Lecture 16: Analytical Modeling of
Parallel Programs: Metrics and Analysis

CSCE 569 Parallel Computing

Department of Computer Science and Engineering
Yonghong Yan
yanyh@cse.sc.edu
http://cse.sc.edu/~yanyh

Topics

* |Introduction

®* Programming on shared memory system (Chapter 7)
— OpenMP

* Principles of parallel algorithm design (Chapter 3)

®* Programming on large scale systems (Chapter 6)
— MPI (point to point and collectives)
— Introduction to PGAS languages, UPC and Chapel

«@ Analysis of parallel program executions (Chapter 5)
— Performance Metrics for Parallel Systems
e Execution Time, Overhead, Speedup, Efficiency, Cost
— Scalability of Parallel Systems
— Use of performance tools

Topic Overview

@™ Introduction

* Performance Metrics for Parallel Systems
— Execution Time, Overhead, Speedup, Efficiency, Cost

* Amdahl’s Law

* Scalability of Parallel Systems
— Isoefficiency Metric of Scalability

* Minimum Execution Time and Minimum Cost-Optimal
Execution Time

* Asymptotic Analysis of Parallel Programs

* Other Scalability Metrics
— Scaled speedup, Serial fraction

Analytical Modeling: Sequential Execution Time

* The execution time of a sequential algorithm
— Asymptotic execution time as a function of input size
* identical on any serial platform

Example: Matrix Multiplication * Big-O Notation

— 0O(1)
int n = A.length; <-- cost = c0, 1 time
for (inti=0;i<n; i++) { <-- cost = c¢1, n times _ O(N)
for (int j = 0; j <mn; j++) { <-- cost = c2, n*n times — O(N 2)
=0: - = *n ti
sum = 0; <-- cost = ¢3, n*n times _ O(NlogN)
fork =0; k <n; k++) <-- cost = ¢4, n*n*n times O N3
sum = sum + A[i][k]*B[k][j]; <-- cost = c5, n*n*n times _ ()
<a

CLiI[] = sumy;
}
}

- cost = ¢6, n*n times - ...

Count the number of
Total number of operations: ope rations
=0 + cl*n + (c2+c3+c6)*n*n + (c4+c5)*n*n*n
=0(n)

Parallel Execution Time

* Parallel execution time is a function of:
— input size
— number of processors (machine performance)
— communication parameters of target platform (network)

* Implications
— must analyze parallel program for a particular target platform
 communication characteristics can differ by more than O(1)
— parallel program = parallel algorithm + platform

Overhead in Parallel Programs

If using two processors, shouldn’t a program run twice as fast?
— Not all parts of the program are parallelized
— Certain amount of overheads incurred when doing it in parallel

Execution Time —
[]
[]
[] []
]
]
[] []
]
[]

Bl Essential/Excess Computation [] Interprocessor Communication
|| Idling

Overheads in Parallel Programs

* Interprocess interactions: (T i
— Communication ! < I

* Data movement L,
— Synchronization/contention YIF(/

4 ,"

n
)

* |dling:
— Load imbalance
— Synchronization
* Sync itself has overhead
— Serial components

wait — time

* Excess computation
— computation not performed by the serial version
* E.g. replicated computation to minimize communication.

Topic Overview

* |Introduction

«@° Five Performance Metrics for Parallel Systems
— Execution Time, Overhead, Speedup, Efficiency, Cost

* Amdahl’s Law

* Scalability of Parallel Systems
— Isoefficiency Metric of Scalability

* Minimum Execution Time and Minimum Cost-Optimal
Execution Time

* Asymptotic Analysis of Parallel Programs

* Other Scalability Metrics
— Scaled speedup, Serial fraction

Performance Metrics #1: Execution Time

Does a parallel program run faster than its sequential version?

* Serial time: T,
— time elapsed between the start and end of serial execution

* Parallel time: T,
— time elapsed between first process start and last process end

800 -

700

3

8

w——Sequential

3

§ >

e Paralle(8)

Millseconds

Parallel(4)

8

8

]

100000 500000 1000000 5000000

Number of elements

o

Performance Metrics #2: Parallel Overhead

What are the cost to enable parallelism?

