Lecture 17: Analytical Modeling of Parallel Programs: Scalability

CSCE 569 Parallel Computing

Department of Computer Science and Engineering Yonghong Yan yanyh@cse.sc.edu http://cse.sc.edu/~yanyh

Topic Overview

- Introduction
- Performance Metrics for Parallel Systems
 - Execution Time, Overhead, Speedup, Efficiency, Cost
- Amdahl's Law
- Scalability of Parallel Systems
 - Isoefficiency Metric of Scalability
 - Minimum Execution Time and Minimum Cost-Optimal Execution Time
 - Asymptotic Analysis of Parallel Programs
 - Other Scalability Metrics
 - Scaled speedup, Serial fraction

Speedup and Efficiency

Amdahl's Law Speedup

Scalability of Parallel Systems

- Scalability: The patterns of speedup
 - How the performance of a parallel application changes as the number of processors is increased
 - *Scaling*: performance improves *steadily*
 - Not scaling: performance does not improve or becomes worse

Scalability of Parallel Systems

- Two different types of scaling with regards to the problem size
 - Strong Scaling
 - Total problem size stays the same as the number of processors increases
 - Weak Scaling
 - The problem size increases at the same rate as the number of processors, keeping the amount of work per processor the same
- Strong scaling is generally more useful and more difficult to achieve than weak scaling
- <u>http://www.mcs.anl.gov/~itf/dbpp/text/node30.html</u>
- <u>https://www.sharcnet.ca/help/index.php/Measuring_Parallel_Scaling_Performance</u>

Strong Scaling

$$S(p) = T(1)/T(p)$$

 $E(p) = S(p)/p$

Number of processors

T(p) = T(1)/p S(p) = T(1)/T(p) = p E(p) = S(p)/p = 1 or 100%

Weak Scaling of Parallel Systems

Extrapolate performance

 From small problems and small systems → larger problems on larger configurations

3 parallel algorithms for computing an n-point FFT on 64 PEs

Scaling Characteristics of Parallel Programs: Increase problem size

- Efficiency: $E = \frac{S}{p} = \frac{T_S}{pT_P}$
- Parallel overhead: $T_o = p T_P T_S \Rightarrow E = T_S / (T_S + T_o)$
 - Overhead increases as p increase

- Given problem size, T_s remains constant
- Efficiency *increases* if
 - The problem size increases (T_s) and
 - Keeping the number of PEs constant.

 $E = \frac{1}{1 + \frac{T_o}{T_a}}$

Example: Adding n Numbers on p PEs

Addition = 1 time unit; communication = 1 time unit

Speedup tends to saturate and efficiency drops

Scaling Characteristics of Parallel Programs: Increase problem size and increase # PEs

- Overhead $T_o = f(T_s, p)$, i.e. problem size and p
 - In many cases, T_o grows sublinearly with respect to T_s
- Efficiency:
 - Decreases as we increase *p* -> *T_o*
 - Increases as we increase problem size (Ts)
- Keep efficiency constant
 - Increase problem sizes and
 - proportionally increasing the number of PEs
- Scalable parallel systems

Rate at which the problem size (T_s) must increase per additional PE (T_o) to keep the efficiency fixed

- The scalability of the system
 - The slower this rate, the better scalability
 - Rate == 0: strong scaling.

- The same problem (same size) scales when increasing number of PEs
- To formalize this rate, we define
 - The problem size W = the asymptotic number of operations associated with the best serial algorithm to solve the problem.
 - The serial execution time, T_s

- Parallel overhead: T_o(W,p), again, W ~= T_s
- Parallel execution time:

• Speedup:

 $T_P = \frac{W + T_o(W, p)}{p}$ $S = \frac{W}{T_P}$ $= \frac{Wp}{W+T_{2}(W,p)}.$ $E = \frac{S}{r}$ $= \frac{W}{W + T_2(W, p)}$ $= \frac{1}{1+T_{c}(W,p)/W}.$

• Efficiency

To maintain constant efficiency (between 0 and 1)

$$E = rac{1}{1+T_o(W,p)/W},$$

 $rac{T_o(W,p)}{W} = rac{1-E}{E},$
 $W = rac{E}{1-E}T_o(W,p).$

• K = E / (1 - E) is a constant related to the desired efficiency

$$W = KT_o(W, p).$$

Ratio T_o / W should be maintained at a constant value.

