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Last two lectures: Algorithms and Concurrency

* Introduction to Parallel Algorithms
— Tasks and decomposition
— Processes and mapping

* Decomposition Techniques
— Recursive decomposition (divide-conquer)
— Data decomposition (input, output, input+output, intermediate)

* Terms and concepts
— Task dependency graph, task granularity, degree of concurrency
— Task interaction graph, critical path

* Examples:
— Dense vector addition, matrix vector and matrix matrix product
— Database query, quicksort, MIN
— Image convolution(filtering) and Jacobi



Today’s lecture

«@ Decomposition Techniques - continued
— Exploratory Decomposition

Mapping tasks to processes/cores/CPU/PEs

®* Characteristics of Tasks and Interactions
— Task Generation, Granularity, and Context
— Characteristics of Task Interactions

* Mapping Techniques for Load Balancing
— Static and Dynamic Mapping

* Methods for Minimizing Interaction Overheads
* Parallel Algorithm Design Models



Exploratory Decomposition

* Decomposition is fixed/static from the design
— Data and recursive

* Exploration (search) of a state space of solutions
— Problem decomposition reflects shape of execution
— Goes hand-in-hand with its execution

* Examples
— discrete optimization, e.g. 0/1 integer programming
— theorem proving
— game playing



Exploratory Decomposition: Example

Solve a 15 puzzle
* Seqguence of three moves from state (a) to final state (d)
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®* From an arbitrary state, must search for a solution



Exploratory Decomposition: Example

Solving a 15 puzzle

* