
Lecture:	Manycore GPU	Architectures	and	
Programming,	Part	3

-- Streaming,	Library	and	Tuning

1

CSCE	569	Parallel	Computing

Department	of	Computer	Science	and	Engineering
Yonghong Yan

yanyh@cse.sc.edu
https://passlab.github.io/CSCE569/

Manycore GPU	Architectures	and	
Programming:	Outline

• Introduction
– GPU	architectures,	GPGPUs,	and	CUDA
• GPU	Execution	model
• CUDA	Programming	model
• Working	with	Memory	in	CUDA
– Global	memory,	shared	and	constant	memory
• Streams	and	concurrency
• CUDA	instruction	intrinsic	and	library
• Performance,	profiling,	debugging,	and	error	handling
• Directive-based	high-level	programming	model
– OpenACC and	OpenMP

2

Offloading	Processing	Flow

1. Copy	input	data	from	CPU	memory	to	
GPU	memory

PCI	Bus

3

Offloading	Processing	Flow

1. Copy	input	data	from	CPU	memory	to	
GPU	memory

2. Load	GPU	program	and	execute,
caching	data	on	chip	for	performance

PCI	Bus

4

Offloading	Processing	Flow

1. Copy	input	data	from	CPU	memory	to	
GPU	memory

2. Load	GPU	program	and	execute,
caching	data	on	chip	for	performance

3. Copy	results	from	GPU	memory	to	
CPU	memory

PCI	Bus

5

Overlapping	Communication	and	Computation

GPU

PCIe Bus
Copy Copy Copy Copy Copy

Compute Compute Compute Compute

• Three	sequential	steps	for	a	single	kernel	execution
• Multiple	kernels
– Asynchrony	is	a	first-class	citizen	of	most	GPU	programming	

frameworks
– Computation-communication	overlap	is	a	common	technique	

in	GPU	programming

6

Abstract	Concurrency

• Different	kinds	of	action	overlap	are	possible	in	CUDA?
1. Overlapped	host	computation	and	device	computation
2. Overlapped	host	computation	and	host-device	data	

transfer
3. Overlapped	host-device	data	transfer	and	device	

computation
4. Concurrent	device	computation

• CUDA	Streams	to	achieve	each	of	these	types	of	overlap

7

CUDA	Streams

• CUDA	Streams:	a	FIFO	queue	of	CUDA	actions	to	be	
performed
– Placing	a	new	action	at	the	head	of	a	stream	is	asynchronous
– Executing	actions	from	the	tail	as	CUDA	resources	allow
– Every	action	(kernel	launch,	cudaMemcpy,	etc)	runs	in	an	

implicit	or	explicit	stream

CUDA	Stream

CUDA	
Application

CUDA	Runtime	&	
GPUKernel cudaMemcpy cudaMemcpy

head	 tail

8

CUDA	Streams

• Two	types	of	streams	in	a	CUDA	program
– The	implicitly declared	stream	(NULL	stream)
– Explicitly declared	streams	(non-NULL	streams)

• Up	until	now,	all	code	has	been	using	the	NULL	stream	by	
default

cudaMemcpy(...);
kernel<<<...>>>(...);
cudaMemcpy(...);

• Non-NULL	streams	require	manual	allocation	and	
management	by	the	CUDA	programmer

9

CUDA	Streams

• To	create	a	CUDA	stream:
cudaError_t cudaStreamCreate(cudaStream_t *stream);

• To	destroy	a	CUDA	stream:
cudaError_t cudaStreamDestroy(cudaStream_t stream);

• To	wait	for	all	actions	in	a	CUDA	stream	to	finish:
cudaError_t cudaStreamSynchronize(cudaStream_t stream);

• To	check	if	all	actions	in	a	CUDA	stream	have	finished:
cudaError_t cudaStreamQuery(cudaStream_t stream);

10

CUDA	Streams

• cudaMemcpyAsync:	Asynchronous	memcpy
cudaError_t cudaMemcpyAsync(void *dst, const void *src,
size_t count, cudaMemcpyKind kind, cudaStream_t stream = 0);

• cudaMemcpyAsync does	the	same	as	cudaMemcpy,	
but	may	return	before	the	transfer	is	actually	complete

• Pinned	host	memory	is	a	requirement	for	
cudaMemcpyAsync
– Memory	that	is	resident	in	physical	memory	pages,	and	cannot	

be	swapped	out,	also	referred	as	page-locked
• Recall	malloc normally	reserve	virtual	address	space	first	and	
then	actually	physical	pages	are	allocated