* T, :the total time collectively spent by all the processors
— T,,=p T, (pis the number of processors).

* T,:serial execution time

* Total parallel overhead T,
— T, =Ty - Ts
— T=pTp—T;s

Execution Time

1.2

1

o
fa']

o
[a]

=
N

-
(N

o

ll
|
\ —e—Idesl
4 —=— "+Parall O'head"
1
1
1

\\ overhead

—~——

2 4 B g 10

Number of PEs

12

10

Performance Metrics #3: Speedup

What is the benefit from increasing parallelism?

® Speedup (S): T/ T,
— The ratio of the time taken to solve a problem on a single

processor to the time required to solve the same problem on a
parallel computer with p identical processing elements.

25

28 r Sun H—

15

11

Performance Metrics: Example

Adding n numbers
* Sequential: © (n)
* Using n processing elements.

— If nis a power of two, in log n steps by propagating partial
sums up a logical binary tree of processors.

Cores
0 1 2 3 4 5 6 7
o) (o) N [/"\.1 () /12) o (2 A
&) 19 W 1% 7 3 {2 14)
: /)) :
| | - | |
| | | |
I ! ! !
m TE9N N /n
+(2)) @) +(2) R
! ! Time
! I
L ‘ o
M '\‘_"P/ +446)
i
|
|
]
|
|
|
|
|
|
|
|
l'/9L5
N o/

12

Performance Metrics: Example — cont’d

* 2% denotes the sum of @@@@@@@@@Q@@@Q@
numbers with consecutive T T e
I a be IS f rom i to j (a) Initial data distribution and the first communication step
e Analvsis: =) =3 z = Z Z10 i Zis
Nalysis: @ ©) @ © @ ® @ ©) ‘ ® , @ @ ® 7 ®

— An addition takes t,
_ Commun|cat|on ta kes ts + tw (b) Second communication step
— t.and (t,+t,) are constant

7 11 15

= = 4 =
| . CRoNcRoNoNcNoNoRONoRTN N RERR®
* Sequential and parallel time: .
. T — O (n) (c) Third communication step
— T,=0 (logn) , g
= =
@_@@@@@@@O@Q@@@@
PY Sp ee d u p S: (d) Fourth communication step
— $=0(n/logn))
Zy

ONONONONONONONONONONOURUNCEGNCE®

(e) Accumulation of the sum at processing element 0 afier the final coggnunicatim

Performance Metrics #3: Speedup

* The yardstick: T,

— Many serial algorithms available, each with different
asymptotic execution time

— The parallelization of those algorithms varies too

Operation Input Output Algorithm Complexity
Schoolbook matrix multiplication o(nd)
Strassen algorithm O(n?-807)
Matrix multiplication Two nxn matrices One nxn matrix
Coppersmith—-Winograd algorithm O(?-376)

Optimized CW-like algorithms [14] [15] [16]| §(n2-373)

http://en.wikipedia.org/wiki/Computational_complexity of mathematical_operations

14

Speedup Example: Sorting

Odd-even sort
“parallel bubble sort”

http://en.wikipedia.org/wiki/Sorting_algorithm

procedure bubbleSort(A : vector)
n := length(A)
do
swapped := false
n :=n -1
for each i in 0 ton -1
if A[i] > A[i + 1]
swap(A[i], A[i + 1]); swapped := true
while (swapped)
end procedure

procedure oddEvenSort(A
n := length(A)
do
swapped := false
for each i in 0 ton - 1 by 2 in parallel
if A[i] > A[i + 1]
swap(A[i], A[i + 1]); swapped := true
for each i in 1 ton - 1 by 2 in parallel
if A[i] > A[i + 1]
swap(A[i], A[1i + 1]); swapped := true
while (swapped)
end procedure

vector)

15

Speedup Example: Sorting — cont’d

The serial execution time for bubblesort:150 seconds.
Odd-even parallel bubble sort: is 40 seconds.

The speedup: 150/40 = 3.75.
— But is this really a fair assessment of the system?

What if serial quicksort only took 30 seconds?

