly-optimized functions that implement commonly useful operations.
 – Vector addition, matrix vector, matrix matrix, FFT, etc

• Advantages of CUDA Libraries?
 – Support a wide range of application domains
 – Highly usable, high-level APIs that are familiar to domain experts
 – Tuned by CUDA experts to perform well across platforms and datasets
 – Often offer the quickest route for porting, simply swap out API calls
 – Low maintenance, developer of the library takes on responsibility of bug fixes and feature requests
CUDA Libraries

DOMAIN-SPECIFIC
- cuDNN
- nvGRAPH
- TensorRT
- NCCL

VISUAL PROCESSING
- NVIDIA NPP
- DeepStream SDK
- NVIDIA CODEC SDK
- InDeX Framework

LINEAR ALGEBRA
- cuSPARSE
- cuBLAS
- cuRAND
- cuFFT

MATH ALGORITHMS
- CUDA Math library
- AmpX
- cuSOLVER
- THRUST LIBRARY

Workflow to Use CUDA Library

1. Create a library-specific handle that manages contextual information useful for the library’s operation.
 - Many CUDA Libraries have the concept of a handle which stores opaque library-specific information on the host which many library functions access
 - Programmer’s responsibility to manage this handle
 - For example: `cublasHandle_t, cufftHandle, cusparseHandle_t, curandGenerator_t`

1. Allocate device memory for inputs and outputs to the library function.
 - Use `cudaMalloc` as usual
Common Library Workflow

3. If inputs are not already in a library-supported format, convert them to be accessible by the library.
 – Many CUDA Libraries only accept data in a specific format
 – For example: column-major vs. row-major arrays

4. Populate the pre-allocated device memory with inputs in a supported format.
 – In many cases, this step simply implies a `cudaMemcpy` or one of its variants to make the data accessible on the GPU
 – Some libraries provide custom transfer functions, for example: `cublasSetVector` optimizes strided copies for the CUBLAS library
5. Configure the library computation to be executed.
 – In some libraries, this is a no-op
 – Others require additional metadata to execute library computation correctly
 – In some cases this configuration takes the form of extra parameters passed to library functions, others set fields in the library handle

6. Execute a library call that offloads the desired computation to the GPU.
 – No GPU-specific knowledge required
Common Library Workflow

7. Retrieve the results of that computation from device memory, possibly in a library-determined format.
 – Again, this may be as simple as a cudaMemcpy or require a library-specific function

8. If necessary, convert the retrieved data to the application’s native format.
 – If a conversion to a library-specific format was necessary, this step ensures the application can now use the calculated data
 – In general, it is best to keep the application format and library format the same, reducing overhead from repeated conversions
Common Library Workflow

9. Release CUDA resources.
 – Includes the usual CUDA cleanup (cudaFree, cudaStreamDestroy, etc) plus any library-specific cleanup

10. Continue with the remainder of the application.
Common Library Workflow

• Not all libraries follow this workflow, and not all libraries require every step in this workflow
 – In fact, for many libraries many steps are skipped
 – Keeping this workflow in mind will help give you context on what the library might be doing behind the scenes and where you are in the process

• Next, we’ll take a look at two commonly useful libraries
 – Try to keep the common workflow in mind while we work with them
cuBLAS

• cuBLAS is a port of a popular linear algebra library, BLAS

• cuBLAS (like BLAS) splits its subroutines into multiple levels based on data types processed:
 – Level 1: vector-only operations (e.g. vector addition)
 – Level 2: matrix-vector operations (e.g. matrix-vector multiplication)
 – Level 3: matrix-matrix operations (e.g. matrix multiplication)
cuBLAS Idiosyncracies

- For legacy compatibility, cuBLAS operates on column-major matrices

- cuBLAS also has a legacy API which was dropped since CUDA 4.0, this lecture will use the new cuBLAS API
 - If you find cuBLAS code that doesn’t quite match up, you may be looking at the old cuBLAS API
cuBLAS Data Management