– DMA	is	involved	for	data	transfer
11

CUDA	Streams

• Performing	a	cudaMemcpyAsync:

int *h_arr, *d_arr;
cudaStream_t stream;
cudaMalloc((void **)&d_arr, nbytes);
cudaMallocHost((void **)&h_arr, nbytes);
cudaStreamCreate(&stream);

cudaMemcpyAsync(d_arr, h_arr, nbytes,
cudaMemcpyHostToDevice, stream);
...
cudaStreamSynchronize(stream);
cudaFree(d_arr); cudaFreeHost(h_arr);
cudaStreamDestroy(stream);

page-locked	memory	allocation

Call	return	before	transfer	complete

Do	something	while	data	is	being	moved

Sync	to	make	sure	operations	complete
12

CUDA	Streams

• Associate	kernel	launches	with	a	non-NULL	stream

kernel<<<nblocks, threads_per_block,
smem_size, stream>>>(...);

• The	effects	of	cudaMemcpyAsync and	kernel	launching
– Operations	are	put	in	the	stream	queue	for	execution
– Actually	operations	may	not	happen	yet

• Host-side	timer	to	time	those	operations
– Not	the	actual	time	of	the	operations

13

• Vector	sum	example,	A	+	B	=	C

• Partition	the	vectors	and	use	CUDA	streams	to	overlap	copy	
and	compute

CUDA	Streams

Copy	A Copy	B vector_sum<<<...>>> Copy	CNULL
stream

A B v_s C

A B v_s C

A B v_s C

A B v_s C

Stream A

Stream B

Stream C

Stream D

14

• How	can	this	be	implemented	in	code?
cudaStream_t stream[nstreams];
/* initialize stream here */
int eles_per_stream = N / nstreams;

for (int i = 0; i < nstreams; i++) {
int offset = i * eles_per_stream;
cudaMemcpyAsync(&d_A[offset], &h_A[offset], eles_per_stream *

sizeof(int), cudaMemcpyHostToDevice, streams[i]);
cudaMemcpyAsync(&d_B[offset], &h_B[offset], eles_per_stream *

sizeof(int), cudaMemcpyHostToDevice, streams[i]);
……
vector_sum<<<..., streams[i]>>>(d_A + offset,

d_B + offset, d_C + offset);
cudaMemcpyAsync(&h_C[offset], &d_C[offset], eles_per_stream *

sizeof(int), cudaMemcpyDeviceToHost, streams[i]);
}

for (int i = 0; i < nstreams; i++)
cudaStreamSynchronize(streams[i]);

CUDA	Streams

15

• Timing	asynchronous	operations
– Host-side	timer:	only	measure	the	time	for	the	call,	not	the	actual	

time	for	the	data	movement	or	kernel	execution

• Events	in	streams,	which	mark	specific	points	in	stream	
execution

• Events	are	manually	created	and	destroyed:
cudaError_t cudaEventCreate(cudaEvent_t

*event);
cudaError_t cudaEventDestroy(cudaEvent_t

*event);

CUDA	Events

Copy	A Copy	B vector_sum<<<...>>> Copy	C

Event

16

• To	add	an	event	to	a	CUDA	stream:
cudaError_t cudaEventRecord(cudaEvent_t event,

cudaStream_t stream);

– Eventmarks	the	point-in-time	after	all	preceding	actions	in	
stream complete,	and	before	any	actions	added	after	
cudaEventRecord run

• Host	to	wait	for	some	CUDA	actions	to	finish
cudaError_t cudaEventSynchronize(cudaEvent_t event);

– Wait	for	all	the	operations	before	this	events	to	complete,	but	not	
those	after

CUDA	Events

Copy	A Copy	B vector_sum<<<...>>> Copy	C

Event

17

• Check	if	an	event	has	been	reached	without	waiting	for	it:

cudaError_t cudaEventQuery(cudaEvent_t
event);

• Get	the	elapsed	milliseconds	between	two	events:
cudaError_t cudaEventElapsedTime(float

*ms, cudaEvent_t start, cudaEvent_t stop);

CUDA	Events

Copy	A Copy	B vector_sum<<<...>>> Copy	C

start stop
18

• In	codes:

float time;
cudaEvent_t start, stop;
cudaEventCreate(&start); cudaEventCreate(&stop);

cudaEventRecord(start);
kernel<<<grid, block>>>(arguments);
cudaEventRecord(stop);
cudaEventSynchronize(stop);

cudaEventElapsedTime(&time, start, stop);
cudaEventDestroy(start);
cudaEventDestroy(stop);

CUDA	Events

19

Implicit	and	Explicit	Synchronization

• Two	types	of	host-device	synchronization:
– Implicit	synchronization	causes	the	host	to	wait	on	the	GPU,	

but	as	a	side	effect	of	other	CUDA	actions
– Explicit	synchronization	causes	the	host	to	wait	on	the	GPU	

because	the	programmer	has	asked	for	that	behavior

20

• Five	CUDA	operations	that	include	implicit	synchronization:
1. A	pinned	host	memory	allocation	(cudaMallocHost,

cudaHostAlloc)
2. A	device	memory	allocation	(cudaMalloc)
3. A	device	memset (cudaMemset)
4. A	memory	copy	between	two	addresses	on	the	same	

device	(cudaMemcpy(...,
cudaMemcpyDeviceToDevice))

