
Lecture	11:	Distributed	Memory	
Machines	and	Programming

1

CSCE	569	Parallel	Computing

Department	of	Computer	Science	and	Engineering
Yonghong Yan

yanyh@cse.sc.edu
http://cse.sc.edu/~yanyh

Topics

• Introduction
• Programming	on	shared	memory	system	(Chapter	7)

– OpenMP
• Principles	of	parallel	algorithm	design	(Chapter	3)	
• Programming	on	large	scale	systems	(Chapter	6)

– MPI	(point	to	point	and	collectives)
– Introduction	to	PGAS	languages,	UPC	and	Chapel

• Analysis	of	parallel	program	executions	(Chapter	5)
– Performance	Metrics	for	Parallel	Systems

• Execution	Time,	Overhead,	Speedup,	Efficiency,	Cost	
– Scalability	of	Parallel	Systems
– Use	of	performance	tools

2

Acknowledgement

• Slides	adapted	from	U.C.	Berkeley	course	CS267/EngC233	
Applications	of	Parallel	Computers	by	Jim	Demmel and	
Katherine	Yelick,	Spring	2011
– http://www.cs.berkeley.edu/~demmel/cs267_Spr11/

• And	materials	from	various	sources

3

Shared	Memory	Parallel	Systems:	Multicore	and	
Multi-CPU

• a

4

Node-level	Architecture	and	Programming

• Shared	memory	multiprocessors:	multicore,	SMP,	NUMA
– Deep	memory	hierarchy,	distant	memory	much	more	

expensive	to	access.
– Machines	scale	to	10s	or	100s	of	processors
– Instruction	Level	Parallelism	(ILP),	Data	Level	Parallelism	(DLP)	

and	Thread	Level	Parallelism	(TLP)
• Programming

– OpenMP,	PThreads,	Cilkplus,	etc

5

HPC	Architectures	(TOP500,	Nov	2014)

6

Outline

• Cluster	Introduction
• Distributed	Memory	Architectures

– Properties	of	communication	networks
– Topologies
– Performance	models

• Programming	Distributed	Memory	Machines	using	
Message	Passing
– Overview	of	MPI
– Basic	send/receive	use
– Non-blocking	communication
– Collectives

7

Clusters

• A group	of	linked	computers,	working	together	closely	
so	that	in	many	respects	they	form	a	single	computer.	

• Consists	of	
– Nodes(Front	+	computing)
– Network
– Software:	OS	and	middleware

8

Node Node Node…

High Speed Local Network

Cluster Middle ware

…

9

10

Top	10	of	Top500

11

http://www.top500.org/lists/2016/06/

(Ethernet,Infiniband….)
+ (MPI)

HPC	Beowulf	Cluster

• Master	node:	or	service/front	node	(used	to	interact	with	users	locally	
or	remotely)

• Computing	Nodes	:	performance	computations	
• Interconnect	and	switch	between	nodes:		e.g.	G/10G-bit	Ethernet,	

Infiniband
• Inter-node	programming

– MPI(Message	Passing	Interface)	is	the	most	commonly	used	one.

12

Network	Switch

13

Network	Interface	Card	(NIC)

14

Outline

• Cluster	Introduction
• Distributed	Memory	Architectures

– Properties	of	communication	networks
– Topologies
– Performance	models

• Programming	Distributed	Memory	Machines	using	
Message	Passing
– Overview	of	MPI
– Basic	send/receive	use
– Non-blocking	communication
– Collectives

15

Network	Analogy

• To	have	a	large	number	of	different	transfers	occurring	at	
once,	you	need	a	large	number	of	distinct	wires
– Not	just	a	bus,	as	in	shared	memory

• Networks	are	like	streets:
– Link =	street.
– Switch =	intersection.
– Distances (hops)	=	number	of	blocks	traveled.
– Routing	algorithm =	travel	plan.

• Properties:
– Latency:	how	long	to	get	between	nodes	in	the	network.
– Bandwidth:	how	much	data	can	be	moved	per	unit	time.

• Bandwidth	is	limited	by	the	number	of	wires	and	the	rate	at	which	each	
wire	can	accept	data.

16

Latency	and	Bandwidth

• Latency:	Time	to	travel	from	one	location	to	another	for	a	
vehicle	
– Vehicle	type	(large	or	small	messages)
– Road/traffic	condition,	speed-limit,	etc

• Bandwidth:	How	many	cars	and	how	fast	they	can	travel	
from	one	location	to	another
– Number	of	lanes

17

Performance	Properties	of	a	Network:	Latency

• Diameter:		the	maximum	(over	all	pairs	of	nodes)	of	the	shortest	
path	between	a	given	pair	of	nodes.

• Latency: delay	between	send	and	receive	times
– Latency	tends	to	vary	widely	across	architectures
– Vendors	often	report	hardware	latencies (wire	time)
– Application	programmers	care	about	software	latencies (user	

program	to	user	program)
• Observations:

– Latencies	differ	by	1-2	orders	across	network	designs
– Software/hardware	overhead	at	source/destination	dominate	cost	

(1s-10s	usecs)
– Hardware	latency	varies	with	distance	(10s-100s	nsec per	hop)	but	is	

small	compared	to	overheads
• Latency	is	key	for	programs	with	many	small	messages

18

I second = 10^3 millseconds (ms) = 10^6 microseconds (us) = 10^9 nanoseconds
(ns)

Latency	on	Some	Machines/Networks

8-byte Roundtrip Latency

14.6

6.6

22.1

9.6

18.5

24.2

0

5

10

15

20

25

Elan3/Alpha Elan4/IA64 Myrinet/x86 IB/G5 IB/Opteron SP/Fed

R
ou

nd
tri

p
La

te
nc

y
(u

se
c)

MPI ping-pong

19

• Latencies	shown	are	from	a	ping-pong test	using	MPI
• These	are	roundtrip numbers:	many	people	use	½	of	roundtrip time	to	

approximate	1-way	latency	(which	can’t	easily	be	measured)

End	to	End	Latency	(1/2	roundtrip)	Over	Time

6.9745

36.34

7.2755

3.3

12.0805
9.25

2.6

6.905

11.027

4.81

nCube/2

nCube/2

CM5

CM5 CS2

CS2

SP1

SP2

Paragon

T3D
T3D

SPP

KSR

SPP

Cenju3

T3E

T3E18.916

SP-Power3

Quadrics

Myrinet

Quadrics

1

10

100

1990 1995 2000 2005 2010
Year (approximate)

us
ec

20

• Latency	has	not	improved	significantly,	unlike	Moore’s	Law
•T3E	(shmem)	was	lowest	point	– in	1997

Data from Kathy Yelick, UCB and NERSC

Performance	Properties	of	a	Network:	
Bandwidth

• The	bandwidth	of	a	link	=		#	wires	/	time-per-bit
• Bandwidth	typically	in	Gigabytes/sec	(GB/s),	i.e.,	8*	220 bits	
per	second

• Effective	bandwidth is	usually	lower	than	physical	link	
bandwidth	due	to	packet	overhead.

21

Routing
and control
header

Data
payload

Error code

Trailer

• Bandwidth is important for
applications with mostly large
messages

Bandwidth	on	Some	Networks

Flood Bandwidth for 2MB messages

1504

630

244

857
225

610

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Elan3/Alpha Elan4/IA64 Myrinet/x86 IB/G5 IB/Opteron SP/Fed

Pe
rc

en
t H

W
 p

ea
k

(B
W

 in
 M

B
) MPI

22

• Flood	bandwidth	(throughput	of	back-to-back	2MB	
messages)

Bandwidth	Chart

23
0

50

100

150

200

250

300

350

400

2048 4096 8192 16384 32768 65536 131072
Message Size (Bytes)

Ba
nd

w
id

th
 (M

B/
se

c)