• Device memory in cuBLAS is allocated as you’re used to:
 `cudaMalloc`

• Transferring data to/from the device uses cuBLAS-specific functions:
 – `cublasGetVector/cublasSetVector`
 – `cublasGetMatrix/cublasSetMatrix`
cuBLAS Data Management

• Example:

```c
    cublasStatus_t cublasSetVector(int n,
                                   int elemSize, const void *x, int incx,
                                   void *y, int incy);
```

where:

• `n` is the number of elements to transfer to the GPU
• `elemSize` is the size of each element (e.g. sizeof(int))
• `x` is the vector on the host to copy from
• `incx` is a stride in `x` of the array cells to transfer to
• `y` is the vector on the GPU to copy to
• `incy` is a stride in `y` of the array cells to transfer to
cuBLAS Data Management

• Example:

 `cublasSetVector(5, sizeof(int), h_x, 3, d_x, 2);`

```
```

```
```
cuBLAS Data Management

• Similarly:

```c

cublasStatus_t cublasSetMatrix(int rows, int cols, int elemSize,
    const void *A, int lda, void *B, int ldb);
```

where:

• **rows** is the number of rows in a matrix to copy
• **cols** is the number of cols in a matrix to copy
• **elemSize** is the size of each cell in the matrix (e.g. `sizeof(int)`)
• **A** is the source matrix on the host
• **lda** is the number of rows in the underlying array for **A**
• **B** is the destination matrix on the GPU
• **ldb** is the number of rows in the underlying array for **B**
cuBLAS Data Management

• Similarly:

```
cublasSetMatrix(3, 3, sizeof(int), h_A, 4, d_A, 5);
```

![Diagram of matrix operations](image-url)
cuBLAS Example

• Matrix-vector multiplication
 – Uses 6 of the 10 steps in the common library workflow:

1. Create a cuBLAS handle using `cublasCreateHandle`
2. Allocate device memory for inputs and outputs using `cudaMalloc`
3. Populate device memory using `cublasSetVector`, `cublasSetMatrix`
4. Call `cublasSgemv` to run matrix-vector multiplication on the GPU
5. Retrieve results from the GPU using `cublasGetVector`
6. Release CUDA and cuBLAS resources using `cudaFree`, `cublasDestroy`
cuBLAS Example

- You can build and run the example `cublas.cu`:

  ```c
  cublasCreate(&handle);
  cudaMalloc((void **)&dA, sizeof(float) * M * N);
  cudaMalloc((void **)&dX, sizeof(float) * N);
  cudaMalloc((void **)&dY, sizeof(float) * M);

  cublasSetVector(N, sizeof(float), X, 1, dX, 1);
  cublasSetVector(M, sizeof(float), Y, 1, dY, 1);
  cublasSetMatrix(M, N, sizeof(float), A, M, dA, M);

  cublasSgemv(handle, CUBLAS_OP_N, M, N, &alpha, dA, M, dX, 1, &beta, dY, 1);

  cublasGetVector(M, sizeof(float), dY, 1, Y, 1);

  /* for sgemm */
  ```
Porting to cuBLAS from BLAS is a straightforward process. In general, it requires:

- **Adding device memory allocation/freeing** (cudaMalloc, cudaFree)
- **Adding device transfer functions** (cublasSetVector, cublasSetMatrix, etc)
- **Transform library routine calls from BLAS to cuBLAS** (e.g. cblas_sgemv → cublasSgemv)
cuBLAS Portability

• Some common optimizations following a naive BLAS ➔ cuBLAS port are:
 – Reusing device memory allocations
 – Removing redundant data transfers from and to the device
 – Adding streamed execution using `cublasSetStream`
cuBLAS Summary

• cuBLAS makes accelerating legacy BLAS applications simple and easy
 – Very little added code
 – Straightforward mapping from BLAS routines to cuBLAS routines
 – Flexible API improves portability

• For new linear algebra applications, cuBLAS offers a high-performance alternative to BLAS
 – High-performance kernels with very little programmer time
cuFFT

- cuFFT offers an optimized implementation of the fast Fourier transform
cuFFT Configuration

• In cuFFT terminology, plans == handles
 – cuFFT plans define a single FFT transformation to be performed

