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Topics

• Introduction
• Programming	on	shared	memory	system	(Chapter	7)

– OpenMP
• Principles	of	parallel	algorithm	design	(Chapter	3)	
• Programming	on	large	scale	systems	(Chapter	6)

– MPI	(point	to	point	and	collectives)
– Introduction	to	PGAS	languages,	UPC	and	Chapel

• Analysis	of	parallel	program	executions	(Chapter	5)
– Performance	Metrics	for	Parallel	Systems

• Execution	Time,	Overhead,	Speedup,	Efficiency,	Cost	
– Scalability	of	Parallel	Systems
– Use	of	performance	tools
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Shared	Memory	Parallel	Systems:	Multicore	and	
Multi-CPU

• a
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Node-level	Architecture	and	Programming

• Shared	memory	multiprocessors:	multicore,	SMP,	NUMA
– Deep	memory	hierarchy,	distant	memory	much	more	

expensive	to	access.
– Machines	scale	to	10s	or	100s	of	processors
– Instruction	Level	Parallelism	(ILP),	Data	Level	Parallelism	(DLP)	

and	Thread	Level	Parallelism	(TLP)
• Programming

– OpenMP,	PThreads,	Cilkplus,	etc
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HPC	Architectures	(TOP500,	Nov	2014)
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Outline

• Cluster	Introduction
• Distributed	Memory	Architectures

– Properties	of	communication	networks
– Topologies
– Performance	models

• Programming	Distributed	Memory	Machines	using	
Message	Passing
– Overview	of	MPI
– Basic	send/receive	use
– Non-blocking	communication
– Collectives
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Clusters

• A group	of	linked	computers,	working	together	closely	
so	that	in	many	respects	they	form	a	single	computer.	

• Consists	of	
– Nodes(Front	+	computing)
– Network
– Software:	OS	and	middleware
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Top	10	of	Top500
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http://www.top500.org/lists/2016/06/



( Ethernet,Infiniband….) 
+ (MPI)

HPC	Beowulf	Cluster

• Master	node:	or	service/front	node	(used	to	interact	with	users	locally	
or	remotely)

• Computing	Nodes	:	performance	computations	
• Interconnect	and	switch	between	nodes:		e.g.	G/10G-bit	Ethernet,	

Infiniband
• Inter-node	programming

– MPI(Message	Passing	Interface)	is	the	most	commonly	used	one.
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Network	Switch
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Network	Interface	Card	(NIC)
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Outline

• Cluster	Introduction
• Distributed	Memory	Architectures

– Properties	of	communication	networks
– Topologies
– Performance	models

• Programming	Distributed	Memory	Machines	using	
Message	Passing
– Overview	of	MPI
– Basic	send/receive	use
– Non-blocking	communication
– Collectives
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Network	Analogy

• To	have	a	large	number	of	different	transfers	occurring	at	
once,	you	need	a	large	number	of	distinct	wires
– Not	just	a	bus,	as	in	shared	memory

• Networks	are	like	streets:
– Link =	street.
– Switch =	intersection.
– Distances (hops)	=	number	of	blocks	traveled.
– Routing	algorithm =	travel	plan.

• Properties:
– Latency:	how	long	to	get	between	nodes	in	the	network.
– Bandwidth:	how	much	data	can	be	moved	per	unit	time.

• Bandwidth	is	limited	by	the	number	of	wires	and	the	rate	at	which	each	
wire	can	accept	data.
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Latency	and	Bandwidth

• Latency:	Time	to	travel	from	one	location	to	another	for	a	
vehicle	
– Vehicle	type	(large	or	small	messages)
– Road/traffic	condition,	speed-limit,	etc

• Bandwidth:	How	many	cars	and	how	fast	they	can	travel	
from	one	location	to	another
– Number	of	lanes
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Performance	Properties	of	a	Network:	Latency

• Diameter:		the	maximum	(over	all	pairs	of	nodes)	of	the	shortest	
path	between	a	given	pair	of	nodes.

