
Lecture	10:	Principles	of	Parallel	
Algorithm	Design

1

CSCE	569	Parallel	Computing

Department	of	Computer	Science	and	Engineering
Yonghong Yan

yanyh@cse.sc.edu
http://cse.sc.edu/~yanyh



Last	two	lectures:	Algorithms	and	Concurrency

• Introduction	to	Parallel	Algorithms	
– Tasks	and	decomposition	
– Processes	and	mapping	
• Decomposition	Techniques	
– Recursive	decomposition	(divide-conquer)	
– Data	decomposition	(input,	output,	input+output,	intermediate)

• Terms	and	concepts
– Task	dependency	graph,	task	granularity,	degree	of	concurrency
– Task	interaction	graph,	critical	path
• Examples:
– Dense vector	addition,	matrix	vector	and	matrix	matrix	product
– Database	query,	quicksort,	MIN
– Image	convolution(filtering)	and	Jacobi

2



Today’s	lecture

• Decomposition	Techniques	- continued	
– Exploratory	Decomposition	
– Hybrid	Decomposition	

Mapping	tasks	to	processes/cores/CPU/PEs
• Characteristics	of	Tasks	and	Interactions	
– Task	Generation,	Granularity,	and	Context	
– Characteristics	of	Task	Interactions
• Mapping	Techniques	for	Load	Balancing	
– Static	and	Dynamic	Mapping	
• Methods	for	Minimizing	Interaction	Overheads	
• Parallel	Algorithm	Design	Models	

3



Exploratory	Decomposition	

4

• Decomposition	is	fixed/static	from	the	design
– Data	and	recursive

• Exploration	(search)	of	a	state	space	of	solutions	
– Problem	decomposition	reflects	shape	of	execution	
– Goes	hand-in-hand	with	its	execution
• Examples
– discrete	optimization,	e.g.	0/1	integer	programming
– theorem	proving
– game	playing



Exploratory	Decomposition:	Example	

5

Solve	a	15	puzzle
• Sequence	of	three	moves	from	state	(a)	to	final	state	(d)

• From	an	arbitrary	state,	must	search	for	a	solution



Exploratory	Decomposition:	Example	

6

Solving	a	15	puzzle
• Search
– generate	successor	states	of	the	current	state	
– explore	each	as	an	independent	task



Exploratory	Decomposition	Speedup
Solve	a	15	puzzle

• The	decomposition	behaves	according	to	the	parallel	
formulation
– May change the amount of work done

7Execution	terminate	when	a	solution	is	found



Speculative	Decomposition	

8

• Dependencies	between	tasks	are	not	known	a-priori.	
– Impossible	to	identify	independent	tasks	
• Two	approaches
– Conservative	approaches,	which	identify	independent	tasks	

only	when	they	are	guaranteed	to	not	have	dependencies
• May	yield	little	concurrency

– Optimistic	approaches,	which	schedule	tasks	even	when	they	
may	potentially	be	inter-dependent
• Roll-back	changes	in	case	of	an	error	



Speculative	Decomposition:	Example	

9

Discrete	event	simulation
• Centralized	time-ordered	event	list
– you	get	upàget	readyàdrive to	workàworkàeat lunchà

work	some	moreàdrive backàeat dinneràand sleep
• Simulation
– extract	next	event	in	time	order
– process	the	event	
– if	required,	insert	new	events	into	the	event	list
• Optimistic	event	scheduling
– assume	outcomes	of	all	prior	events
– speculatively	process	next	event
– if	assumption	is	incorrect,	roll	back	its	effects	and	continue



Speculative	Decomposition:	Example	

10

Simulation	of	a	network	of	nodes	
• Simulate	network		behavior	for	various	input	and	node	delays
– The	input	are	dynamically	changing
• Thus	task	dependency	is	unknown

• Speculate	execution:	tasks’	input
– Correct:	parallelism
– Incorrect:	rollback	and	redo



Speculative	vs Exploratory

• Exploratory	decomposition
– The	output	of	multiple	tasks	from	a	branch	is	unknown
– Parallel	program	perform	more,	less	or	same	amount	of	work	

as	serial	program
• Speculative
– The	input	at	a	branch	leading	to	multiple	parallel	tasks	is	

unknown	
– Parallel	program	perform	more	or	same	amount	of	work	as	the	

serial	algorithm

11



Hybrid	Decompositions	

12

Use	multiple	decomposition	techniques	together
• One	decomposition	may	be	not	optimal	for	concurrency
– Quicksort	recursive	decomposition	limits	concurrency	(Why?)

• Combined	recursive	and	data	decomposition	for	MIN



Today’s	lecture

• Decomposition	Techniques	- continued	
– Exploratory	Decomposition	
– Hybrid	Decomposition	

Mapping	tasks	to	processes/cores/CPU/PEs
• Characteristics	of	Tasks	and	Interactions	
– Task	Generation,	Granularity,	and	Context	
– Characteristics	of	Task	Interactions
• Mapping	Techniques	for	Load	Balancing	
– Static	and	Dynamic	Mapping	
• Methods	for	Minimizing	Interaction	Overheads	
• Parallel	Algorithm	Design	Models	

13



Characteristics	of	Tasks	

14

• Theory
– Decomposition:	to	parallelize	theoretically
• Concurrency	available	in	a	problem	

• Practice
– Task	creations,	interactions	and	mapping	to	PEs.	
• Realizing	concurrency	practically

– Characteristics	of	tasks	and	task	interactions
• Impact	choice	and	performance	of	parallelism

• Characteristics	of	tasks	
– Task	generation	strategies
– Task	sizes	(the	amount	of	work,	e.g.	FLOPs)
– Size	of	data	associated	with	tasks



Task	Generation	

15

• Static	task	generation
– Concurrent	tasks	and	task	graph	known	a-priori (before	execution)
– Typically	using	recursive	or	data	decomposition
– Examples
• Matrix	operations
• Graph	algorithms
• Image	processing	applications
• Other	regularly structured	problems

• Dynamic	task	generation
– Computations	formulate	concurrent	tasks	and	task	graph	on	the	fly
• Not	explicit	a	priori,	though	high-level	rules	or	guidelines	known	

– Typically	by	exploratory	or	speculative	decompositions.
• Also	possible	by	recursive	decomposition,	e.g.	quicksort

– A	classic	example:	game	playing
• 15	puzzle	board



Task	Sizes/Granularity	

16

• The	amount	of	work	à amount	of	time	to	complete
– E.g.	FLOPs,	#memory	access
• Uniform:	
– Often	by	even data	decomposition,	i.e.	regular
• Non-uniform
– Quicksort,	the	choice	of	pivot



Size	of	Data	Associated	with	Tasks	

17

• May	be	small	or	large	compared	to	the	task	sizes
– How	relevant	to	the	input	and/or	output	data	sizes
– Example:
• size(input)	<	size(computation),	e.g.,	15	puzzle
• size(input)	=	size(computation)	>	size(output),	e.g.,	min
• size(input)	=	size(output)	<	size(computation),	e.g.,	sort

• Considering	the	efforts	to	reconstruct	the	same	task	
context
– small	data:	small	efforts:	task	can	easily	migrate	to	another	

process
– large	data:	large	efforts:	ties	the	task	to	a	process
• Context	reconstructing	vs communicating
– It	depends



Characteristics	of	Task	Interactions	

• Aspects of interactions
– What: shared data or synchronizations, and sizes of the media
– When: the timing
– Who: with which task(s), and overall topology/patterns
– Do we know details of the above three before execution
– How: involve one or both?
• The implementation concern, implicit or explicit

Orthogonal	classification
• Static	vs.	dynamic
• Regular	vs.	irregular
• Read-only	vs.	read-write
• One-sided	vs.	two-sided

18



Characteristics	of	Task	Interactions	

• Aspects of interactions
– What: shared data or synchronizations, and sizes of the media
– When: the timing
– Who: with which task(s), and overall topology/patterns
– Do we know details of the above three before execution
– How: involve one or both?