T3E/MPI
T3E/Shmem
IBM/MPI
IBM/LAPI
Compaq/Put
Compaq/Get
M2K/MPI
M2K/GM
Dolphin/MPI
Giganet/VIPL
SysKonnect

Data from Mike Welcome, NERSC

Note:	bandwidth	depends	on	SW,	not	just	HW

Performance	Properties	of	a	Network:	Bisection	
Bandwidth

• Bisection	bandwidth:		bandwidth	across	smallest	cut	that	
divides	network	into	two	equal	halves

• Bandwidth	across	“narrowest” part	of	the	network

24

bisection
cut

not a
bisection
cut

bisection	bw=	link	bw bisection	bw	=	sqrt(n)	*	link	bw

• Bisection	bandwidth	is	important	for	algorithms	in	which	all	
processors	need	to	communicate	with	all	others

Other	Characteristics	of	a	Network

• Topology	(how	things	are	connected)
– Crossbar,	ring,	2-D	and	3-D	mesh	or	torus,	hypercube,	tree,	

butterfly,	perfect	shuffle
• Routing	algorithm:

– Example	in	2D	torus:	all	east-west	then	all	north-south	(avoids	
deadlock).

• Switching	strategy:
– Circuit	switching:	full	path	reserved	for	entire	message,	like	the	

telephone.
– Packet	switching:	message	broken	into	separately-routed	

packets,	like	the	post	office.		
• Flow	control (what	if	there	is	congestion):

– Stall,	store	data	temporarily	in	buffers,	re-route	data	to	other	
nodes,	tell	source	node	to	temporarily	halt,	discard,	etc.

25

Network	Topology

• In	the	past,	there	was	considerable	research	in	network	
topology	and	in	mapping	algorithms	to	topology.
– Key	cost	to	be	minimized:		number	of	“hops” between	nodes	

(e.g.	“store	and	forward”)
– Modern	networks	hide	hop	cost	(i.e.,	“wormhole	routing”),	so	

topology	is	no	longer	a	major	factor	in	algorithm	performance.
• Example:		On	IBM	SP	system,	hardware	latency	varies	from	
0.5	usec to	1.5	usec,	but	user-level	message	passing	latency	
is	roughly	36	usec.

• Need	some	background	in	network	topology
– Algorithms	may	have	a	communication	topology
– Topology	affects	bisection	bandwidth.

26

Linear	and	Ring	Topologies

• Linear	array

– Diameter	=	n-1;	average	distance	~n/3.
– Bisection	bandwidth	=	1	(in	units	of	link	bandwidth).

• Torus	or	Ring

– Diameter	=	n/2;	average	distance	~	n/4.
– Bisection	bandwidth	=	2.
– Natural	for	algorithms	that	work	with	1D	arrays.

27

Meshes	and	Tori	

• Two	dimensional	mesh
– Diameter	=	2	*	(sqrt(n)	– 1)
– Bisection	bandwidth	=			sqrt(n)

• Two	dimensional	torus
– Diameter	=	sqrt(n)
– Bisection	bandwidth	=			2*	sqrt(n)

28

•Generalizes	to	higher	dimensions	
• Cray	XT	(eg Franklin@NERSC)	uses	3D	Torus

• Natural	for	algorithms	that	work	with	2D	and/or	3D	arrays	(matmul)

Hypercubes

• Number	of	nodes	n	=	2d			for	dimension	d.
– Diameter	=	d.	
– Bisection	bandwidth	=	n/2.

• 0d									1d									2d										 3d														 4d

• Popular	in	early	machines	(Intel	iPSC,	NCUBE).
– Lots	of	clever	algorithms.	

• Greycode addressing:
– Each	node	connected	to																																																																						

others	with	1	bit	different.	

29

001000

100

010 011

111

101

110

Trees

• Diameter	=	log	n.
• Bisection	bandwidth	=	1.
• Easy	layout	as	planar	graph.
• Many	tree	algorithms	(e.g.,	summation).
• Fat	trees	avoid	bisection	bandwidth	problem:

– More	(or	wider)	links	near	top.
– Example:	Thinking	Machines	CM-5.

30

Butterflies

• Diameter	=	log	n.
• Bisection	bandwidth	=	n.
• Cost:	lots	of	wires.
• Used	in	BBN	Butterfly.
• Natural	for	FFT.

31

O 1O 1

O 1 O 1

butterfly switch multistage butterfly network

Ex: to get from proc 101 to 110,
Compare bit-by-bit and
Switch if they disagree, else not

Topologies	in	Real	Machines

32

Cray XT3 and XT4 3D Torus (approx)

Blue Gene/L 3D Torus

SGI Altix Fat tree

Cray X1 4D Hypercube*

Myricom (Millennium) Arbitrary

Quadrics (in HP Alpha
server clusters)

Fat tree

IBM SP Fat tree (approx)

SGI Origin Hypercube

Intel Paragon (old) 2D Mesh

BBN Butterfly (really old) Butterfly

ol
de

r		
		n
ew

er

Many	of	these	are	
approximations:
E.g.,	the	X1	is	really	a	
“quad	bristled	
hypercube” and	some	
of	the	fat	trees	are	not	
as	fat	as	they	should	be	
at	the	top

Performance	Models

33

Latency	and	Bandwidth	Model

• Time	to	send	message	of	length	n	is	roughly

• Topology	is	assumed	irrelevant.
• Often	called	“a-bmodel” and	written

• Usually	a >>	b >>	time	per	flop.
– One	long	message	is	cheaper	than	many	short	ones.

– Can	do	hundreds	or	thousands	of	flops	for	cost	of	one	message.
• Lesson:		Need	large	computation-to-communication	ratio	to	be	

efficient.

34

Time = latency + n*cost_per_word
= latency + n/bandwidth

Time = a + n*b

a + n*b << n*(a + 1*b)

Alpha-Beta	Parameters	on	Current	Machines

• These	numbers	were	obtained	empirically	

35

machine a b
T3E/Shm 1.2 0.003
T3E/MPI 6.7 0.003
IBM/LAPI 9.4 0.003
IBM/MPI 7.6 0.004
Quadrics/Get 3.267 0.00498
Quadrics/Shm 1.3 0.005
Quadrics/MPI 7.3 0.005
Myrinet/GM 7.7 0.005
Myrinet/MPI 7.2 0.006
Dolphin/MPI 7.767 0.00529
Giganet/VIPL 3.0 0.010
GigE/VIPL 4.6 0.008
GigE/MPI 5.854 0.00872

a is latency in usecs
b is BW in usecs per Byte

How well does the model
Time = a + n*b

predict actual performance?

Model	Time	Varying	Message	Size	&	Machines

36

Measured	Message	Time						

37

LogP Model

• 4	performance	parameters
– L:	latency	experienced	in	each	communication	event

• time	to	communicate	word	or	small	#	of	words
– o:	send/recv overhead	experienced	by	processor

• time	processor	fully	engaged	in	transmission	or	reception
– g:	gap	between	successive	sends	or	recvs by	a	processor

• 1/g	=	communication	bandwidth
– P:	number	of	processor/memory	modules

38

LogP Parameters:	Overhead	&	Latency

• Non-overlapping	
overhead

• Send	and	recv overhead	
can	overlap

39

P0

P1

osend

L

orecv

P0

P1

osend

orecv

EEL = End-to-End Latency
= osend + L + orecv

EEL = f(osend, L, orecv)
³ max(osend, L, orecv)

LogP Parameters:	gap

• The	Gap	is	the	delay	between	sending	
messages

• Gap	could	be	greater	than	send	overhead
– NIC	may	be	busy	finishing	the	processing	

of	last	message	and			cannot	accept	a	new	
one.

– Flow	control	or	backpressure	on	the	
network	may	prevent	the	NIC	from	
accepting	the	next	message	to	send.

