
Lecture:	Manycore GPU	Architectures	
and	Programming,	Part	2

1

CSCE	569	Parallel	Computing

Department	of	Computer	Science	and	Engineering
Yonghong Yan

yanyh@cse.sc.edu
https://passlab.github.io/CSCE569/

Manycore GPU	Architectures	and	
Programming:	Outline

• Introduction
– GPU	architectures,	GPGPUs,	and	CUDA
• GPU	Execution	model
• CUDA	Programming	model
• Working	with	Memory	in	CUDA
– Global	memory,	shared	and	constant	memory
• Streams	and	concurrency
• CUDA	instruction	intrinsic	and	library
• Performance,	profiling,	debugging,	and	error	handling
• Directive-based	high-level	programming	model
– OpenACC and	OpenMP

2

How	is	the	GPU	controlled?

• The	CUDA	API	is	split	into:
– The	CUDA	Management	API
– The	CUDA	Kernel	API

• The	CUDA	Management	API	is	for	a	variety	of	operations
– GPU	memory	allocation,	data	transfer,	execution,	resource	

creation
– Mostly	regular	C	function	and	calls

• The	CUDA	Kernel	API	is	used	to	define	the	computation	to	
be	performed	by	the	GPU
– C	extensions

3

How	is	the	GPU	controlled?

• A CUDA	kernel:
– Defines	the	operations	to	be	performed	by	a	single	thread	on	

the	GPU
– Just	as	a	C/C++	function	defines	work	to	be	done	on	the	CPU
– Syntactically,	a	kernel	looks	like	C/C++	with	some	extensions

__global__ void kernel(...) {
...

}

– Every	CUDA	thread	executes	the	same	kernel	logic	(SIMT)
– Initially,	the	only	difference	between	threads	are	their	thread	

coordinates

4

How	are	GPU	threads	organized?

• CUDA thread	hierarchy
– Warp =	SIMT	Group
– Thread	Block	=	SIMT	Groups	that	run	

concurrently	on	an	SM
– Grid =	All	Thread	Blocks	created	by	the	same	

kernel	launch

• Launching	a	kernel	is	simple	and	similar	to	a	function	call.
– kernel	name	and	arguments
– #	of	thread	blocks/grid	and	#	of	threads/block	to	create:

kernel<<<nblocks,
threads_per_block>>>(arg1, arg2, ...);

5

How	are	GPU	threads	organized?

• In	CUDA,	only	thread	blocks	and	grids	are	first-class	
citizens	of	the	programming	model.	

• The	number	of	warps created	and	their	organization	are	
implicitly	controlled by	the	kernel	launch	configuration,	but	
never	set	explicitly.

kernel<<<nblocks,
threads_per_block>>>(arg1, arg2, ...);

kernel launch
configuration

6

How	are	GPU	threads	organized?

• GPU	threads	can	be	configured	in	one-,	two-,	or	three-
dimensional	layouts

– One-dimensional	blocks	and	grids:
int nblocks = 4;
int threads_per_block = 8;
kernel<<<nblocks, threads_per_block>>>(...);

7

Block 0 Block 1 Block 2 Block 3

How	are	GPU	threads	organized?

• GPU	threads	can	be	configured	in	one-,	two-,	or	three-
dimensional	layouts

– Two-dimensional	blocks	and	grids:
dim3 nblocks(2,2)
dim3 threads_per_block(4,2);
kernel<<<nblocks, threads_per_block>>>(...);

8

How	are	GPU	threads	organized?

• GPU	threads	can	be	configured	in	one-,	two-,	or	three-
dimensional	layouts

– Two-dimensional	grid	and	one-dimensional	blocks:
dim3 nblocks(2,2);
int threads_per_block = 8;
kernel<<<nblocks, threads_per_block>>>(...);

9

How	are	GPU	threads	organized?