• Static interactions
– Partners and timing (and else) are known a-priori
– Relatively simpler to code into programs.
• Dynamic interactions
– The timing or interacting tasks cannot be determined a-priori.
– Harder to code, especially using explicit interaction.

19



Characteristics	of	Task	Interactions	

20

• Aspects of interactions
– What: shared data or synchronizations, and sizes of the media
– When: the timing
– Who: with which task(s), and overall topology/patterns
– Do we know details of the above three before execution
– How: involve one or both?

• Regular interactions
– Definite pattern of the interactions
• E.g. a mesh or ring

– Can be exploited for efficient implementation.
• Irregular	interactions
– lack	well-defined	topologies
– Modeled	as	a	graph



Example	of	Regular Static	Interaction	

21

Image	processing	algorithms:	dithering,	edge	detection
• Nearest	neighbor	interactions	on	a	2D	mesh



Example	of	Irregular Static	Interaction	

22

Sparse	matrix	vector	multiplication



Characteristics	of	Task	Interactions	

23

• Aspects of interactions
– What: shared data or synchronizations, and sizes of the
media

• Read-only	interactions
– Tasks	only	read	data	items	associated	with	other	tasks	
• Read-write	interactions
– Read,	as	well	as	modify	data	items	associated	with	other	tasks.	
– Harder	to	code
• Require	additional	synchronization	primitives
– to	avoid	read-write	and	write-write	ordering	races

Shared	
data

T2T1 write

read



Characteristics	of	Task	Interactions	

24

• Aspects of interactions
– What: shared data or synchronizations, and sizes of the media
– When: the timing
– Who: with which task(s), and overall topology/patterns
– Do we know details of the above three before execution
– How: involve one or both?
• The implementation concern, implicit or explicit

• One-sided
– initiated	&	completed	independently	by	1	of	2	interacting	tasks
• GET	and	PUT

• Two-sided
– both	tasks	coordinate	in	an	interaction
• SEND	+	RECV	



Today’s	lecture

• Decomposition	Techniques	- continued	
– Exploratory	Decomposition	
– Hybrid	Decomposition	

Mapping	tasks	to	processes/cores/CPU/PEs
• Characteristics	of	Tasks	and	Interactions	
– Task	Generation,	Granularity,	and	Context	
– Characteristics	of	Task	Interactions
• Mapping	Techniques	for	Load	Balancing	
– Static	and	Dynamic	Mapping	
• Methods	for	Minimizing	Interaction	Overheads	
• Parallel	Algorithm	Design	Models	

25



Mapping	Techniques	

26

• Parallel	algorithm	design
– Program	decomposed
– Characteristics	of	task	and	interactions	
identified

Assign	large	amount	of	concurrent	tasks	to	
equal	or	relatively	small	amount	of	processes	
for	execution
• Though	often	we	do	1:1	mapping



Mapping	Techniques	

27

• Goal	of	mapping:	minimize	overheads
– There	is	cost	to	do	parallelism
• Interactions and idling(serialization)

• Contradicting	objectives:	interactions	vs idling	
– Idling	(serialization)	ñ:	insufficient	parallelism
– Interactions	ñ:	excessive	concurrency

– E.g.	Assigning	all	work	to	one	processor	trivially	
minimizes	interaction	at	the	expense	of	significant	
idling.	



Mapping	Techniques	for	Minimum	Idling	

28

• Execution:	alternating	stages	of	computation	and	interaction

• Mapping	must	simultaneously	minimize	idling	and	load	balance
– Idling	means	not	doing	useful	work
– Load	balance:	doing	the	same	amount	of	work
• Merely	balancing	load	does	not	minimize	idling

A	poor	mapping,	
50%	waste



Mapping	Techniques	for	Minimum	Idling

Static	or	dynamic mapping
• Static	Mapping
– Tasks	are	mapped	to	processes	a-prior	
– Need	a	good	estimate	of	task	sizes
– Optimal	mapping	may	be	NP	complete

• Dynamic	Mapping
– Tasks	are	mapped	to	processes	at	runtime
– Because:
• Tasks	are	generated	at	runtime
• Their	sizes	are	not	known.	