• No	overlap	Þ time	to	send	n	messages	
(pipelined)	=

40

P0

P1

osendgap

gap

(osend + L + orecv - gap) + n*gap = α + n*β

Results:	EEL	and	Overhead

41

0

5

10

15

20

25

T3E
/M

PI

T3E
/Shm

em

T3E
/E-R

eg

IBM/M
PI

IBM/LA
PI

Qua
dri

cs
/M

PI

Qua
dri

cs
/Put

Qua
dri

cs
/G

et

M2K
/M

PI

M2K
/G

M

Dolp
hin

/M
PI

Giga
ne

t/V
IPL

us
ec

Send Overhead (alone) Send & Rec Overhead Rec Overhead (alone) Added Latency

Data from Mike Welcome, NERSC

Send	Overhead	Over	Time

• Overhead	has	not	improved	significantly;	T3D	was	best
– Lack	of	integration;	lack	of	attention	in	software

42

Myrinet2K

Dolphin
T3E

Cenju4

CM5

CM5

Meiko

Meiko
Paragon

T3D

Dolphin

Myrinet

SP3

SCI

Compaq

NCube/2

T3E
0

2

4

6

8

10

12

14

1990 1992 1994 1996 1998 2000 2002
Year (approximate)

us
ec

Data from Kathy Yelick, UCB and NERSC

Limitations	of	the	LogP Model

• The	LogP model	has	a	fixed	cost	for	each	message
– This	is	useful	in	showing	how	to	quickly	broadcast	a	single	word
– Other	examples	also	in	the	LogP papers

• For	larger	messages,	there	is	a	variation	LogGP
– Two	gap	parameters,	one	for	small	and	one	for	large	messages
– The	large	message	gap	is	the	b	in	our	previous	model

• No	topology	considerations	(including	no	limits	for	bisection	
bandwidth)
– Assumes	a	fully	connected	network
– OK	for	some	algorithms	with	nearest	neighbor	communication,	but	

with	“all-to-all” communication	we	need	to	refine	this	further
• This	is	a	flat	model,	i.e.,	each	processor	is	connected	to	the	

network
– Clusters	of	multicores	are	not	accurately	modeled	

43

Summary

• Latency	and	bandwidth	are	two	important	network	metrics
– Latency	matters	more	for	small	messages	than	bandwidth
– Bandwidth	matters	more	for	large	messages	than	bandwidth
– Time	=	a +	n*b

• Communication	has	overhead	from	both	sending	and	
receiving	end
– EEL = End-to-End Latency = osend + L + orecv

• Multiple	communication	can	overlap

44

Historical	Perspective

• Early	distributed	memory	machines	were:
– Collection	of	microprocessors.
– Communication	was	performed	using	bi-directional	queues	

between	nearest	neighbors.
• Messages	were	forwarded	by	processors	on	path.

– “Store	and	forward” networking
• There	was	a	strong	emphasis	on	topology	in	algorithms,	in	
order	to	minimize	the	number	of	hops	=	minimize	time

45

Evolution	of	Distributed	Memory	Machines

• Special	queue	connections	are	being	replaced	by	direct	memory	
access	(DMA):
– Processor	packs	or	copies	messages.
– Initiates	transfer,	goes	on	computing.

• Wormhole	routing	in	hardware:
– Special	message	processors	do	not	interrupt	main	processors	along	

path.
– Long	message	sends	are	pipelined.
– Processors	don’t	wait	for	complete	message	before	forwarding

• Message	passing	libraries	provide	store-and-forward	abstraction:
– Can	send/receive	between	any	pair	of	nodes,	not	just	along	one	

wire.
– Time		depends	on	distance	since	each	processor	along		path	must	

participate.

46

Outline

• Cluster	Introduction
• Distributed	Memory	Architectures

– Properties	of	communication	networks
– Topologies
– Performance	models

• Programming	Distributed	Memory	Machines	using	
Message	Passing
– Overview	of	MPI
– Basic	send/receive	use
– Non-blocking	communication
– Collectives

47

