
Lecture	16:	Analytical	Modeling	of	
Parallel	Programs:	Metrics	and	Analysis

1

CSCE	569	Parallel	Computing

Department	of	Computer	Science	and	Engineering
Yonghong Yan

yanyh@cse.sc.edu
http://cse.sc.edu/~yanyh



Topics

• Introduction
• Programming	on	shared	memory	system	(Chapter	7)
– OpenMP
• Principles	of	parallel	algorithm	design	(Chapter	3)	
• Programming	on	large	scale	systems	(Chapter	6)
– MPI	(point	to	point	and	collectives)
– Introduction	to	PGAS	languages,	UPC	and	Chapel
• Analysis	of	parallel	program	executions	(Chapter	5)
– Performance	Metrics	for	Parallel	Systems
• Execution	Time,	Overhead,	Speedup,	Efficiency,	Cost	

– Scalability	of	Parallel	Systems
– Use	of	performance	tools

2



Topic	Overview	

• Introduction
• Performance	Metrics	for	Parallel	Systems
– Execution	Time,	Overhead,	Speedup,	Efficiency,	Cost	
• Amdahl’s	Law
• Scalability	of	Parallel	Systems
– Isoefficiency Metric	of	Scalability
• Minimum	Execution	Time	and	Minimum	Cost-Optimal	
Execution	Time	

• Asymptotic	Analysis	of	Parallel	Programs	
• Other	Scalability	Metrics	
– Scaled	speedup,	Serial	fraction

3



Analytical	Modeling:	Sequential	Execution	Time

• The	execution	time	of	a	sequential	algorithm
– Asymptotic	execution	time	as	a	function	of	input	size
• identical	on	any	serial	platform

4

Count	the	number	of	
operations

• Big-O	Notation
– O(1)
– O(N)
– O(N2)
– O(NlogN)
– O(N3)
– …



Parallel	Execution	Time

• Parallel	execution	time	is	a	function	of:	
– input	size
– number	of	processors	(machine	performance)
– communication	parameters	of	target	platform	(network)

• Implications
– must	analyze	parallel	program	for	a	particular	target	platform
• communication	characteristics	can	differ	by	more	than	O(1)

– parallel	program	=	parallel	algorithm	+	platform	

5



Overhead	in	Parallel	Programs	

If	using	two	processors,	shouldn’t	a	program	run	twice	as	fast?
– Not	all	parts	of	the	program	are	parallelized
– Certain	amount	of	overheads	incurred	when	doing	it	in	parallel

6



Overheads	in	Parallel	Programs	

• Interprocess interactions:
– Communication
• Data	movement

– Synchronization/contention

• Idling:	
– Load	imbalance
– Synchronization
• Sync	itself	has	overhead	

– Serial	components	

• Excess	computation
– computation	not	performed	by	the	serial	version
• E.g.	replicated	computation	to	minimize	communication.	

7



Topic	Overview	

• Introduction
• Five	Performance	Metrics	for	Parallel	Systems
– Execution	Time,	Overhead,	Speedup,	Efficiency,	Cost	
• Amdahl’s	Law
• Scalability	of	Parallel	Systems
– Isoefficiency Metric	of	Scalability
• Minimum	Execution	Time	and	Minimum	Cost-Optimal	
Execution	Time	

• Asymptotic	Analysis	of	Parallel	Programs	
• Other	Scalability	Metrics	
– Scaled	speedup,	Serial	fraction

8



Performance	Metrics	#1:	Execution	Time	

Does	a	parallel	program	run	faster	than	its	sequential	version?
• Serial	time:	TS
– time	elapsed	between	the	start	and	end	of	serial	execution	
• Parallel	time:	Tp
– time	elapsed	between	first	process	start	and	last	process	end

9



Performance	Metrics	#2:	Parallel	Overhead	

What	are	the	cost	to	enable	parallelism?

• Tall	: the	total	time	collectively	spent	by	all	the	processors
– Tall =	p	TP		 (p is	the	number	of	processors).	

• TS :	serial	execution	time

• Total	parallel	overhead	To
– To	 =	Tall - TS
– To =	p	TP – TS

overhead

10



Performance	Metrics	#3:	Speedup	

What	is	the	benefit	from	increasing	parallelism?	
• Speedup	(S):	TS /	TP
– The	ratio	of	the	time	taken	to	solve	a	problem	on	a	single	

processor	to	the	time	required	to	solve	the	same	problem	on	a	
parallel	computer	with	p	identical	processing	elements.	

11



Performance	Metrics:	Example	

Adding	n numbers	
• Sequential:	Θ (n)
• Using	n processing	elements.	
– If	n is	a	power	of	two,	in	log n steps	by	propagating	partial	

sums	up	a	logical	binary	tree	of	processors.	