• Other	factors	determining	the	choice	of	mapping	techniques
– the	size	of	data	associated	with	a	task
– the	characteristics	of	inter-task	interactions
– even	the	programming	models	and	target	architectures

29



Schemes	for	Static	Mapping	

• Mappings	based	on	data	decomposition
– Mostly	1-1	mapping

• Mappings	based	on	task	graph	partitioning	
• Hybrid	mappings

30



Mappings	Based	on	Data	Partitioning	

31

• Partition	the	computation	using	a	combination	of	
– Data	decomposition
– The	``owner-computes''	rule

Example:	1-D	block	distribution of	2-D	dense	matrix	
1-1	mapping	of	task/data	and	process



Block	Array	Distribution	Schemes	

32

Multi-dimensional	Block	distribution

In	general,	higher	dimension	decomposition	allows	the	use	of	larger	#	of	processes.	



Block	Array	Distribution	Schemes:	Examples	

Multiplying	two	dense	matrices:	A	*	B	=	C
• Partition	the	output	matrix	C using	a	block	decomposition	
– Load	balance:	Each	task	compute	the	same	number	of	

elements	of	C
• Note:	each	element	of	C	corresponds	to	a	single	dot	product

– The	choice	of	precise	decomposition:	1-D	(row/col)	or	2-D
• Determined	by	the	associated	communication	overhead

33



Block	Distribution	and	Data	Sharing	for	Dense	
Matrix	Multiplication

34

X																										=

A									X												B												=														
C

P0
P1
P2
P3

X																										=

A									X												B												=														
C

P0	P1	P2	P3

• Row-based	1-D

• Column-based	1-D

• Row/Col-based	2-D



Cyclic	and	Block	Cyclic	Distributions	

• Consider	a	block	distribution	for	LU	decomposition	(Gaussian	
Elimination)
– The	amount	of	computation	per	data	item	varies
– Block	decomposition	would	lead	to	significant	load	imbalance

35



LU	Factorization	of	a	Dense	Matrix	

1:

2:

3:

4:

5:

6:

7:

8:

9:

10:

11:

12:

13:

14:

36

A	decomposition	of	LU	factorization	into	14	tasks



Block	Distribution	for	LU	

Notice	the	significant	load	imbalance

37



Block	Cyclic	Distributions	

• Variation	of	the	block	distribution	scheme
– Partition	an	array	into	many	more	blocks	(i.e.	tasks)	than	the	

number	of	available	processes.	
– Blocks	are	assigned	to	processes	in	a	round-robin	manner	so	

that	each	process	gets	several	non-adjacent	blocks.	
– N-1	mapping	of	tasks	to	processes
• Used	to	alleviate	the	load-imbalance	and	idling	problems.	

38



Block-Cyclic	Distribution	for	Gaussian	
Elimination	

39

• Active	submatrix shrinks	as	elimination	progresses
• Assigning	blocks	in	a	block-cyclic	fashion
– Each	PEs	receives	blocks	from	different	parts	of	the	matrix
– In	one	batch	of	mapping,	the	PE	doing	the	most	will	most	likely	

receive	the	least	in	the	next	batch



Block-Cyclic	Distribution	

• A	cyclic	distribution:	a	special	case	with	block	size	=	1	
• A	block	distribution:	a	special	case	with	block	size	= n/p
• n is	the	dimension	of	the	matrix	and	p is	the	#of	processes.	