• On	the	GPU,	the	number	of	blocks	and	threads	per	block	is	
exposed	through	intrinsic	thread	coordinate	variables:
– Dimensions
– IDs

Variable Meaning
gridDim.x, gridDim.y,

gridDim.z
Number	of	blocks	in	a	kernel	
launch.

blockIdx.x, blockIdx.y,
blockIdx.z

Unique	ID	of	the	block	that	
contains	the	current	thread.

blockDim.x, blockDim.y,
blockDim.z

Number	of	threads	in	each	block.

threadIdx.x, threadIdx.y,
threadIdx.z

Unique	ID	of	the	current	thread	
within	its	block.

10

How	are	GPU	threads	organized?

to	calculate	a	globally	unique	ID	for	a	thread	on	the	GPU	
inside	a	one-dimensional	grid	and	one-dimensional	block:
kernel<<<4, 8>>>(...);

__global__ void kernel(...) {

int tid = blockIdx.x * blockDim.x + threadIdx.x;

...

}

11

Block 0 Block 1 Block 2 Block 3

blockIdx.x = 2;
blockDim.x = 8;
threadIdx.x = 2;

0		1		2		3		4		5		6		7

8

How	are	GPU	threads	organized?

• Thread	coordinates	offer	a	way	to	differentiate	threads	and	
identify	thread-specific	input	data	or	code	paths.
– Link	data	and	computation,	a	mapping

__global__ void kernel(int *arr) {

int tid = blockIdx.x * blockDim.x + threadIdx.x;

if (tid < 32) {

arr[tid] = f(arr[tid]);

} else {

arr[tid] = g(arr[tid]);

}

12

code	path	for	threads	with	tid <	32

code	path	for	threads	with	tid >=	32

Thread	Divergence:	recall	that	useless	code	path	is	
executed,	but	then	disabled	in	SIMT	execution	model

How	is	GPU	memory	managed?

• CUDA	Memory	Management	API
– Allocation	of	GPU	memory
– Transfer	of	data	from	the	host	to	GPU	memory
– Free-ing GPU	memory
– Foo(int A[][N])	{	}

Host	Function CUDA	Analogue

malloc cudaMalloc

memcpy cudaMemcpy

free cudaFree

13

How	is	GPU	memory	managed?

cudaError_t cudaMalloc(void **devPtr,
size_t size);

– Allocate	size bytes	of	GPU	memory	and	store	their	address	
at	*devPtr

cudaError_t cudaFree(void *devPtr);
– Release	the	device	memory	allocation	stored	at	devPtr
– Must	be	an	allocation	that	was	created	using	cudaMalloc

14

How	is	GPU	memory	managed?

cudaError_t cudaMemcpy(
void *dst, const void *src, size_t count,
enum cudaMemcpyKind kind);
– Transfers	count	bytes	from	the	memory	pointed	to	by	src to	

dst
– kind can	be:
• cudaMemcpyHostToHost,
• cudaMemcpyHostToDevice,
• cudaMemcpyDeviceToHost,
• cudaMemcpyDeviceToDevice

– The	locations	of	dst and	src must	match	kind,	e.g.	if	kind is	
cudaMemcpyHostToDevice then	src must	be	a	host	array	and	
dst must	be	a	device	array

15

How	is	GPU	memory	managed?

void *d_arr, *h_arr;
h_addr = … ; /* init host memory and data */
// Allocate memory on GPU and its address is in d_arr
cudaMalloc((void **)&d_arr, nbytes);

// Transfer data from host to device
cudaMemcpy(d_arr, h_arr, nbytes,

cudaMemcpyHostToDevice);

// Transfer data from a device to a host
cudaMemcpy(h_arr, d_arr, nbytes,

cudaMemcpyDeviceToHost);

// Free the allocated memory
cudaFree(d_arr);

16

CUDA	Program	Flow

• At	its	most	basic,	the	flow	of	a	CUDA	program	is	as	follows:
1. Allocate	GPU	memory
2. Populate	GPU	memory	with	inputs	from	the	host
3. Execute	a	GPU	kernel	on	those	inputs
4. Transfer	outputs	from	the	GPU	back	to	the	host
5. Free	GPU	memory

• Let’s	take	a	look	at	a	simple	example	that	manipulates	data

17

AXPY	Example	with	OpenMP:	Multicore

• y	=	α·x	+	y
– x and	y are	vectors	of	size	n
– α is	scalar

• Data	(x,	y	and	a)	are	shared
– Parallelization	is	relatively	easy

18

CUDA	Program	Flow

• AXPY	is	an	embarrassingly	parallel	problem
– How	can	vector	addition	be	parallelized?	
– How	can	we	map	this	to	GPUs?
• Each	thread	does	one	element

A B C 19

AXPY	Offloading	To	a	GPU	using	CUDA

20

Memory	allocation	on	device

Memcpy from	host	to	device

Launch	parallel	execution

Memcpy from	device	to	host

Deallocation of	dev memory

CUDA	Program	Flow
• Consider	the	workflow	of	the	example	vector	addition	vecAdd.cu:

1. Allocate	space	for	A,	B,	and	C on	the	GPU
2. Transfer	the	initial	contents	of	A and	B to	the	GPU
3. Execute	a	kernel	in	which	each	thread	sums	Ai and	Bi,	and	stores	the	

result	in	Ci
4. Transfer	the	final	contents	of	C back	to	the	host
5. Free	A,	B,	and	C on	the	GPU
Modify	to	C	=	A+B+C

A	=	B*C;
we	will	need	both	C	and	A	in	the	host	side	after	GPU	

computation.	
• Compile	and	running	on	bridges:
– https://passlab.github.io/CSCE569/resources/HardwareSoftware.html#inte

ractive
– copy	gpu_code_examples folder	from	my	home	folder
• cp –r	~yan/gpu_code_examples ~

– $nvcc –Xcompiler –fopenmp vectorAdd.cu
– $./a.out

21

More	Examples	and	Exercises

• Matvec:
– Version	1:	each	thread	computes	one	element	of	the	final	

vector
– Version	2:
• Matmul in	assignment	#4
– Version	1:	each	thread	computes	one	row	of	the	final	matrix	C

22

CUDA	SDK	Examples

• CUDA	Programming	Manual:
– http://docs.nvidia.com/cuda/cuda-c-programming-guide

• CUDA	SDK	Examples	on	bridges
– module	load	gcc/5.3.0	cuda/8.0
– export	CUDA_PATH=/opt/packages/cuda/8.0
– /opt/packages/cuda/8.0/samples
• Copy	to	your	home	folder
– cp –r	/opt/packages/cuda/8.0/samples	~/CUDA_samples
• Do	a	“make”	in	the	folder,	and	it	will	build	all	the	sources	
• Or	go	to	a	specific	example	folder	and	make,	it	will	build	only	the	

binary

• Find	ones	you	are	interested	in	and	run	to	see

23

Inspecting	CUDA	Programs

• Debugging	CUDA	program:	
– cuda-gdb debugging	tool, like	gdb

• Profiling	a	program	to	examine	the	performance
– Nvprof tool,	like	gprof
– Nvprof ./vecAdd

24

Manycore GPU	Architectures	and	
Programming:	Outline

• Introduction
– GPU	architectures,	GPGPUs,	and	CUDA
• GPU	Execution	model
• CUDA	Programming	model
• Working	with	Memory	in	CUDA
– Global	memory,	shared	and	constant	memory
• Streams	and	concurrency
• CUDA	instruction	intrinsic	and	library
• Performance,	profiling,	debugging,	and	error	handling
• Directive-based	high-level	programming	model
– OpenACC and	OpenMP

25

Storing	Data	on	the	CPU

• A	memory	hierarchy	emulates	a	large	amount	of	low-
latency	memory
– Cache	data	from	a	large,	high-latency	memory	bank	in	a	small	

low-latency	memory	bank	
DRAM

L2	Cache

L1	Cache

26

CPU	Memory	Hierarchy

CPU

GPU	Memory	Hierarchy

27

SIMT Thread Groups on a GPU

SIMT Thread Groups on an SM

SIMT Thread Group

Registers Local Memory

On-Chip Shared
Memory/Cache

Global Memory

Constant Memory

Texture Memory

• More	complex	than	
the	CPU	memory
– Many different types	

of	memory,	each	with	
special-purpose	
characteristics
• SRAM
• DRAM

– More	explicit control	
over	data	movement

Storing	Data	on	the	GPU

28

• Registers	(SRAM)
– Lowest	latency	memory	space	on	the	

GPU
– Private	to	each	CUDA	thread
– Constant	pool	of	registers	per-SM	

divided	among	threads	in	resident	
thread	blocks

– Architecture-dependent	limit	on	
number	of	registers	per	thread

– Registers	are	not	explicitly	used	by	the	
programmer,	implicitly	allocated	by	
the	compiler

– -maxrregcount compiler	option	
allows	you	to	limit	#	registers	per	
thread

Storing	Data	on	the	GPU

Shared Memory

Tr
an

sf
er

29

• Shared	Memory	(SRAM)
– Declared	with	the	__shared__

keyword
– Low-latency,	high	bandwidth
– Shared	by	all	threads	in	a	thread	block
– Explicitly	allocated	and	managed	by	

the	programmer,	manual	L1	cache
– Stored	on-SM,	same	physical	memory	

as	the	GPU	L1	cache
– On-SM	memory	is	statically	

partitioned	between	L1	cache	and	
shared	memory

Storing	Data	on	the	GPU

L1 Cache

L2 Cache

Global Memory

30

• GPU	Caches	(SRAM)
– Behaviour	of	GPU	caches	is	

architecture-dependent
– Per-SM	L1	cache	stored	on-chip
– Per-GPU	L2	cache	stored	off-chip,	

caches	values	for	all	SMs
– Due	to	parallelism	of	accesses,	GPU	

caches	do	not	follow	the	same	LRU	
rules	as	CPU	caches

Storing	Data	on	the	GPU

Constant
Memory

Constant Cache

31

• Constant	Memory	(DRAM)
– Declared	with	the	__constant__

keyword
– Read-only
– Limited	in	size:	64KB
– Stored	in	device	memory	(same	

physical	location	as	Global	Memory)
– Cached	in	a	per-SM	constant	cache
– Optimized	for	all	threads	in	a	warp	

accessing	the	same	memory	cell

Storing	Data	on	the	GPU

Texture Memory
Read-Only Cache

Texture Memory

32

• Texture	Memory	(DRAM)
– Read-only
– Stored	in	device	memory	(same	

physical	location	as	Global	Memory)
– Cached	in	a	texture-only	on-SM	cache
– Optimized	for	2D	spatial	locality	

(caches	commonly	only	optimized	for	
1D	locality)

– Explicitly	used	by	the	programmer
– Special-purpose	memory

Storing	Data	on	the	GPU

L1 Cache

L2 Cache

Global Memory

33

• Global	Memory	(DRAM)
– Large,	high-latency	memory
– Stored	in	device	memory	(along	

with	constant	and	texture	memory)
– Can	be	declared	statically	with	
__device__

– Can	be	allocated	dynamically	with	
cudaMalloc

– Explicitly	managed	by	the	
programmer

– Optimized	for	all	threads	in	a	warp	
accessing	neighbouring	memory	
cells

Storing	Data	on	the	GPU

34

Storing	Data	on	the	GPU

35

Static	Global	Memory

• Static	Global	Memory	has	a	fixed	size	throughout	execution	
time:
__device__ float devData;

__global__ void checkGlobalVariable()

printf(“devData has value %f\n”, devData);

}

• Initialized	using	cudaMemcpyToSymbol:
cudaMemcpyToSymbol(devData, &hostData, sizeof(float));