5. A	modification	to	the	L1/shared	memory	configuration	
(cudaThreadSetCacheConfig,
cudaDeviceSetCacheConfig)

Implicit	and	Explicit	Synchronization

21

• Four	ways	to	explicitly	synchronize	in	CUDA:
1. Synchronize	on	a	device

cudaError_t cudaDeviceSynchronize();

2. Synchronize	on	a	stream
cudaError_t cudaStreamSynchronize();

3. Synchronize	on	an	event
cudaError_t cudaEventSynchronize();

4. Synchronize	across	streams	using	an	event
cudaError_t cudaStreamWaitEvent(cudaStream_t
stream, cudaEvent_t event);

Implicit	and	Explicit	Synchronization

22

• cudaStreamWaitEvent adds	inter-stream	
dependencies
– Causes	the	specified	stream to	wait	on	the	specified	event

before	executing	any	further	actions
– event does	not	need	to	be	an	event	recorded	in	stream

cudaEventRecord(event, stream1);
...
cudaStreamWaitEvent(stream2, event);

...

– No	actions	added	to	stream2	after	the	call	to	
cudaStreamWaitEvent will	execute	until	event	is	satisfied

Implicit	and	Explicit	Synchronization

23

Suggested	Readings

1. Chapter	6	in	Professional	CUDA	C	Programming
2. Justin	Luitjens.	CUDA	Streams:	Best	Practices	and	Common	

Pitfalls.	GTC	2014.	http://on-
demand.gputechconf.com/gtc/2014/presentations/S4158-
cuda-streams-best- practices-common-pitfalls.pdf

3. Steve	Rennich.	CUDA	C/C++	Streams	and	Concurrency.	
2011.	http://on-demand.gputechconf .com/gtc-
express/2011/presentations/StreamsAndConcurrencyWeb
inar.pdf

24

Manycore GPU	Architectures	and	
Programming:	Outline

• Introduction
– GPU	architectures,	GPGPUs,	and	CUDA
• GPU	Execution	model
• CUDA	Programming	model
• Working	with	Memory	in	CUDA
– Global	memory,	shared	and	constant	memory
• Streams	and	concurrency
• CUDA	instruction	intrinsic	and	library
• Performance,	profiling,	debugging,	and	error	handling
• Directive-based	high-level	programming	model
– OpenACC and	OpenMP

25

CUDA	Libraries

• Pre-packaged	and	expertly-optimized	functions	that	
implement	commonly	useful	operations.
– Vector	addition,	matrix	vector,	matrix	matrix,	FFT,	etc
• Advantages	of	CUDA	Libraries?
– Support	a	wide	range	of	application	domains
– Highly	usable,	high-level	APIs	that	are	familiar	to	domain	

experts
– Tuned	by	CUDA	experts	to	perform	well	across	platforms	and	

datasets
– Often	offer	the	quickest	route	for	porting,	simply	swap	out	API	

calls
– Low	maintenance,	developer	of	the	library	takes	on	

responsibility	of	bug	fixes	and	feature	requests

26

CUDA	Libraries

27
https://developer.nvidia.com/gpu-accelerated-libraries

Workflow	to	Use	CUDA	Library

1. Create	a	library-specific	handle	that	manages	contextual	
information	useful	for	the	library’s	operation.	
– Many	CUDA	Libraries	have	the	concept	of	a	handle	which	

stores	opaque	library-specific	information	on	the	host	which	
many	library	functions	access

– Programmer’s	responsibility	to	manage	this	handle
– For example: cublasHandle_t,	cufftHandle,	
cusparseHandle_t,	curandGenerator_t

1. Allocate	device	memory	for	inputs	and	outputs	to	the	
library	function.
– Use cudaMalloc as usual

28

Common	Library	Workflow

3. If	inputs	are	not	already	in	a	library-supported	format,	
convert	them	to	be	accessible	by	the	library.	
– Many	CUDA	Libraries	only	accept	data	in	a	specific	format	
– For	example:	column-major	vs.	row-major	arrays

4. Populate	the	pre-allocated	device	memory	with	inputs	in	a	
supported	format.	
– In	many	cases,	this	step	simply	implies	a	cudaMemcpy or	one	

of	its	variants	to	make	the	data	accessible	on	the	GPU
– Some	libraries	provide	custom	transfer	functions,	for	example:	
cublasSetVector optimizes	strided copies	for	the	CUBLAS	
library