• Latency: delay	between	send	and	receive	times
– Latency	tends	to	vary	widely	across	architectures
– Vendors	often	report	hardware	latencies (wire	time)
– Application	programmers	care	about	software	latencies (user	

program	to	user	program)
• Observations:

– Latencies	differ	by	1-2	orders	across	network	designs
– Software/hardware	overhead	at	source/destination	dominate	cost	

(1s-10s	usecs)
– Hardware	latency	varies	with	distance	(10s-100s	nsec per	hop)	but	is	

small	compared	to	overheads
• Latency	is	key	for	programs	with	many	small	messages
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I second = 10^3 millseconds (ms) = 10^6 microseconds (us) = 10^9 nanoseconds 
(ns)



Latency	on	Some	Machines/Networks

8-byte Roundtrip Latency
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• Latencies	shown	are	from	a	ping-pong test	using	MPI
• These	are	roundtrip numbers:	many	people	use	½	of	roundtrip time	to	

approximate	1-way	latency	(which	can’t	easily	be	measured)



End	to	End	Latency	(1/2	roundtrip)	Over	Time
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• Latency	has	not	improved	significantly,	unlike	Moore’s	Law
•T3E	(shmem)	was	lowest	point	– in	1997

Data from Kathy Yelick, UCB and NERSC



Performance	Properties	of	a	Network:	
Bandwidth

• The	bandwidth	of	a	link	=		#	wires	/	time-per-bit
• Bandwidth	typically	in	Gigabytes/sec	(GB/s),	i.e.,	8*	220 bits	
per	second

• Effective	bandwidth is	usually	lower	than	physical	link	
bandwidth	due	to	packet	overhead.
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Bandwidth	on	Some	Networks

Flood Bandwidth for 2MB messages
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• Flood	bandwidth	(throughput	of	back-to-back	2MB	
messages)



Bandwidth	Chart
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Performance	Properties	of	a	Network:	Bisection	
Bandwidth

• Bisection	bandwidth:		bandwidth	across	smallest	cut	that	
divides	network	into	two	equal	halves

• Bandwidth	across	“narrowest” part	of	the	network
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bisection 
cut

not a 
bisection
cut 

bisection	bw=	link	bw bisection	bw	=	sqrt(n)	*	link	bw

• Bisection	bandwidth	is	important	for	algorithms	in	which	all	
processors	need	to	communicate	with	all	others



Other	Characteristics	of	a	Network

• Topology	(how	things	are	connected)
– Crossbar,	ring,	2-D	and	3-D	mesh	or	torus,	hypercube,	tree,	

butterfly,	perfect	shuffle	....
• Routing	algorithm:

– Example	in	2D	torus:	all	east-west	then	all	north-south	(avoids	
deadlock).

• Switching	strategy:
– Circuit	switching:	full	path	reserved	for	entire	message,	like	the	

telephone.
– Packet	switching:	message	broken	into	separately-routed	

packets,	like	the	post	office.		
• Flow	control (what	if	there	is	congestion):

– Stall,	store	data	temporarily	in	buffers,	re-route	data	to	other	
nodes,	tell	source	node	to	temporarily	halt,	discard,	etc.
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Network	Topology

• In	the	past,	there	was	considerable	research	in	network	
topology	and	in	mapping	algorithms	to	topology.
– Key	cost	to	be	minimized:		number	of	“hops” between	nodes	

(e.g.	“store	and	forward”)
– Modern	networks	hide	hop	cost	(i.e.,	“wormhole	routing”),	so	

topology	is	no	longer	a	major	factor	in	algorithm	performance.
• Example:		On	IBM	SP	system,	hardware	latency	varies	from	
0.5	usec to	1.5	usec,	but	user-level	message	passing	latency	
is	roughly	36	usec.

• Need	some	background	in	network	topology
– Algorithms	may	have	a	communication	topology
– Topology	affects	bisection	bandwidth.
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Linear	and	Ring	Topologies

• Linear	array

– Diameter	=	n-1;	average	distance	~n/3.
– Bisection	bandwidth	=	1	(in	units	of	link	bandwidth).