• Fetched	using	cudaMemcpyFromSymbol:
cudaMemcpyFromSymbol(&hostData, devData,
sizeof(float));

36

Dynamic	Global	Memory

• We	have	already	seen	dynamic	global	memory
– cudaMalloc dynamically	allocates	global	memory
– cudaMemcpy transfers	to/from	global	memory
– cudaFree frees	global	memory	allocated	by	cudaMalloc

• cudaMemcpy supports	4	types	of	transfer:
– cudaMemcpyHostToHost,
cudaMemcpyHostToDevice,
cudaMemcpyDeviceToHost,
cudaMemcpyDeviceToDevice

• You	can	also	memset global	memory
cudaError_t cudaMemset(void *devPtr, int value,
size_t count);

37

Global	Memory	Access	Patterns

• CPU	caches	are	optimized	for	linear,	iterative	memory	
accesses
– Cache	lines	ensure	that	accessing	one	memory	cell	brings	

neighbouring	memory	cells	into	cache
– If	an	application	exhibits	good	spatial	or	temporal	locality	

(which	many	do),	later	references	will	also	hit	in	cache

CPU

System	
Memory

Cache

38

Global	Memory	Access	Patterns

• GPU	caching	is	a	more	challenging	problem
– Thousands	of	threads	cooperating	on	a	problem
– Difficult	to	predict	the	next	round	of	accesses	for	all	threads

• For	efficient	global	memory	access,	GPUs	instead	rely	on:
– Large	device	memory	bandwidth
– Aligned	and	coalesced	memory	access	patterns
– Maintaining	sufficient	pending	I/O	operations	to	keep	the	

memory	bus	saturated	and	hide	global	memory	latency

39

Global	Memory	Access	Patterns

• Achieving	aligned and	coalesced global	memory	accesses	is	
key	to	optimizing	an	application’s	use	of	global	memory	
bandwidth

– Coalesced:	the	threads	within	a	warp	reference	memory	
addresses	that	can	all	be	serviced	by	a	single	global	memory	
transaction	(think	of	a	memory	transaction	as	the	process	of	
bring	a	cache	line	into	the	cache)

– Aligned:	the	global	memory	accesses	by	threads	within	a	warp	
start	at	an	address	boundary	that	is	an	even	multiple	of	the	
size	of	a	global	memory	transaction

40

Global	Memory	Access	Patterns

• A	global	memory	transaction	is	either	32	or	128	bytes
– The	size	of	a	memory	transaction	depends	on	which	caches	it	

passes	through
– If	L1	+	L2:	128	byte
– If	L2	only:	32	bytes
– Which	caches	a	global	memory	transaction	passes	through	

depends	on	GPU	architecture	and	the	type	of	access	(read	vs.	
write)

41

Global	Memory	Access	Patterns

• Aligned	and	Coalesced	Memory	Access	(w/	L1	cache)
– 32-thread	wrap,	128-bytes	memory	transaction

• With	128-byte	access,	a	single	transaction	is	required	and	
all	of	the	loaded	bytes	are	used

42

Global	Memory	Access	Patterns

• Misaligned	and	Coalesced	Memory	Access (w/	L1	cache)

• With	128-byte	access,	two	memory	transactions	are	
required	to	load	all	requested	bytes.	Only	half	of	the	loaded	
bytes	are	used.

43

Global	Memory	Access	Patterns

• Misaligned	and	Uncoalesced Memory	Access (w/	L1	cache)

• With	uncoalesced loads,	many	more	bytes	loaded	than	
requested

44

Global	Memory	Access	Patterns

• Misaligned	and	Uncoalesced Memory	Access (w/	L1	cache)

• One	factor	to	consider	with	uncoalesced loads:	while	the	
efficiency	of	this	access	is	very	low	it	may	bring	many	cache	
lines	into	L1/L2	cache	which	are	used	by	later	memory	
accesses.	The	GPU	is	flexible	enough	to	perform	well,	even	
for	applications	that	present	suboptimal	access	patterns.