In this case, the speedup is 30/40 = 0.75
— A more realistic assessment

In reality, consider the best sequential program as
baseline
— Not even the parallel program running with 1 PE

* We do this in our assignment

16

Performance Metrics: Speedup Bounds

Speedup, in theory, should be upper bounded by p
— We can only expect a p-fold speedup if we use p times as

Many resources.

Theoretically, a speedup greater
than p is possible only if each
processor spends less than

T,/ p time solving the problem.

— Violate the rules of using

the best sequential as baseline

Speedups:
— Linear

— Sublinear
— Superlinear

Parallel

Speedup

4

Superlinear

Typical
Success

........ » # Processors

Negative

In practice, superlinear is possible

17

Performance Metrics: Superlinear Speedups

Parallel algorithm does less work than its serial versions
* Searching node ‘S’ in an unstructured tree

* Parallel with two PEs using depth-first traversal

— PE O searching the left subtree expands only the shaded nodes
before the solution is found by PE 1

— PE 1 searching the right subtree
* Serial algorithm expands Processing element 0

Processing element 1

the entire tree
— Does more work than
the parallel algorithm.

- -

Performance Metrics: Superlinear Speedups

Resource-based superlinearity

®* Parallel execution:

— The higher aggregate cache/memory bandwidth can result in
better cache-hit ratios, and therefore superlinearity.

* Example: A processor with 64KB of cache yields an 80% hit
ratio. If two processors are used, since the problem
size/processor is smaller, the hit ratio goes up to 90%. Of
the remaining 10% access, 8% come from local memory
and 2% from remote memory.

* |f DRAM access time is 100 ns, cache access time is 2 ns,
and remote memory access time is 400ns, this corresponds

to a speedup of 2.43!

19

Performance Metrics #4: Efficiency

* Fraction of time for which a process perform useful work

E=S/p=Ts/(p Tp)
°* Bounds
— Theoretically, 0SE<1
* The larger, the better
* E=1: 0 overhead

— Practically, E > 1 if superlinear speedup is achieved

* Previous example: adding N numbers using N PEs
— Speedup: S=0O(N/log N)

— Efficiency: E=S/N=0O(N/logN)/N =0 (1/log N)
* Very low when N is big

20

Example: Image Filtering (e.g. Edge Detection)

* Apply 3x3 template to each pixel of the images

— Stencil computation

i e 10
* Serial performance: T,= 9t_n? 5 E j :
— Each pixel has 9 multiply-add (MA) [~ ==
* Each MA takes constant t_ time IR
— An n x n image for n? pixels 0100
-1
http://en.wikipedia.org/wiki/Edge_detection 21

Edge Detection: Parallel Version

Partitions the image equally into L

R

vertical segments, each with n? / p pixels.

Computation by each PE: T¢=9t.n?/p

Communications by each PE: 2(t, + t n) 0
— The boundary of each segment is 2n pixels

* Two boundaries: left and right
— Each boundary exchange takes t, + tn

2

Parallel performance: 7Tp = 9t.— + 2(t, + twn)
p

©

22

Edge Detection: Parallel Speedup and Efficiency

Serial performance: T,= 9t,_ n?

Parallel performance:

Speedup: S = T/T,

Efficiency: E=S/p

S

E:

n
Tp = 9tc— + 2(ts + twn)

r)

dd

p

Ot .n?

9tc”7j + 2(ts + tyn)

1

(ts+twn)’

1 2P

9t .n2

23

Performance Metrics #5: Cost

Product of parallel execution time and number of PEs: p*T,
* The total amount of time by all PEs to solve the problem

* Cost-optimal : parallel cost = serial cost

— ~0 overhead
— E=0(1),sinceE=T,/p*T,

24

Cost: An Example

Adding n numbers on n PEs
Serial performance: T = O(n)
Parallel performance: T, = O(log n)
Cost: p T, =0O(n log n) o a2 s 4 s s g

'\)’ N ’\T/') '\Z/' \12) =) 14)
Optimal or not: / / / /

— E=n/n*log n = ©(1/log n)

2
— Not cost-optimal. log n - 9/ ”46/

Why not optimal
— Waste of CPU cycles afterstep1
* Only core 0 is doing all the useful work in logN times