$$W = KT_o(W, p).$$

 \longrightarrow W = Φ (p) such that efficiency is constant

- W = Φ (p) is called the *isoefficiency function*
 - Read as: what is the problem size when we have *p* PEs to maintain constant efficiency?
 - $W_{p+1} W_p = \Phi (p+1) \Phi (p)$
 - To maintain constant efficiency, how much to increase the problem size if adding one more PE?
- *isoefficiency function* determines the ease
 - With which a parallel system maintain a constant efficiency
 - Hence achieve speedups increasing in proportion to # PEs

Isoefficiency Example 1

Adding *n* numbers using *p* PEs

- Parallel overhead: $T_o = 2p \log p$ $T_P = \frac{n}{p} + 2 \log p$
- W = KT₀(W,p), substitute T₀
 W = K *2*p*log p
- K *2*p*log p is the isoefficiency function
- The asymptotic isoefficiency function $E = \frac{1}{1 + \frac{2p \log p}{n}}$ for this parallel system is $\Theta(p*\log p)$
- To have the same efficiency on p' processors as on p
 - problem size n must increase by (p' log p') / (p log p) when increasing PEs from p to p'

 $S = \frac{n}{\frac{n}{n} + 2\log p}$

Examples

- by (p' log p') / (p log p)
- If p = 8, p' = 16
- 16*log16/(8*log8) = 16*4/(8*3) = 8/3 = 2.67
- 10M on 8 cores
- 10*2.67M on 16 cores

Cost-Optimality and Isoefficiency

- A parallel system is cost-optimal if and only if
 - Parallel cost == total work
 - Efficiency = 1

$$pT_P = \Theta(W).$$

- From this, we have: - i.e. work dominates overhead $W + T_o(W, p) = \Theta(W)$ $T_o(W, p) = O(W)$ $W = \Omega(T_o(W, p))$
- If we have an isoefficiency function f(p)
 - The relation W = Ω(f(p)) must be satisfied to ensure the costoptimality of a parallel system as it is scaled up

Topic Overview

- Introduction
- Performance Metrics for Parallel Systems
 - Execution Time, Overhead, Speedup, Efficiency, Cost
- Amdahl's Law
- Scalability of Parallel Systems
 - Isoefficiency Metric of Scalability
- Minimum Execution Time
 - Asymptotic Analysis of Parallel Programs
 - Other Scalability Metrics
 - Scaled speedup, Serial fraction

Minimum Execution Time

- Often, we are interested in the minimum time to solution
- To determine the minimum exe time T_P^{min} for a given W
 - Differentiating the expression for T_P w.r.t. p and equate it to 0

$$\frac{\mathrm{d}}{\mathrm{d}p}T_P = \mathbf{0}$$

- If **p**₀ is the value of **p** as determined by this equation
 - $T_{P}(p_{0})$ is the minimum parallel time

Minimum Execution Time: Example

Adding n numbers

- Parallel execution time:
- Compute the derivative:

$$T_P = \frac{n}{p} + 2\log p.$$
$$\frac{\partial}{\partial p} \left(\frac{n}{p} + 2\log p \right) = -\frac{n}{p^2} + 2\left(\frac{1}{p}\right)$$

n

• Set the derivative = 0, solve for p:

$$-\frac{n}{p^2} + 2\left(\frac{1}{p}\right) = 0$$

• The corresponding exe time:

$$-\frac{n}{p} + 2 = 0$$
$$p = n/2$$

Note that at this point, the formulation is not cost-optimal.

 $T_P^{min} = 2\log n.$

Topic Overview

- Introduction
- Performance Metrics for Parallel Systems
 - Execution Time, Overhead, Speedup, Efficiency, Cost
- Amdahl's Law
- Scalability of Parallel Systems
 - Isoefficiency Metric of Scalability
- Minimum Execution Time
- Asymptotic Analysis of Parallel Programs
 - Other Scalability Metrics
 - Scaled speedup, Serial fraction

Asymptotic Analysis of Parallel Programs

Sorting a list of *n* numbers.