12



Performance	Metrics:	Example	– cont’d
• Σji denotes	the	sum	of	

numbers	with	consecutive	
labels	from	i to	j

• Analysis:	
– An	addition	takes	tc
– Communication	takes	ts +	tw
– tc and	(ts +	tw)	are	constant

• Sequential	and	parallel	time:
– TS	=	Θ (n)
– TP =	Θ (log n)

• Speedup	S:	
– S =	Θ (n	/ log n)

13



Performance	Metrics	#3:	Speedup	

• The	yardstick:	Ts
– Many	serial	algorithms	available,	each	with	different	

asymptotic	execution	time
– The	parallelization	of	those	algorithms	varies	too

http://en.wikipedia.org/wiki/Computational_complexity_of_mathematical_operations

14



Speedup	Example:	Sorting

15http://en.wikipedia.org/wiki/Sorting_algorithm



• The	serial	execution	time	for	bubblesort:150	seconds.	
• Odd-even	parallel	bubble	sort:	is	40	seconds.	
• The	speedup:	150/40	=	3.75.	
– But	is	this	really	a	fair	assessment	of	the	system?	

• What	if	serial	quicksort	only	took	30	seconds?
• In	this	case,	the	speedup	is	30/40	=	0.75
– A	more	realistic	assessment

• In	reality,	consider	the	best	sequential	program	as	
baseline
– Not	even	the	parallel	program	running	with	1	PE
• We	do	this	in	our	assignment

Speedup	Example:	Sorting	– cont’d

16



Performance	Metrics:	Speedup	Bounds	
• Speedup,	in	theory,	should	be	upper	bounded	by	p
– We	can	only	expect	a	p-fold	speedup	if	we	use	p times	as	

many	resources.	

• Theoretically,	a	speedup	greater
than	p is	possible	only	if	each	
processor	spends	less	than	
TS	/ p time	solving	the	problem.
– Violate	the	rules	of	using	

the	best	sequential	as	baseline

• Speedups:	
– Linear
– Sublinear
– Superlinear

• In	practice,	superlinear is	possible
17



S

Performance	Metrics:	Superlinear Speedups	

Parallel	algorithm	does	less	work	than	its	serial	versions
• Searching	node	‘S’	in	an	unstructured	tree
• Parallel	with	two	PEs	using	depth-first	traversal
– PE	0	searching	the	left	subtree expands	only	the	shaded	nodes	

before	the	solution	is	found by	PE	1
– PE	1	searching	the	right	subtree
• Serial	algorithm	expands	
the	entire	tree
– Does	more	work	than	

the	parallel	algorithm.	

18



Performance	Metrics:	Superlinear	Speedups

Resource-based	superlinearity
• Parallel	execution:	
– The	higher	aggregate	cache/memory	bandwidth	can	result	in	

better	cache-hit	ratios,	and	therefore	superlinearity.	

• Example:	A	processor	with	64KB	of	cache	yields	an	80%	hit	
ratio.	If	two	processors	are	used,	since	the	problem	
size/processor	is	smaller,	the	hit	ratio	goes	up	to	90%.	Of	
the	remaining	10%	access,	8%	come	from	local	memory	
and	2%	from	remote	memory.	

• If	DRAM	access	time	is	100	ns,	cache	access	time	is	2	ns,	
and	remote	memory	access	time	is	400ns,	this	corresponds	
to	a	speedup	of	2.43!	

19



Performance	Metrics	#4:	Efficiency	

• Fraction	of	time	for	which	a	process	perform	useful	work

• Bounds
– Theoretically,	0	≤	E	≤ 1
• The	larger,	the	better
• E=1:	0	overhead

– Practically,	E	>	1	if	superlinear speedup	is	achieved

• Previous	example:	adding	N	numbers	using	N	PEs
– Speedup:		S	=	Θ (N /	log	N)
– Efficiency:	E	=	S/N	=	Θ (N	/	log	N)	/	N	=	Θ (1	/	log	N)
• Very	low	when	N	is	big

20



Example:	Image	Filtering	(e.g.	Edge	Detection)

• Apply	3x3	template	to	each	pixel	of	the	images
– Stencil	computation

• Serial	performance:	TS=	9tc n2
– Each	pixel	has	9	multiply-add	(MA)
• Each	MA	takes	constant	tc time

– An	n x	n image	for	n2	pixels

21http://en.wikipedia.org/wiki/Edge_detection



Edge	Detection:	Parallel	Version

• Partitions	the	image	equally	into
vertical	segments,	each	with	n2 /	p pixels.

