
Lecture:	Distributed	Memory	Machines	and	
Programming

-- MPI	programming	exercise

1

CSCE	569	Parallel	Computing

Department	of	Computer	Science	and	Engineering
Yonghong Yan

yanyh@cse.sc.edu
http://cse.sc.edu/~yanyh



Machines	and	MPI	Examples

• Machines	in	Swearingen	1D39	and	3D22
– https://passlab.github.io/CSCE569/resources/HardwareSoftwa

re.html
• MPI	Examples:
– https://passlab.github.io/CSCE569/resources/mpi_examples/
– wget https://passlab.github.io/CSCE569/resources/mpi_examples/mpihello.c

• mpicc mpihello.c -o	mpihello
• mpirun -np	2	./mpihello

2



Jacobi	in	Assignment	#3

• TODO	#1:	Row-wise	data	distribution
• TODO	#2:	Jacobi	computation
a) Update	begin	and	end	of	the	loop	index	variable
b) Boundary	(ghost	region)	exchange
c) Reduction	for	error
• TODO	#3:	Data	collection,	opposite	of	TODO	#1

3



TODO	#1:	Row-wise	data	distribution

• numprocs =	4	(4	MPI	processes)	and	n	=	100
– n is	divisible	by	numprocs
– How	u	should	be	distributed	into	subarray	and	computed	by	

each	MPI	process

– Processes	0	and	numprocs-1	each	has	only	one	neighbors	and	
each	other	process	has	two	neighbors	(top	and	bottom)

– The	same	for	u	and	f
• To	make	programming	easier	in	TODO	#2

4



TODO	#1:	Row-wise	data	distribution

• Process	0	has	initial	array	and	data	for	the	full	u	and	f
• 0	uses	MPI_Send to	send	subarray	of	u	and	f	to	each	other	

process
– Calculate	num_rows to	send	for	each	other	process
• If	other	is	1	to	numprocs-2:	n/numprocs +	2
• If	other	is	numprocs-1:	n/numprocs +	1

– Calculate	pointer	of	the	subarray	data	region	for	each	other	process
• other	is	1	to	numprocs-1:	u	+	(other*n/numprocs -1)*m

• Other	processes	use	MPI_Recv to	receive	u	and	f	subarray
– Calculate	num_rows to	recv from	process	0
• If	myrank is	1	to	numprocs-2:	n/numprocs +	2
• If	myrank is	numprocs-1:	n/numprocs +	1

– Allocate	memory	to	store	subarray	data	received	from	0
• Make	sure	the	tag	for	Send/Recv pair	are	the	same	and	correct.

5



TODO	#3:	Row-wise	data	collection

6

• Process	will	have	final	result	for	the	full	u
– No	need	to	collect	f
• 0	uses	MPI_Recv to	recv subarray	of	u	from	each	other	process
– Calculate	num_rows to	recv for	each	other	process
• If	other	is	1	to	numprocs-2:	n/numprocs +	2
• If	other	is	numprocs-1:	n/numprocs +	1

– Calculate	pointer	for	storing	the	subarray	data	recved from	each	
other	process
• other	is	1	to	numprocs-1:	u	+	(other*n/numprocs -1)*m

• Other	processes	use	MPI_Send to	send	u	subarray
– Calculate	num_rows to	send	to	process	0
• If	myrank is	1	to	numprocs-2:	n/numprocs +	2
• If	myrank is	numprocs-1:	n/numprocs +	1

– Deallocate	memory	for	the	subarray
• Make	sure	the	tag	for	Send/Recv pair	are	the	same	and	correct.



TODO	#2:	Jacobi	computation

• TODO	#2:	
a) Update	begin	and	end	of	the	loop	index	variable
b) Boundary	(ghost	region)	exchange
c) Reduction	for	error

a) Row-wise	distribution
– i is	1	to	num_rows - 1	

7



TODO	#2:	Jacobi	computation
b) Boundary	exchange	using	MPI_Send/Recv
– 0:	MPI_Send row	num_rows-2	to	proc	1,	MPI_Recv row	num_rows-1	from	proc	1
– 1:	MPI_Recv row	0	from	0	(myrank-1),	MPI_Send row	1	to	0	(myrank-1)
– 1.	MPI_Send row	num_rows-2	to	myrank+1,	MPI_Recv row	num_rows-1	from	

myrank+1
– …
– num_procs-1:	MPI_Recv row	0	from	myrank-1,	MPI_Send row	1	to	myrank -1

– Make	sure	the	tag	for	Send/Recv pair	are	the	same	and	correct.

8



TODO	#2:	Jacobi	computation

c) Reduction	for	error
– Local_error computed	by	each	process
– Sum	up	local_error to	have	error	and	then	broadcast	to	all	

processes

– MPI_Allreduce(&local_error,	&error,	1,	MPI_FLOAT,	MPI_SUM,	
COMM_WORLD);

9



TODO	#2:	Optimizing	Jacobi	computation

b) Boundary	exchange	optimization
– Currently	solution	serializes	message	passing	for	exchange
• 0,	1,	2,	3,	…

– Using	MPI_Isend/Irecv to	have	parallelized	exchange
• MPI_Wait after	firing	Isend/irecv,	before	computation

– Overlap	comm and	computation
• MPI_Wait after	the	computation	loop,	but	before	the	MPI_Allreduce
for	error

10