• Torus	or	Ring

– Diameter	=	n/2;	average	distance	~	n/4.
– Bisection	bandwidth	=	2.
– Natural	for	algorithms	that	work	with	1D	arrays.
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Meshes	and	Tori	

• Two	dimensional	mesh
– Diameter	=	2	*	(sqrt(	n	)	– 1)
– Bisection	bandwidth	=			sqrt(n)

• Two	dimensional	torus
– Diameter	=	sqrt(	n	)
– Bisection	bandwidth	=			2*	sqrt(n)
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•Generalizes	to	higher	dimensions	
• Cray	XT	(eg Franklin@NERSC)	uses	3D	Torus

• Natural	for	algorithms	that	work	with	2D	and/or	3D	arrays	(matmul)



Hypercubes

• Number	of	nodes	n	=	2d			for	dimension	d.
– Diameter	=	d.	
– Bisection	bandwidth	=	n/2.

• 0d									1d									2d										 3d														 4d

• Popular	in	early	machines	(Intel	iPSC,	NCUBE).
– Lots	of	clever	algorithms.	

• Greycode addressing:
– Each	node	connected	to																																																																						

others	with	1	bit	different.	
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Trees

• Diameter	=	log	n.
• Bisection	bandwidth	=	1.
• Easy	layout	as	planar	graph.
• Many	tree	algorithms	(e.g.,	summation).
• Fat	trees	avoid	bisection	bandwidth	problem:

– More	(or	wider)	links	near	top.
– Example:	Thinking	Machines	CM-5.
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Butterflies

• Diameter	=	log	n.
• Bisection	bandwidth	=	n.
• Cost:	lots	of	wires.
• Used	in	BBN	Butterfly.
• Natural	for	FFT.
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Topologies	in	Real	Machines
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Performance	Models
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Latency	and	Bandwidth	Model

• Time	to	send	message	of	length	n	is	roughly

• Topology	is	assumed	irrelevant.
• Often	called	“a-bmodel” and	written

• Usually	a >>	b >>	time	per	flop.
– One	long	message	is	cheaper	than	many	short	ones.

– Can	do	hundreds	or	thousands	of	flops	for	cost	of	one	message.
• Lesson:		Need	large	computation-to-communication	ratio	to	be	

efficient.
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Time = latency + n*cost_per_word
= latency + n/bandwidth

Time = a + n*b

a + n*b  <<  n*(a + 1*b)



Alpha-Beta	Parameters	on	Current	Machines

• These	numbers	were	obtained	empirically	
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machine a b
T3E/Shm 1.2 0.003
T3E/MPI 6.7 0.003
IBM/LAPI 9.4 0.003
IBM/MPI 7.6 0.004
Quadrics/Get 3.267 0.00498
Quadrics/Shm 1.3 0.005
Quadrics/MPI 7.3 0.005
Myrinet/GM 7.7 0.005
Myrinet/MPI 7.2 0.006
Dolphin/MPI 7.767 0.00529
Giganet/VIPL 3.0 0.010
GigE/VIPL 4.6 0.008
GigE/MPI 5.854 0.00872

a is latency in usecs
b is BW in usecs per Byte

How well does the model
Time = a + n*b

predict actual performance?



Model	Time	Varying	Message	Size	&	Machines

36



Measured	Message	Time						
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LogP Model

• 4	performance	parameters
– L:	latency	experienced	in	each	communication	event

• time	to	communicate	word	or	small	#	of	words
– o:	send/recv overhead	experienced	by	processor

• time	processor	fully	engaged	in	transmission	or	reception
– g:	gap	between	successive	sends	or	recvs by	a	processor

• 1/g	=	communication	bandwidth
– P:	number	of	processor/memory	modules
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LogP Parameters:	Overhead	&	Latency

• Non-overlapping	
overhead

• Send	and	recv overhead	
can	overlap
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EEL = End-to-End Latency
= osend + L + orecv

EEL = f(osend, L, orecv)
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LogP Parameters:	gap

• The	Gap	is	the	delay	between	sending	
messages

• Gap	could	be	greater	than	send	overhead
– NIC	may	be	busy	finishing	the	processing	

of	last	message	and			cannot	accept	a	new	
one.