29

Common	Library	Workflow

5. Configure	the	library	computation	to	be	executed.	
– In	some	libraries,	this	is	a	no-op
– Others	require	additional	metadata	to	execute	library	

computation	correctly
– In	some	cases	this	configuration	takes	the	form	of	extra	

parameters	passed	to	library	functions,	others	set	fields	in	the	
library	handle

6. Execute	a	library	call	that	offloads	the	desired	
computation	to	the	GPU.	
– No	GPU-specific	knowledge	required

30

Common	Library	Workflow

7. Retrieve	the	results	of	that	computation	from	device	
memory,	possibly	in	a	library-determined	format.	
– Again,	this	may	be	as	simple	as	a	cudaMemcpy or	require	a	

library-specific	function

8. If	necessary,	convert	the	retrieved	data	to	the	application’s	
native	format.	
– If	a	conversion	to	a	library-specific	format	was	necessary,	this	

step	ensures	the	application	can	now	use	the	calculated	data
– In	general,	it	is	best	to	keep	the	application	format	and	library	

format	the	same,	reducing	overhead	from	repeated	
conversions

31

Common	Library	Workflow

9. Release	CUDA	resources.	
– Includes	the	usual	CUDA	cleanup	(cudaFree,	
cudaStreamDestroy,	etc)	plus	any	library-specific	cleanup

10.Continue	with	the	remainder	of	the	application.	

32

Common	Library	Workflow

33

• Not	all	libraries	follow	this	workflow,	and	not	all	libraries	
require	every	step	in	this	workflow
– In	fact,	for	many	libraries	many	steps	are	skipped
– Keeping	this	workflow	in	mind	will	help	give	you	context	on	

what	the	library	might	be	doing	behind	the	scenes	and	where	
you	are	in	the	process

• Next,	we’ll	take	a	look	at	two	commonly	useful	libraries
– Try	to	keep	the	common	workflow	in	mind	while	we	work	with	

them

cuBLAS

• cuBLAS is	a	port	of	a	popular	linear	algebra	library,	BLAS

• cuBLAS (like	BLAS)	splits	its	subroutines	into	multiple	levels	
based	on	data	types	processed:
– Level	1:	vector-only	operations	(e.g.	vector	addition)
– Level	2:	matrix-vector	operations	(e.g.	matrix-vector	

multiplication)
– Level	3:	matrix-matrix	operations	(e.g.	matrix	multiplication)

34

cuBLAS Idiosyncracies

• For	legacy	compatibility,	cuBLAS operates	on	column-major	
matrices

• cuBLAS also	has	a	legacy	API	which	was	dropped	since	
CUDA	4.0,	this	lecture	will	use	the	new	cuBLAS API
– If	you	find	cuBLAS code	that	doesn’t	quite	match	up,	you	may	

be	looking	at	the	old	cuBLAS API

3 0 0
6 0 0
0 2 1

3 6 0 0 0 2 0 0 1

35

cuBLAS Data	Management

• Device	memory	in	cuBLAS is	allocated	as	you’re	used	to:	
cudaMalloc

• Transferring	data	to/from	the	device	uses	cuBLAS-specific	
functions:	
– cublasGetVector/cublasSetVector
– cublasGetMatrix/cublasSetMatrix

36

cuBLAS Data	Management

• Example:
cublasStatus_t cublasSetVector(int n,
int elemSize, const void *x, int incx,
void *y, int incy);

where:
• n is	the	number	of	elements	to	transfer	to	the	GPU
• elemSize is	the	size	of	each	element	(e.g.	sizeof(int))
• x is	the	vector	on	the	host	to	copy	from
• incx is	a	stride	in	x of	the	array	cells	to	transfer	to
• y is	the	vector	on	the	GPU	to	copy	to
• incy is	a	stride	in	y of	the	array	cells	to	transfer	to

37

cuBLAS Data	Management

• Example:
cublasSetVector(5, sizeof(int), h_x, 3,
d_x, 2);

h_x

d_x

38

cuBLAS Data	Management

• Similarly:
cublasStatus_t cublasSetMatrix(int rows,
int cols, int elemSize,

const void *A, int lda, void *B, int
ldb);

where:
• rows is	the	number	of	rows	in	a	matrix	to	copy
• cols is	the	number	of	cols	in	a	matrix	to	copy
• elemSize is	the	size	of	each	cell	in	the	matrix	(e.g.	
sizeof(int))
• A is	the	source	matrix	on	the	host
• lda is	the	number	of	rows	in	the	underlying	array	for	A
• B is	the	destination	matrix	on	the	GPU
• ldb is	the	number	of	rows	in	the	underlying	array	for	B

39

cuBLAS Data	Management

• Similarly:
cublasSetMatrix(3, 3, sizeof(int), h_A,
4, d_A, 5);

4

5

40

cuBLAS Example

• Matrix-vector	multiplication
– Uses	6	of	the	10	steps	in	the	common	library	workflow:

1. Create	a	cuBLAS handle	using	cublasCreateHandle
2. Allocate	device	memory	for	inputs	and	outputs	using	

cudaMalloc
3. Populate	device	memory	using	cublasSetVector,	

cublasSetMatrix
4. Call	cublasSgemv to	run	matrix-vector	multiplication	on	

the	GPU
5. Retrieve	results	from	the	GPU	using	cublasGetVector
6. Release	CUDA	and	cuBLAS resources	using	cudaFree,	

cublasDestroy
41

cuBLAS Example

• You	can	build	and	run	the	example	cublas.cu:

cublasCreate(&handle);
cudaMalloc((void **)&dA, sizeof(float) * M * N);
cudaMalloc((void **)&dX, sizeof(float) * N);
cudaMalloc((void **)&dY, sizeof(float) * M);

cublasSetVector(N, sizeof(float), X, 1, dX, 1);
cublasSetVector(M, sizeof(float), Y, 1, dY, 1);
cublasSetMatrix(M, N, sizeof(float), A, M, dA, M);

cublasSgemv(handle, CUBLAS_OP_N, M, N, &alpha, dA, M, dX, 1,
&beta, dY, 1);

cublasGetVector(M, sizeof(float), dY, 1, Y, 1);

/* for sgemm */
cublasSgemm(handle,	CUBLAS_OP_N,	CUBLAS_OP_N,	matrix_size.uiWB,	matrix_size.uiHA,	
matrix_size.uiWA,	&alpha,	d_B,	matrix_size.uiWB,	d_A,	matrix_size.uiWA,	&beta,	d_C,	
matrix_size.uiWA)

42

cuBLAS Portability

• Porting	to	cuBLAS from	BLAS	is	a	straightforward	process.	In	
general,	it	requires:
– Adding	device	memory	allocation/freeing	(cudaMalloc,	
cudaFree)

– Adding	device	transfer	functions	(cublasSetVector,	
cublasSetMatrix,	etc)

– Transform	library	routine	calls	from	BLAS	to	cuBLAS (e.g.	
cblas_sgemvè cublasSgemv)

43

cuBLAS Portability

• Some	common	optimizations	following	a	naive	BLAS	è
cuBLAS port	are:
– Reusing	device	memory	allocations
– Removing	redundant	data	transfers	from	and	to	the	device
– Adding	streamed	execution	using	cublasSetStream

44

cuBLAS Summary

• cuBLAS makes	accelerating	legacy	BLAS	applications	simple	
and	easy
– Very	little	added	code
– Straightforward	mapping	from	BLAS	routines	to	cuBLAS

routines
– Flexible	API	improves	portability

• For	new	linear	algebra	applications,	cuBLAS offers	a	high-
performance	alternative	to	BLAS
– High-performance	kernels	with	very	little	programmer	time

45

cuFFT

• cuFFT offers	an	optimized	implementation	of	the	fast	
Fourier	transform

46

cuFFT Configuration

47

• In	cuFFT terminology,	plans	==	handles
– cuFFT plans	define	a	single	FFT	transformation	to	be	performed

• cuFFT uses	plans	to	derive	the	internal	memory	allocations,	
transfers,	kernels	required	to	implement	the	desired	transform

• Plans	are	created	with:
cufftResult cufftPlan1d(cufftHandle *plan, int nx, cufftType
type, int batch);

cufftResult cufftPlan2d(cufftHandle *plan, int nx, int ny,
cufftType type);

cufftResult cufftPlan3d(cufftHandle *plan, int nx, int ny, int
nz, cufftType type);

cuFFT Configuration

48

• cufftType refers	to	the	data	types	of	a	transformation,	
for	example:
– Complex-to-complex:	CUFFT_C2C
– Real-to-complex:	CUFFT_R2C
– Complex-to-real:	CUFFT_C2R

cuFFT Example

• A	complex-to-complex	1D	cuFFT plan	and	executing	it,	using	
6	of	the	10	steps	in	the	common	library	workflow:

1. Create	and	configure	a	cuFFT plan
2. Allocate	GPU	memory	for	the	input	samples	and	output	

frequencies	using	cudaMalloc
3. Populate	GPU	memory	with	input	samples	using	

cudaMemcpy
4. Execute	the	plan	using	a	cufftExec* function
5. Retrieve	the	calculated	frequencies	from	GPU	memory	

using	cudaMemcpy
6. Release	CUDA	and	cuFFT resources	using	cudaFree,	

cufftDestroy
49

cuFFT Example

• You	can	build	and	run	an	example	cufft.cu:

cufftPlan1d(&plan, N, CUFFT_C2C, 1);

cudaMalloc((void **)&dComplexSamples, sizeof(cufftComplex) *
N);

cudaMemcpy(dComplexSamples, complexSamples,
sizeof(cufftComplex) * N, cudaMemcpyHostToDevice);

cufftExecC2C(plan, dComplexSamples, dComplexSamples,
CUFFT_FORWARD);

cudaMemcpy(complexFreq, dComplexSamples, sizeof(cufftComplex) *
N, cudaMemcpyDeviceToHost);

50

cuFFT Summary

• Like	cuBLAS,	cuFFT offers	a	high-level	and	usable	API	for	
porting	legacy	FFT	applications	or	writing	new	ones
– cuFFT’s API	is	deliberately	similar	to	industry-standard	library	

FFTW	to	improve	programmability
– Offers	higher	performance	for	little	developer	effort

51

Drop-In	CUDA	Libraries

• Drop-In	CUDA	Libraries	allow	seamless	integration	of	CUDA	
performance	with	existing	code	bases
– Full	compatibility	with	industry-standard	libraries,	expose	the	

same	external	APIs
– BLAS	è NVBLAS
– FFTW	è cuFFTW

• Two	ways	to	use	Drop-In	Libraries:
– Re-link	to	CUDA	Libraries
– LD_PRELOAD CUDA	Libraries	before	their	host	equivalents

52

Drop-In	CUDA	Libraries

• Re-linking	legacy	applications	to	CUDA	Libraries:
– Suppose	you	have	a	legacy	application	that	relies	on	BLAS:

$ gcc app.c –lblas –o app
– Recompiling	with	NVBLAS	linked	will	automatically	accelerate	

all	BLAS	calls
$ gcc app.c –lnvblas –o app

• Alternatively,	simply	set	LD_PRELOAD when	executing	the	
application:

$ env LD_PRELOAD=libnvblas.so ./app

53

Survey	of	CUDA	Library	Performance

54

• We’ve	seen	that	cuBLAS and	cuFFT are	high-level,	
programmable	libraries	(like	their	host	counterparts)
– No	CUDA-specific	concepts	(e.g.	thread	blocks,	pinned	

memory,	etc)

• Let’s	do	a	brief	survey	of	CUDA	Library	performance	to	see	
the	performance	improvements	possible
– Focus	on	the	same	libraries	(cuBLAS and	cuFFT)	but	similar	

data	on	other	libraries	is	available	in	the	book	and	online

Survey	of	CUDA	Library	Performance

55

Survey	of	CUDA	Library	Performance

56

Suggested	Readings

1. All	sections	in	Chapter	8	of	Professional	CUDA	C	Programming except	
Using	OpenACC

2. cuSPARSE User	Guide.	2014.	http://docs.nvidia.com/cuda/cusparse/	
3. cuBLAS User	Guide.	2014.	http://docs.nvidia.com/cuda/cublas/	
4. cuRAND User	Guide.	2014.	http://docs.nvidia.com/cuda/curand/	
5. cuFFT User	Guide.	2014.	http://docs.nvidia.com/cuda/cufft/	
6. CUDA	Toolkit	5.0	Performance	Report.	2013.	http://on-

demand.gputechconf.com/	gtc-express/2013/presentations/cuda--
5.0-math-libraries-performance.pdf	

57

Manycore GPU	Architectures	and	
Programming:	Outline

• Introduction
– GPU	architectures,	GPGPUs,	and	CUDA
• GPU	Execution	model
• CUDA	Programming	model
• Working	with	Memory	in	CUDA
– Global	memory,	shared	and	constant	memory
• Streams	and	concurrency
• CUDA	instruction	intrinsic	and	library
• Performance,	profiling,	debugging,	and	error	handling
• Directive-based	high-level	programming	model
– OpenACC and	OpenMP

58

GPU	Parallelization

• A many-faceted	process
– Performance	varies	dramatically	depending	on	the	

implementation	of	the	same	algorithms
• Naïve	to	highly	optimized	version

• Many	types	of	optimizations	for	GPUs
– Shared	memory
– Constant	memory
– Global	memory	access	patterns
– Warp	shuffle	instructions
– Computation-communication	overlap
– CUDA	compiler	flags,	e.g.	loop	unrolling,	etc
– Increasing	parallelism
– ...

59

Optimization	Opportunities

• Kernel-level	optimization:
– Exposing	Sufficient	Parallelism
– Optimizing	Memory	Access
– Optimizing	Instruction	Execution

• Host-GPU	optimization
– E.g.	kernel	and	data	transfer	overlap	using	CUDA	streams

• Profile-driven	optimization	improves	optimizations	
selection

60

Kernel-Level	Optimization

• Exposing	Sufficient	Parallelism
– Increase	the	amount	of	concurrent	work	on	the	GPU	so	as	to	

saturate	instruction	and	memory	bandwidth

• Can	be	accomplished	by:
1. More	concurrently	active	warps	per	SM
2. More	independent	work	assigned	to	each	thread