• cuFFT uses plans to derive the internal memory allocations, transfers, kernels required to implement the desired transform

• Plans are created with:

 cufftResult cufftPlan1d(cufftHandle *plan, int nx, cufftType type, int batch);
 cufftResult cufftPlan2d(cufftHandle *plan, int nx, int ny, cufftType type);
 cufftResult cufftPlan3d(cufftHandle *plan, int nx, int ny, int nz, cufftType type);
cuFFT Configuration

• `cufftType` refers to the data types of a transformation, for example:
 – Complex-to-complex: `CUFFT_C2C`
 – Real-to-complex: `CUFFT_R2C`
 – Complex-to-real: `CUFFT_C2R`
cuFFT Example

• A complex-to-complex 1D cuFFT plan and executing it, using 6 of the 10 steps in the common library workflow:

1. Create and configure a cuFFT plan
2. Allocate GPU memory for the input samples and output frequencies using `cudaMalloc`
3. Populate GPU memory with input samples using `cudaMemcpy`
4. Execute the plan using a `cufftExec*` function
5. Retrieve the calculated frequencies from GPU memory using `cudaMemcpy`
6. Release CUDA and cuFFT resources using `cudaFree`, `cufftDestroy`
cuFFT Example

• You can build and run an example `cufft.cu`:

```c

cufftPlan1d(&plan, N, CUFFT_C2C, 1);

cudaMalloc((void **)&dComplexSamples, sizeof(cufftComplex) * N);

cudaMemcpy(dComplexSamples, complexSamples, sizeof(cufftComplex) * N, cudaMemcpyHostToDevice);

cufftExecC2C(plan, dComplexSamples, dComplexSamples, CUFFT_FORWARD);

cudaMemcpy(complexFreq, dComplexSamples, sizeof(cufftComplex) * N, cudaMemcpyDeviceToHost);
```
cuFFT Summary

• Like cuBLAS, cuFFT offers a high-level and usable API for porting legacy FFT applications or writing new ones
 – cuFFT’s API is deliberately similar to industry-standard library FFTW to improve programmability
 – Offers higher performance for little developer effort
Drop-In CUDA Libraries

- Drop-In CUDA Libraries allow seamless integration of CUDA performance with existing code bases
 - Full compatibility with industry-standard libraries, expose the same external APIs
 - BLAS ➔ NVBLAS
 - FFTW ➔ cuFFTW

- Two ways to use Drop-In Libraries:
 - Re-link to CUDA Libraries
 - LD_PRELOAD CUDA Libraries before their host equivalents
Drop-In CUDA Libraries

• Re-linking legacy applications to CUDA Libraries:
 – Suppose you have a legacy application that relies on BLAS:
 $ gcc app.c -lblas -o app
 – Recompiling with NVBLAS linked will automatically accelerate all BLAS calls
 $ gcc app.c -lnvblas -o app

• Alternatively, simply set LD_PRELOAD when executing the application:
 $ env LD_PRELOAD=libnvblas.so ./app
Survey of CUDA Library Performance

• We’ve seen that cuBLAS and cuFFT are high-level, programmable libraries (like their host counterparts)
 – No CUDA-specific concepts (e.g. thread blocks, pinned memory, etc)

• Let’s do a brief survey of CUDA Library performance to see the performance improvements possible
 – Focus on the same libraries (cuBLAS and cuFFT) but similar data on other libraries is available in the book and online
Survey of CUDA Library Performance

cuBLAS Level 3: >1 TFLOPS double-precision

GFLOPS

Speedup over MKL

- MKL 10.3.6 on Intel SandyBridge E5-2687W @ 3.10GHz
- CUBLAS 5.0.30 on K20X, input and output data on device
Survey of CUDA Library Performance

cuFFT: Consistently High Performance

Single Precision

Double Precision

Transform Size

Transform Size

GFLOPS

GFLOPS

Powers of 2 Powers of 3 Powers of 5 Powers of 7
Suggested Readings

1. All sections in Chapter 8 of *Professional CUDA C Programming* except *Using OpenACC*
Manycore GPU Architectures and Programming: Outline