25

Topic Overview

* |Introduction

* Performance Metrics for Parallel Systems
— Execution Time, Overhead, Speedup, Efficiency, Cost

@ * Amdahl’s Law

* Scalability of Parallel Systems
— Isoefficiency Metric of Scalability

* Minimum Execution Time and Minimum Cost-Optimal
Execution Time

* Asymptotic Analysis of Parallel Programs

* Other Scalability Metrics
— Scaled speedup, Serial fraction

35

Amdahl’s Law

Amdahl’s law for overall speedup

Overall Speedup

F
(1—F)+§

F = The fraction enhanced

S = The speedup of the enhanced fraction

® The word “law’ is often used by computer scientists when it is an observed
phenomena (e.g, Moore’ s Law) and not a theorem that has been proven in a strict sense.

Gene Amdahl, "Validity of the single processor approach to achieving large-scale
computing capabilities", AFIPS Conference Proceedings, 30:483-485, 1967.

36

Using Amdahl’s Law

Overall speedup if we make 90% of a program run 10 times faster.

F=09 5=10

1 1
Overall Speedup = =

=526
(1-0.9)+ 2 0.1+0.09

Overall speedup if we make 80% of a program run 20% faster.

F=08 5=1.2
1 1
Overall Speedup = = =1.153

(1-08)+ 08 02+0.66

1.2

37

Amdahl’s Law for Parallelism

* The enhanced fraction F is through parallelism, perfect
parallelism with linear speedup

— The speedup for Fis N for N processors

® QOverall speedup

T T - 1
SIN) =7+ F*T F
r (I-F)*T, + * 1-F+—
N N
1
* Speedup upper bound (when N 2>©°): S(N)s1 F

— 1-F: the sequential portion of a program

38

Amdahl’s Law for Parallelism

Speedup

Amdahl's Law

20.00 p—
//
18.00 //
16.00 7 Parallel Portion
/ — 5 0%
14.00 —

/ —_— 0%
— 050

12.00 //
10.00 /
A L1
8.00
6.00 //
4.00 Z
7 —
4 I
"
2.00 e
——
0.00
i ~ < w (Ve ~ < w (Vo) ™~ << w O ~ < w
i ™M (Ve ™~ (%] ~ ™~ < (ey] (a3} w (Vo]
i ™~ (¥} o o o i ™M ~

Number of Processors

65536

Amdahl’s Law Usefulness

 Amdahl’ s law is valid for traditional problems and has several
useful interpretations.

* Some textbooks show how Amdahl’ s law can be used to
increase the efficient of parallel algorithms

— E=(1/((1-F)+F/N))/N = 1/(N(1-F)+F)
* If we increase N, and the problem size in certain rate(so F
increased), we can still keep E constant

e Amdahl’ s law shows that efforts required to further reduce the

fraction of the code that is sequential may pay off in large
performance gains.

* Hardware that achieves even a small decrease in the percent of
things executed sequentially may be considerably more efficient.

40

Amdahl’s Law for Parallelism

* However: for long time, Amdahl’ s law was viewed as a

fatal flaw to the usefulness of parallelism

— Focuses a particular algorithm and problem sizes, and does not
consider that other algorithms with more parallelism may
exist, or scalability issues

— Amdahl’ s law applies only to “standard” problems were
superlinearity can not occur

— Gustafon’ s Law: The proportion of the computations that are

sequential normally decreases as the problem size increases.
* Currently, it is generally accepted by parallel computing
professionals that Amdahl’ s law is not a serious limit
the benefit and future of parallel computing.

Compilers and More: Is Amdahl’s Law Still Relevant? Michael Wolfe,
http://www.hpcwire.com/2015/01/22/compilers-amdahls-law-still-relevant/, 01/22/20%5%

References

* Adapted from slides “Principles of Parallel Algorithm
Design” by Ananth Grama

* “Analytical Modeling of Parallel Systems”, Chapter 5 in
Ananth Grama, Anshul Gupta, George Karypis, and Vipin

Kumar, Introduction to Parallel Computing', “ Addison
Wesley, 2003.

42