Warp-Level	
Parallelism

Instruction-Level	
Parallelism

61

Kernel-Level	Optimization

• Increasing	the	number	of	warps	per	SM/thread	block	does	
not	guarantee	performance	improvement
– Result	in	fewer	per-SM	resources	assigned	to	each	thread	(e.g.	

registers,	shared	memory)

Less parallelism, more per-thread
resources

More parallelism, smaller per-thread
resources

62

Kernel-Level	Optimization

• Creating	more	independent	work	per	thread
– loop	unrolling	or	other	code	transformations	that	expose	

instruction-level	parallelism,	
– But	may	also	increase	per-thread	resource	requirements

int sum = 0;
for (int i = 0; i < 4; i++)
{

sum += a[i];
}

int i1 = a[0];
int i2 = a[1];
int i3 = a[2];
int i4 = a[4];
int sum = i1 + i2 + i3 + i4;

Requires 2 registers (sum, i), no
instruction-level parallelism Requires 5 registers (i1, i2, i3, i4,

sum), four-way instruction-level
parallelism

63

Kernel-Level	Optimization

• Optimizing	memory	access	to	maximize:
– Memory	bandwidth	utilization	(efficiency	of	memory	access	

patterns)
– Memory	access	concurrency	(sufficient	memory	requests	to	

hide	memory	latency)

64

Kernel-Level	Optimization

• Aligned,	coalesced	global	and	shared	memory	accesses	
optimize	memory	bandwidth	utilization
– Constant	memory	prefers	a	broadcast	access	pattern

65

Kernel-Level	Optimization

• Optimizing	Instruction	Execution	focuses	on:
– Hiding	instruction	latency	by	keeping	a	sufficient	number	of	

warps	active
– Avoiding	divergent	execution	paths	within	warps
• If	inside	a	kernel

• Experimenting	with	thread	execution	configuration	can	
produce	unexpected	performance	gains	from	more	or	less	
active	warps

• Divergent	execution	within	a	warp	produces	reduced	
parallelism	as	warp	execution	of	multiple	code	paths	is	
serialized

66

Profile-Driven	Optimization

• Profile-driven	optimization	is	an	iterative	process	to	
optimize	program	based	on	quantitative profiling	info
– As	we	apply	optimization	techniques,	we	analyze the	results	

using	nvprof and	decide	if	they	are	beneficial

67

Determine
performance

inhibitors

Identify hotspots

Gather profiling
information

Optimize

Repeat

Profile-Driven	Optimization

68

• The	key	challenge	in	profile-driven	optimization	is	to	
determine	performance	inhibitors	in	hotspots
– nvvp and	nvprof are	invaluable	tools	for	this

Profile-Driven	Optimization

• nvprof profiling	modes:
– Summary	Mode:	default	mode,	displays	execution	time	

information	on	high-level	actions	such	as	kernels	or	data	
transfers

– Trace	Mode:	Provides	a	timeline	of	CUDA	events	or	actions	in	
chronological	order

– Event/Metric	Summary	Mode:	Aggregates	event/metric	counts	
across	all	kernel	invocations

– Event/Metric	Trace	Mode:	Displays	event/metric	counts	for	
each	kernel	invocation

69

Profile-Driven	Optimization

• The	NVIDIA	Visual	Profiler	(nvvp)	is	also	a	powerful	tool	for	
guiding	profile-driven	optimization
– Offers	a	number	of	views	to	inspect	different	parts	of	a	CUDA	

application

70

CUDA	Debugging

• An	important	part	of	CUDA	software	development	is	the	
ability	to	debug	CUDA	applications

• CUDA	offers	a	number	of	debugging	tools,	split	into	two	
categories:
– Kernel	Debugging
– Memory	Debugging

71

CUDA	Debugging

• Kernel	Debugging	tools	help	us	to	analyze the	correctness	
of	running	CUDA	kernels	by	inspecting	running	application	
state

• Memory	Debugging	Tools	help	us	detect	application	bugs	
by	observing	irregular	or	out-of-bound	memory	accesses	
performed	by	CUDA	kernels

72

CUDA	Kernel	Debugging

• Primary	tool	for	the	job:	cuda-gdb
– Intentionally	built	to	be	similar	to	the	host	debugging	tool	gdb
– Requires	compilation	with	special	flags	to	be	useful:

$ nvcc –g –G foo.cu -o foo

• Once	an	application	is	compiled	in	debug	mode,	running	it	
under	cuda-gdb is	possible	using:

$ cuda-gdb foo
...
(cuda-gdb)

73

CUDA	Kernel	Debugging

• cuda-gdb uses	most	of	the	same	commands	as	gdb

• One	main	difference	is	the	idea	of	CUDA	Focus,	or	the	
current	thread	that	cuda-gdb is	focused	on	and	against	
which	all	commands	run
– Query	the	current	focus	using:

(cuda-gdb) cuda thread lane warp block
sm grid device kernel

– Example	of	setting	focus	to	the	128th thread	in	the	current	
block:

(cuda-gdb) cuda thread (128)

74

CUDA	Kernel	Debugging

• printf is	another	form	of	CUDA	Kernel	Debugging
– Only	available	on	devices	of	compute	capability	2.0	or	higher

• Prints	are	buffered	on	the	device	and	periodically	
transferred	back	to	the	host	for	display
– Size	of	this	buffer	configurable	with	cudaSetDeviceLimit

• Buffer	contents	are	transferred	to	the	host	after	any	CUDA	
kernel	launch,	any	host-side	explicit	synchronization,	any	
synchronous	memory	copies

75

CUDA	Memory	Debugging

• Memory	Debugging	detects	memory	errors	in	CUDA	kernels	
that	are	likely	indicative	of	bugs	in	the	code
– For	example:	out-of-bounds	memory	accesses

• There	is	a	single	tool	for	Memory	Debugging,	cuda-
memcheck,	which	contains	two	utilities:
– The	memcheck tool
– The	racecheck tool

76

CUDA	Memory	Debugging

• The	compilation	process	for	cuda-memcheck is	more	
involved	than	for	cuda-gdb
– Building	with	full	debug	options	affects	performance,	which	

may	make	memory	errors	harder	to	hit
– Applications	should	always	be	compiled	with	-lineinfo
– Applications	should	also	be	compiled	to	include	symbol	

information,	but	doing	this	varies	by	platform
• Linux:	-Xcompiler –rdynamic
• Windows:	-Xcompiler /Zi
• ...

77

CUDA	Memory	Debugging

• Once	the	application	is	compiled,	memcheck can	be	used	
to	check	for	6	different	types	of	memory	errors:
1. Memory	Access	Error:	Out-of-bounds	or	misaligned	

memory	access
2. Hardware	Exception:	Error	reported	by	hardware
3. malloc/free Errors:	Improper	use	of	CUDA	dynamic	

memory	allocation
4. CUDA	API	Errors:	Any	error	return	code	from	a	CUDA	API	

call
5. cudaMalloc Memory	Leaks:	cudaMalloc allocations	that	

are	not	cudaFree’d
6. Device	Heap	Memory	Leaks:	Dynamic	memory	allocations	

that	are	never	freed
78

CUDA	Memory	Debugging

• The	two	cuda-memcheck utilities	offer	very	different	
capabilities:
– memcheck performs	a	wide	range	of	memory	correctness	

checks
– racecheck verifies	that	__shared__memory	usage	is	

correct	in	an	application,	a	particularly	difficult	task	to	perform	
manually

• cuda-memcheck offers	a	more	automated	approach	to	
debugging	than	cuda-gdb

79

CUDA	Error	Handling

• Proper	error	handling	is	an	important	part	of	robust	CUDA	
deployment
– Every	CUDA	function	returns	an	error	code	that	must	be	

checked
– If	asynchronous	operations	are	used,	this	error	may	be	a	result	

of	a	different	asynchronous	operation	failing
– Return	code	of	cudaSuccess indicates	success

• CUDA	also	offers	a	number	of	error-handling	functions

80

CUDA	Error	Handling

cudaError_t cudaGetLastError();
– Retrieve	the	latest	CUDA	error,	clearing	the	CUDA	runtime’s	

internal	error	state	to	be	cudaSuccess

cudaError_t cudaPeekLastError();
– Retrieve	the	latest	CUDA	error,	but	do	not	clear	the	CUDA	

runtime’s	internal	error	state

const char *cudaGetErrorString(cudaError_t
error);
– Fetch	a	human-readable	string	for	the	provided	error

81

Suggested	Readings

1. Chapter	10	in	Professional	CUDA	C	Programming
2. Adam	DeConinck.	Introduction	to	the	CUDA	Toolkit	as	an	Application	Build	

Tool.	GTC	2013.	http://on-
demand.gputechconf.com/gtc/2013/webinar/cuda-toolkit-as-build- tool.pdf

3. Sandarbh Jain.	CUDA	Profiling	Tools.	GTC	2014.	http://on-
demand.gputechconf.com/	gtc/2014/presentations/S4587-cuda-profiling-
tools.pdf	

4. Thomas	Bradley.	GPU	Performance	Analysis	and	Optimization.	2012.	
http://people.maths .ox.ac.uk/gilesm/cuda/lecs/NV_Profiling_lowres.pdf

5. Julien Demouth.	CUDA	Optimization	with	NVIDIA	Nsight(TM)	Visual	Studio	
Edition:	A	Case	Study.	GTC	2014.	http://on-
demand.gputechconf.com/gtc/2014/presentations/S4160- cuda-
optimization-nvidia-nsight-vse-case-study.pdf

82