• Introduction
 – GPU architectures, GPGPUs, and CUDA
• GPU Execution model
• CUDA Programming model
• Working with Memory in CUDA
 – Global memory, shared and constant memory
• Streams and concurrency
• CUDA instruction intrinsic and library

Performance, profiling, debugging, and error handling
• Directive-based high-level programming model
 – OpenACC and OpenMP
GPU Parallelization

• A many-faceted process
 – Performance varies dramatically depending on the implementation of the same algorithms
 • Naïve to highly optimized version

• Many types of optimizations for GPUs
 – Shared memory
 – Constant memory
 – Global memory access patterns
 – Warp shuffle instructions
 – Computation-communication overlap
 – CUDA compiler flags, e.g. loop unrolling, etc
 – Increasing parallelism
 – ...
Optimization Opportunities

• Kernel-level optimization:
 – Exposing Sufficient Parallelism
 – Optimizing Memory Access
 – Optimizing Instruction Execution

• Host-GPU optimization
 – E.g. kernel and data transfer overlap using CUDA streams

• Profile-driven optimization improves optimizations selection
Kernel-Level Optimization

• Exposing Sufficient Parallelism
 – Increase the amount of concurrent work on the GPU so as to saturate instruction and memory bandwidth

• Can be accomplished by:
 1. More concurrently active warps per SM
 2. More independent work assigned to each thread

![Warp-Level Parallelism](image1)

![Instruction-Level Parallelism](image2)
Kernel-Level Optimization

• Increasing the number of warps per SM/thread block does not guarantee performance improvement
 – Result in fewer per-SM resources assigned to each thread (e.g. registers, shared memory)
Kernel-Level Optimization

• Creating more independent work per thread
 – loop unrolling or other code transformations that expose instruction-level parallelism,
 – But may also increase per-thread resource requirements

```c
int sum = 0;
for (int i = 0; i < 4; i++)
{
    sum += a[i];
}
```

Requires 2 registers (sum, i), no instruction-level parallelism

```c
int i1 = a[0];
int i2 = a[1];
int i3 = a[2];
int i4 = a[4];
int sum = i1 + i2 + i3 + i4;
```

Requires 5 registers (i1, i2, i3, i4, sum), four-way instruction-level parallelism
Kernel-Level Optimization

• Optimizing memory access to maximize:
 – Memory bandwidth utilization (efficiency of memory access patterns)
 – Memory access concurrency (sufficient memory requests to hide memory latency)
Kernel-Level Optimization

- Aligned, coalesced global and shared memory accesses optimize memory bandwidth utilization
 - Constant memory prefers a broadcast access pattern
Kernel-Level Optimization

• Optimizing Instruction Execution focuses on:
 – Hiding instruction latency by keeping a sufficient number of warps active
 – Avoiding divergent execution paths within warps
 • If inside a kernel

• Experimenting with thread execution configuration can produce unexpected performance gains from more or less active warps

• Divergent execution within a warp produces reduced parallelism as warp execution of multiple code paths is serialized
Profile-Driven Optimization

• Profile-driven optimization is an iterative process to optimize program based on **quantitative** profiling info
 – As we apply optimization techniques, we analyze the results using *nvprof* and decide if they are beneficial
Profile-Driven Optimization

- The key challenge in profile-driven optimization is to determine performance inhibitors in hotspots
 - `nvvp` and `nvprof` are invaluable tools for this
Profile-Driven Optimization

• `nvprof` profiling modes:
 – *Summary Mode*: default mode, displays execution time information on high-level actions such as kernels or data transfers
 – *Trace Mode*: Provides a timeline of CUDA events or actions in chronological order
 – *Event/Metric Summary Mode*: Aggregates event/metric counts across all kernel invocations
 – *Event/Metric Trace Mode*: Displays event/metric counts for each kernel invocation
Profile-Driven Optimization

- The NVIDIA Visual Profiler (nvvp) is also a powerful tool for guiding profile-driven optimization
 - Offers a number of views to inspect different parts of a CUDA application
CUDA Debugging

• An important part of CUDA software development is the ability to debug CUDA applications

• CUDA offers a number of debugging tools, split into two categories:
 – Kernel Debugging
 – Memory Debugging
CUDA Debugging

• Kernel Debugging tools help us to analyze the correctness of running CUDA kernels by inspecting running application state.