• Computation	by	each	PE:	TS	=	9	tcn2 /	p

• Communications	by	each	PE:	2(ts +	twn)	
– The	boundary	of	each	segment	is	2n pixels
• Two	boundaries:	left	and	right

– Each	boundary	exchange	takes	ts +	twn

• Parallel	performance:	

22



Edge	Detection:	Parallel	Speedup	and	Efficiency

• Serial	performance:	TS=	9tc n2

• Parallel	performance:	

• Speedup:	S	=	Ts/Tp

• Efficiency:	E	=	S/p

23



Performance	Metrics	#5:	Cost

Product	of	parallel	execution	time	and	number	of	PEs:	p*TP
• The	total	amount	of	time	by	all	PEs	to	solve	the	problem

• Cost-optimal :	parallel	cost	≅ serial	cost
– ~0	overhead
– E	=	Θ (1),	since	E	=	TS /	p*TP

24



Cost:	An	Example

Adding	n	numbers	on	n	PEs
• Serial	performance:	TS =	Θ(n)
• Parallel	performance:	TP =	Θ(log n)
• Cost:	p TP =	Θ(n	log n)
• Optimal	or	not:	
– E	=	n/n*	log	n	=	Θ(1/log	n)
– Not	cost-optimal.	

• Why	not	optimal
– Waste	of	CPU	cycles	after	step	1
• Only	core	0	is	doing	all	the	useful	work	in	logN times

log n

25



Topic	Overview	

• Introduction
• Performance	Metrics	for	Parallel	Systems
– Execution	Time,	Overhead,	Speedup,	Efficiency,	Cost	
• Amdahl’s	Law
• Scalability	of	Parallel	Systems
– Isoefficiency Metric	of	Scalability
• Minimum	Execution	Time	and	Minimum	Cost-Optimal	
Execution	Time	

• Asymptotic	Analysis	of	Parallel	Programs	
• Other	Scalability	Metrics	
– Scaled	speedup,	Serial	fraction

35



Amdahl’s	Law

• Amdahl's	argument

36

• The	word	“law” is	often	used	by	computer	scientists	when	it	is	an	observed	
phenomena	(e.g,	Moore’s	Law)	and	not	a	theorem	that	has	been	proven	in	a	strict	sense.

Gene	Amdahl,	"Validity	of	the	single	processor	approach	to	achieving	large-scale	
computing	capabilities",	AFIPS	Conference	Proceedings,	30:483-485,	1967.



Using	Amdahl’s	Law

37



Amdahl’s	Law	for	Parallelism

• The	enhanced	fraction	F	is	through	parallelism,	perfect	
parallelism	with	linear	speedup
– The	speedup	for	F	is	N	for	N	processors
• Overall	speedup

• Speedup	upper	bound	(when	N	à∞):	
– 1-F:	the	sequential	portion	of	a	program

38



Amdahl’s	Law	for	Parallelism

39



Amdahl’s	Law	Usefulness

• Amdahl’s	law	is	valid	for	traditional	problems	and	has	several	
useful	interpretations.

• Some	textbooks	show	how	Amdahl’s	law	can	be	used	to	
increase	the	efficient	of	parallel	algorithms	
– E=(1/((1-F)+F/N))/N	=	1/(N(1-F)+F)
• If	we	increase	N,	and	the	problem	size	in	certain	rate(so	F	
increased),	we	can	still	keep	E	constant

• Amdahl’s	law	shows	that	efforts	required	to	further	reduce	the	
fraction	of	the	code	that	is	sequential	may	pay	off	in	large	
performance	gains.

• Hardware	that	achieves	even	a	small	decrease	in	the	percent	of	
things	executed	sequentially	may	be	considerably	more	efficient.

40



Amdahl’s	Law	for	Parallelism

• However:	for long	time,	Amdahl’s	law	was	viewed	as	a	
fatal	flaw	to	the	usefulness	of	parallelism
– Focuses	a	particular	algorithm	and	problem	sizes,	and	does	not	

consider	that	other	algorithms	with	more	parallelism	may	
exist,	or	scalability	issues

– Amdahl’s	law	applies	only	to	“standard” problems	were	
superlinearity can	not	occur

– Gustafon’s	Law: The	proportion	of	the	computations	that	are	
sequential	normally	decreases	as	the	problem	size	increases.

• Currently,	it	is	generally	accepted	by	parallel	computing	
professionals	that	Amdahl’s	law	is	not	a	serious	limit	
the	benefit	and	future	of	parallel	computing.

41
Compilers	and	More:	Is	Amdahl’s	Law	Still	Relevant?	Michael	Wolfe,	
http://www.hpcwire.com/2015/01/22/compilers-amdahls-law-still-relevant/,	01/22/2015



References

• Adapted	from	slides	“Principles	of	Parallel	Algorithm	
Design”	by	Ananth Grama

• “Analytical	Modeling	of	Parallel	Systems”,	Chapter	5	in	
Ananth Grama,	Anshul Gupta,	George	Karypis,	and	Vipin
Kumar,	Introduction	to	Parallel	Computing'',	“	Addison	
Wesley,	2003.	

42