- The fastest serial programs: Θ(*n* log *n*).
- Four parallel algorithms, A1, A2, A3, and A4

Algorithm	A1	A2	A3	A4
p	n^2	$\log n$	n	\sqrt{n}
T_P	1	n	\sqrt{n}	$\sqrt{n}\log n$
S	$n\log n$	$\log n$	$\sqrt{n}\log n$	\sqrt{n}
E	$\frac{\log n}{n}$	1	$\frac{\log n}{\sqrt{n}}$	1
pT_P	n^2	$n\log n$	$n^{1.5}$	$n\log n$

Asymptotic Analysis of Parallel Programs

A1	A2	A3	A4
n^2	$\log n$	n	\sqrt{n}
1	n	\sqrt{n}	$\sqrt{n}\log n$
$n\log n$	$\log n$	$\sqrt{n}\log n$	\sqrt{n}
$\log n$]		1
	$n \log n$	·	$n\log n$
	n^2 1 $n \log n$	$n^{2} \qquad \log n$ $1 \qquad n$ $n \log n \qquad \log n$ $\frac{\log n}{n} \qquad 1$	$n^{2} \log n \qquad n$ $1 \qquad n \qquad \sqrt{n}$ $n \log n \qquad \log n \qquad \sqrt{n} \log n$ $\frac{\log n}{n} 1 \qquad \frac{\log n}{\sqrt{n}}$

- If metric is speed (T_P) , algorithm A1 is the best, followed by A3, A4, and A2
- In terms of efficiency (*E*), A2 and A4 are the best, followed by A3 and A1.
- In terms of cost(*pT_p*), algorithms A2 and A4 are cost optimal, A1 and A3 are not.
- It is important to identify the analysis objectives and to use appropriate metrics!

Topic Overview

- Introduction
- Performance Metrics for Parallel Systems
 - Execution Time, Overhead, Speedup, Efficiency, Cost
- Amdahl's Law
- Scalability of Parallel Systems
 - Isoefficiency Metric of Scalability
- Minimum Execution Time
- Asymptotic Analysis of Parallel Programs
- Other Scalability Metrics
 - Scaled speedup, Serial fraction

Scaled Speedup: Example

n x n matrix multiplication

- The serial execution time: $t_c n^3$.
- The parallel execution time: 7

$$T_P = t_c rac{n^3}{p} + t_s \log p + 2t_w rac{n^2}{\sqrt{p}}$$

• Speedup: $S = \frac{t_c n^3}{t_c \frac{n^3}{p} + t_s \log p + 2t_w \frac{n^2}{\sqrt{p}}}$

Scaled Speedup: Example (continued)

Consider memory-constrained scaled speedup.

- We have memory complexity $m = \Theta(\mathbf{n}^2) = \Theta(\mathbf{p})$, or $\mathbf{n}^2 = \mathbf{c} \times \mathbf{p}$.
- At this growth rate, scaled speedup **S**' is given by:

$$S' = \frac{t_c(c \times p)^{1.5}}{t_c \frac{(c \times p)^{1.5}}{p} + t_s \log p + 2t_w \frac{c \times p}{\sqrt{p}}} = O(p)$$

• Note that this is scalable.

Scaled Speedup: Example (continued)

Consider time-constrained scaled speedup.

- We have $T_{p} = O(1) = O(n^{3} / p)$, or $n^{3} = c \times p$.
- Time-constrained speedup **S**["] is given by:

$$S'' = \frac{t_c c \times p}{t_c \frac{c \times p}{p} + t_s \log p + 2t_w \frac{(c \times p)^{2/3}}{\sqrt{p}}} = O(p^{5/6})$$

Memory constrained scaling yields better performance.

References

- Adapted from slides "Principles of Parallel Algorithm Design" by Ananth Grama
- "Analytical Modeling of Parallel Systems", Chapter 5 in Ananth Grama, Anshul Gupta, George Karypis, and Vipin Kumar, Introduction to Parallel Computing", "Addison Wesley, 2003.
- Grama, Ananth Y.; Gupta, A.; Kumar, V., "Isoefficiency: measuring the scalability of parallel algorithms and architectures," in Parallel & Distributed Technology: Systems & Applications, IEEE, vol.1, no.3, pp.12-21, Aug. 1993, doi: 10.1109/88.242438,

http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber =242438&isnumber=6234