• Memory Debugging Tools help us detect application bugs by observing irregular or out-of-bound memory accesses performed by CUDA kernels.
CUDA Kernel Debugging

• Primary tool for the job: **cuda-gdb**
 – Intentionally built to be similar to the host debugging tool gdb
 – Requires compilation with special flags to be useful:
 $ nvcc -g -G foo.cu -o foo

• Once an application is compiled in debug mode, running it under **cuda-gdb** is possible using:
 $ cuda-gdb foo
 ...
 (cuda-gdb)
CUDA Kernel Debugging

• \texttt{cuda-gdb} uses most of the same commands as \texttt{gdb}

• One main difference is the idea of CUDA Focus, or the current thread that \texttt{cuda-gdb} is focused on and against which all commands run
 – Query the current focus using:

 \begin{verbatim}
 (cuda-gdb) cuda thread lane warp block
 sm grid device kernel
 \end{verbatim}
 – Example of setting focus to the 128th thread in the current block:

 \begin{verbatim}
 (cuda-gdb) cuda thread (128)
 \end{verbatim}
CUDA Kernel Debugging

• `printf` is another form of CUDA Kernel Debugging
 – Only available on devices of compute capability 2.0 or higher

• Prints are buffered on the device and periodically transferred back to the host for display
 – Size of this buffer configurable with `cudaSetDeviceLimit`

• Buffer contents are transferred to the host after any CUDA kernel launch, any host-side explicit synchronization, any synchronous memory copies
CUDA Memory Debugging

• Memory Debugging detects memory errors in CUDA kernels that are likely indicative of bugs in the code
 – For example: out-of-bounds memory accesses

• There is a single tool for Memory Debugging, cuda-memcheck, which contains two utilities:
 – The memcheck tool
 – The racecheck tool
CUDA Memory Debugging

• The compilation process for `cuda-memcheck` is more involved than for `cuda-gdb`
 – Building with full debug options affects performance, which may make memory errors harder to hit
 – Applications should always be compiled with `-lineinfo`
 – Applications should also be compiled to include symbol information, but doing this varies by platform
 • Linux: `-Xcompiler -rdynamic`
 • Windows: `-Xcompiler /Zi`
 • ...

77
Once the application is compiled, `memcheck` can be used to check for 6 different types of memory errors:

1. **Memory Access Error**: Out-of-bounds or misaligned memory access
2. **Hardware Exception**: Error reported by hardware
3. **malloc/free Errors**: Improper use of CUDA dynamic memory allocation
4. **CUDA API Errors**: Any error return code from a CUDA API call
5. **cudaMalloc Memory Leaks**: `cudaMalloc` allocations that are not `cudaFree`'d
6. **Device Heap Memory Leaks**: Dynamic memory allocations that are never freed
CUDA Memory Debugging

- The two `cuda-memcheck` utilities offer very different capabilities:
 - `memcheck` performs a wide range of memory correctness checks
 - `racecheck` verifies that `__shared__` memory usage is correct in an application, a particularly difficult task to perform manually

- `cuda-memcheck` offers a more automated approach to debugging than `cuda-gdb`
CUDA Error Handling

- Proper error handling is an important part of robust CUDA deployment
 - Every CUDA function returns an error code that must be checked
 - If asynchronous operations are used, this error may be a result of a different asynchronous operation failing
 - Return code of \texttt{cudaSuccess} indicates success

- CUDA also offers a number of error-handling functions
CUDA Error Handling

cudaError_t cudaGetLastError();
– Retrieve the latest CUDA error, clearing the CUDA runtime’s internal error state to be cudaSuccess

cudaError_t cudaPeekLastError();
– Retrieve the latest CUDA error, but do not clear the CUDA runtime’s internal error state

const char *cudaGetErrorString(cudaError_t error);
– Fetch a human-readable string for the provided error
Suggested Readings

1. Chapter 10 in *Professional CUDA C Programming*