– Flow	control	or	backpressure	on	the	
network	may	prevent	the	NIC	from	
accepting	the	next	message	to	send.

• No	overlap	Þ time	to	send	n	messages	
(pipelined)	=

40
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(osend + L + orecv - gap)  + n*gap = α + n*β



Results:	EEL	and	Overhead
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Send	Overhead	Over	Time

• Overhead	has	not	improved	significantly;	T3D	was	best
– Lack	of	integration;	lack	of	attention	in	software

42

Myrinet2K

Dolphin
T3E

Cenju4

CM5

CM5

Meiko

Meiko
Paragon

T3D

Dolphin

Myrinet

SP3

SCI

Compaq

NCube/2

T3E
0

2

4

6

8

10

12

14

1990 1992 1994 1996 1998 2000 2002
Year (approximate)

us
ec

Data from Kathy Yelick, UCB and NERSC



Limitations	of	the	LogP Model

• The	LogP model	has	a	fixed	cost	for	each	message
– This	is	useful	in	showing	how	to	quickly	broadcast	a	single	word
– Other	examples	also	in	the	LogP papers

• For	larger	messages,	there	is	a	variation	LogGP
– Two	gap	parameters,	one	for	small	and	one	for	large	messages
– The	large	message	gap	is	the	b	in	our	previous	model

• No	topology	considerations	(including	no	limits	for	bisection	
bandwidth)
– Assumes	a	fully	connected	network
– OK	for	some	algorithms	with	nearest	neighbor	communication,	but	

with	“all-to-all” communication	we	need	to	refine	this	further
• This	is	a	flat	model,	i.e.,	each	processor	is	connected	to	the	

network
– Clusters	of	multicores	are	not	accurately	modeled	
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Summary

• Latency	and	bandwidth	are	two	important	network	metrics
– Latency	matters	more	for	small	messages	than	bandwidth
– Bandwidth	matters	more	for	large	messages	than	bandwidth
– Time	=	a +	n*b

• Communication	has	overhead	from	both	sending	and	
receiving	end
– EEL = End-to-End Latency = osend + L + orecv

• Multiple	communication	can	overlap

44



Historical	Perspective

• Early	distributed	memory	machines	were:
– Collection	of	microprocessors.
– Communication	was	performed	using	bi-directional	queues	

between	nearest	neighbors.
• Messages	were	forwarded	by	processors	on	path.

– “Store	and	forward” networking
• There	was	a	strong	emphasis	on	topology	in	algorithms,	in	
order	to	minimize	the	number	of	hops	=	minimize	time
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Evolution	of	Distributed	Memory	Machines

• Special	queue	connections	are	being	replaced	by	direct	memory	
access	(DMA):
– Processor	packs	or	copies	messages.
– Initiates	transfer,	goes	on	computing.

• Wormhole	routing	in	hardware:
– Special	message	processors	do	not	interrupt	main	processors	along	

path.
– Long	message	sends	are	pipelined.
– Processors	don’t	wait	for	complete	message	before	forwarding

• Message	passing	libraries	provide	store-and-forward	abstraction:
– Can	send/receive	between	any	pair	of	nodes,	not	just	along	one	

wire.
– Time		depends	on	distance	since	each	processor	along		path	must	

participate.
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Outline

• Cluster	Introduction
• Distributed	Memory	Architectures

– Properties	of	communication	networks
– Topologies
– Performance	models

• Programming	Distributed	Memory	Machines	using	
Message	Passing
– Overview	of	MPI
– Basic	send/receive	use
– Non-blocking	communication
– Collectives
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