45

Global	Memory	Access	Patterns

• Memory	accesses	that	are	not	cached	in	L1	cache	are	
serviced	by	32-byte	transactions
– This	can	improve	memory	bandwidth	utilization
– However,	the	L2	cache	is	device-wide,	higher	latency	than	L1,	

and	still	relatively	small	èmany	applications	may	take	a	
performance	hit	if	L1	cache	is	not	used	for	reads

46

Global	Memory	Access	Patterns

• Aligned	and	Coalesced	Memory	Access	(w/o	L1	cache)

• With	32-byte	transactions,	four	transactions	are	required	
and	all	of	the	loaded	bytes	are	used

47

Global	Memory	Access	Patterns

• Misaligned	and	Coalesced	Memory	Access (w/o	L1	cache)

• With	32-byte	transactions,	extra	memory	transactions	are	
still	required	to	load	all	requested	bytes	but	the	number	of	
wasted	bytes	is	likely	reduced,	compared	to	128-byte	
transactions.

48

Global	Memory	Access	Patterns

• Misaligned	and	Uncoalesced Memory	Access (w/o	L1	
cache)

• With	uncoalesced loads,	more	bytes	loaded	than	requested	
but	better	efficiency	than	with	128-byte	transactions

49

Global	Memory	Access	Patterns

• Global	Memory	Writes	are	always	serviced	by	32-byte	
transactions

50

Global	Memory	and	Special-Purpose	Memory

• Global	memory	is	widely	useful	and	as	easy	to	use	as	CPU	DRAM

• Limitations
– Easy	to	find	applications	with	memory	access	patterns	that	are	

intrinsically	poor	for	global	memory
– Many	threads	accessing	the	same	memory	cell	è poor	global	

memory	efficiency
– Many	threads	accessing	sparse	memory	cells	è poor	global	

memory	efficiency

• Special-purpose	memory	spaces	to	address	these	deficiencies	in	
global	memory
– Specialized	for	different	types	of	data,	different	access	patterns
– Give	more	control	over	data	movement	and	data	placement	than	

CPU	architectures	do
53

Shared	Memory

Shared Memory

Tr
an

sf
er

54

• Declared	with	the	__shared__
keyword

• Low-latency,	high	bandwidth
• Shared	by	all	threads	in	a	thread	
block

• Explicitly	allocated	and	managed	by	
the	programmer,	manual	L1	cache

• Stored	on-SM,	same	physical	memory	
as	the	GPU	L1	cache

• On-SM	memory	is	statically	
partitioned	between	L1	cache	and	
shared	memory

Shared	Memory	Allocation

• Shared	memory	can	be	allocated	statically	or	dynamically

• Statically	Allocated	Shared	Memory
– Size	is	fixed	at	compile-time
– Can	declare	many	statically	allocated	shared	memory	variables
– Can	be	declared	globally	or	inside	a	device	function
– Can	be	multi-dimensional	arrays

__shared__ int s_arr[256][256];

55

Shared	Memory	Allocation

• Dynamically	Allocated	Shared	Memory
– Size	in	bytes	is	set	at	kernel	launch	with	a	third	kernel	launch	

configurable
– Can	only	have	one	dynamically	allocated	shared	memory	array	

per	kernel
– Must	be	one-dimensional	arrays

__global__ void kernel(...) {
extern __shared__ int s_arr[];
...

}

kernel<<<nblocks, threads_per_block,
shared_memory_bytes>>>(...);