40



Block	Partitioning	and	Random	Mapping

Sparse	matrix	computations
• Load	imbalance	using	block-cyclic	partitioning/mapping
– more	non-zero	blocks	to	diagonal	processes	P0,	P5,	P10,	and	

P15	than	others
– P12	gets	nothing

41



Block	Partitioning	and	Random	Mapping

42



Graph	Partitioning	Based	Data	Decomposition	

• Array-based	partitioning	and	static	mapping
– Regular	domain,	i.e.	rectangular,	mostly	dense	matrix
– Structured	and	regular	interaction	patterns	
– Quite	effective	in	balancing	the	computations	and	minimizing	

the	interactions	

• Irregular	domain
– Spars	matrix-related
– Numerical	simulations	of	physical	phenomena	
• Car,	water/blood	flow,	geographic

• Partition	the	irregular	domain	so	as	to
– Assign	equal	number	of	nodes	to	each	process
– Minimizing	edge	count	of	the	partition.	

43



Partitioning	the	Graph	of	Lake	Superior	

Random	Partitioning

Partitioning	for	minimum	edge-cut.

44

• Each	mesh	point	has	the	
same	amount	of	
computation
– Easy	for	load	balancing
• Minimize	edges
• Optimal	partition	is	an	
NP-complete	
– Use	heuristics	



Mappings	Based	on	Task	Paritioning	

• Schemes	for	Static	Mapping	
– Mappings	based	on	data	partitioning
• Mostly	1-1	mapping

– Mappings	based	on	task	graph	partitioning	
– Hybrid	mappings

• Data	partitioning
– Data decomposition	and	then	1-1	mapping	of	tasks	to	PEs

Partitioning	a	given	task-dependency	graph	across	processes	
• An	optimal	mapping	for	a	general	task-dependency	graph
– NP-complete	problem.	
• Excellent	heuristics	exist	for	structured	graphs.	

45



Mapping	a	Binary	Tree	Dependency	Graph

46

Mapping	dependency	graph	of	quicksort	to	
processes	in	a	hypercube

• Hypercube:	n-dimensional	analogue	of	a	square	and	a	cube
– node	numbers	that	differ	in	1	bit	are	adjacent	



Mapping	a	Sparse	Graph	

Sparse	matrix	vector	multiplication
Using	data	partitioning

47



Mapping	a	Sparse	Graph	

Sparse	matrix	vector	multiplication
Using	task	graph	partitioning

48

13	items	to	
communicate

Process	0 0,4,5,8
Process	1 1,2,3,7

Process	2 6,9,10,11



Hierarchical/Hybrid	Mappings	

• A single	mapping	is	inadequate.	
– E.g.	task	graph	mapping	of	the	binary	tree	(quicksort)	cannot	

use	a	large	number	of	processors.	
• Hierarchical	mapping
– Task	graph	mapping	at	the	top	level
– Data	partitioning	within	each	level.	

49



Today’s	lecture

• Decomposition	Techniques	- continued	
– Exploratory	Decomposition	
– Hybrid	Decomposition	

Mapping	tasks	to	processes/cores/CPU/PEs
• Characteristics	of	Tasks	and	Interactions	
– Task	Generation,	Granularity,	and	Context	
– Characteristics	of	Task	Interactions
• Mapping	Techniques	for	Load	Balancing	
– Static	Mapping
– Dynamic	Mapping	
• Methods	for	Minimizing	Interaction	Overheads	
• Parallel	Algorithm	Design	Models	

50



Schemes	for	Dynamic	Mapping	

• Also	referred	to	as	dynamic	load	balancing
– Load	balancing	is	the	primary	motivation	for	dynamic	

mapping.	
• Dynamic	mapping	schemes	can	be
– Centralized
– Distributed	

51



Centralized	Dynamic	Mapping	

• Processes	are	designated	as	masters or	slaves
– Workers	(slave	is	politically	incorrect)	
• General	strategies
– Master	has	pool	of	tasks	and	as	central	dispatcher
– When	one	runs	out	of	work,	it	requests	from	master	for	more	work.	
• Challenge
– When	process	#	increases,	master	may	become	the	bottleneck.	
• Approach
– Chunk	scheduling:	a	process	picks	up	multiple	tasks	at	once	
– Chunk	size:
• Large	chunk	sizes	may	lead	to	significant	load	imbalances	as	well
• Schemes	to	gradually	decrease	chunk	size	as	the	computation	
progresses.	

52



Distributed	Dynamic	Mapping	

• All	processes	are	created	equal
– Each	can	send	or	receive	work	from	others	
• Alleviates	the	bottleneck	in	centralized	schemes.	

• Four	critical	design	questions:
– how	are	sending	and	receiving	processes	paired	together
– who	initiates	work	transfer
– how	much	work	is	transferred
– when	is	a	transfer	triggered?	
• Answers	are	generally	application	specific.	

• Workstealing

53



Today’s	lecture

• Decomposition	Techniques	- continued	
– Exploratory	Decomposition	
– Hybrid	Decomposition	

Mapping	tasks	to	processes/cores/CPU/PEs
• Characteristics	of	Tasks	and	Interactions	
– Task	Generation,	Granularity,	and	Context	
– Characteristics	of	Task	Interactions
• Mapping	Techniques	for	Load	Balancing	
– Static	and	Dynamic	Mapping	
• Methods	for	Minimizing	Interaction	Overheads	
• Parallel	Algorithm	Design	Models	

54



Minimizing	Interaction	Overheads	

Rules	of	thumb
• Maximize	data	locality
– Where	possible,	reuse	intermediate	data
– Restructure	computation	so	that	data	can	be	reused	in	smaller	

time	windows.	
• Minimize	volume	of	data	exchange
– partition	interaction	graph	to	minimize	edge	crossings
• Minimize	frequency	of	interactions
– Merge	multiple	interactions	to	one,	e.g.	aggregate	small	msgs.	
• Minimize	contention	and	hot-spots
– Use	decentralized	techniques
– Replicate	data	where	necessary

55



Minimizing	Interaction	Overheads	(continued)	

Techniques
• Overlapping	computations	with	interactions
– Use	non-blocking	communications
– Multithreading
– Prefetching	to	hide	latencies.	
• Replicating	data	or	computations	to	reduce	communication	
• Using	group	communications	instead	of	point-to-point	
primitives.	

• Overlap	interactions	with	other	interactions.	

56



Today’s	lecture

• Decomposition	Techniques	- continued	
– Exploratory	Decomposition	
– Hybrid	Decomposition	

Mapping	tasks	to	processes/cores/CPU/PEs
• Characteristics	of	Tasks	and	Interactions	
– Task	Generation,	Granularity,	and	Context	
– Characteristics	of	Task	Interactions
• Mapping	Techniques	for	Load	Balancing	
– Static	and	Dynamic	Mapping	
• Methods	for	Minimizing	Interaction	Overheads	
• Parallel	Algorithm	Design	Models	

57



Parallel	Algorithm	Models	

• Ways	of	structuring	parallel	algorithm
– Decomposition	techniques
– Mapping	technique
– Strategy	to	minimize	interactions.	

• Data	Parallel	Model
– Each	task	performs	similar	operations	on	different	data
– Tasks	are	statically	(or	semi-statically)	mapped	to	processes
• Task	Graph	Model
– Use	task	dependency	graph to	guide	the	model	for	better	

locality	or	low	interaction	costs.	

58



Parallel	Algorithm	Models	(continued)	

• Master-Slave	Model
– Master	(one	or	more)	generate	work
– Dispatch	work	to	workers.	
– Dispatching	may	be	static	or	dynamic.	
• Pipeline	/	Producer-Consumer	Model
– Stream	of	data	is	passed	through	a	succession	of	processes,	

each	of	which	perform	some	task	on	it
– Multiple	stream	concurrently
• Hybrid	Models
– Applying	multiple	models	hierarchically
– Applying	multiple	models	sequentially	to	different	phases	of	a	

parallel	algorithm.	

59



References

• Adapted	from	slides	“Principles	of	Parallel	Algorithm	
Design”	by	Ananth Grama

• Based	on	Chapter	3	of	“Introduction	to	Parallel	Computing”	
by	Ananth Grama,	Anshul Gupta,	George	Karypis,	and	Vipin
Kumar.	Addison	Wesley,	2003

60