56

Matvec using	shared	memory

57

Matrix	Vector	Multiplication

58

Matrix	Vector	Multiplication

59

Matrix	Multiplication	V1	and	V2	in	Assignment	
#4

• https://docs.nvidia.com/cuda/cuda-c-programming-
guide/#shared-memory

60

GPU	Memory	Hierarchy

68

SIMT Thread Groups on a GPU

SIMT Thread Groups on an SM

SIMT Thread Group

Registers Local Memory

On-Chip Shared
Memory/Cache

Global Memory

Constant Memory

Texture Memory

• More	complex	than	
the	CPU	memory
– Many different types	

of	memory,	each	with	
special-purpose	
characteristics
• SRAM
• DRAM

– More	explicit control	
over	data	movement

Constant	Memory

Constant
Memory

Constant Cache

69

• Declared	with	the	__constant__
keyword

• Read-only
• Limited	in	size:	64KB
• Stored	in	device	memory	(same	
physical	location	as	Global	Memory)

• Cached	in	a	per-SM	constant	cache
• Optimized	for	all	threads	in	a	warp	
accessing	the	same	memory	cell

Constant	Memory

• As	its	name	suggests,	constant	memory	is	best	used	for	
storing	constants
– Values	which	are	read-only
– Values	that	are	accessed	identically	by	all	threads

• For	example:	suppose	all	threads	are	evaluating	the	
equation

y = mx + b

for	different	values	of	x,	but	identical	values	of	m and	b
– All	threads	would	reference	m and	b with	the	same	memory	

operation
– This	broadcast	access	pattern	is	optimal	for	constant	memory

70

Constant	Memory

• A	simple	1D	stencil
– target	cell	is	updated	based	on	its	8	neighbors,	weighted	by	

some	constants	c0,	c1,	c2,	c3

71

Constant	Memory

• constantStencil.cu contains	an	example	1D	stencil	
that	uses	constant	memory

__constant__ float coef[RADIUS + 1];

cudaMemcpyToSymbol(coef, h_coef, (RADIUS + 1) *
sizeof(float));

__global__ void stencil_1d(float *in, float *out, int N)
{
...
for (int i = 1; i <= RADIUS; i++) {
tmp += coef[i] * (smem[sidx + i] - smem[sidx - i]);

}
}

72

CUDA	Synchronization

• When	using	shared	memory,	you	often	must	coordinate	
accesses	by	multiple	threads	to	the	same	data

• CUDA	offers	synchronization	primitives	that	allow	you	to	
synchronize	among	threads

73

CUDA	Synchronization

__syncthreads
– Synchronizes	execution	across	all	threads	in	a	thread	block
– No	thread	in	a	thread	block	can	progress	past	a	__syncthreads

before	all	other	threads	have	reached	it
– __syncthreads ensures	that	all	changes	to	shared	and	

global	memory	by	threads	in	this	block	are	visible	to	all	other	
threads	in	this	block

__threadfence_block
– All	writes	to	shared	and	global	memory	by	the	calling	thread	

are	visible	to	all	other	threads	in	its	block	after	this	fence
– Does	not	block	thread	execution

74

CUDA	Synchronization

__threadfence
– All	writes	to	global	memory	by	the	calling	thread	are	visible	to	

all	other	threads	in	its	grid	after	this	fence
– Does	not	block	thread	execution

__threadfence_system
– All	writes	to	global	memory,	page-locked	host	memory,	and	

memory	of	other	CUDA	devices	by	the	calling	thread	are	
visible	to	all	other	threads	on	all	CUDA	devices	and	all	host	
threads	after	this	fence

– Does	not	block	thread	execution

75

Suggested	Readings

1. Chapter	2,	4,	5	in	Professional	CUDA	C	Programming
2. Cliff	Woolley.	GPU	Optimization	Fundamentals.	2013.	

https://www.olcf.ornl.gov/	wp-
content/uploads/2013/02/GPU_Opt_Fund-CW1.pdf	

3. Mark	Harris.	Using	Shared	Memory	in	CUDA	C/C++.	
http://devblogs.nvidia.com/	parallelforall/using-shared-
memory-cuda-cc/	

4. Mark	Harris.	Optimizing	Parallel	Reduction	in	CUDA.	
http://developer.download.nvidia
.com/assets/cuda/files/reduction.pdf

76

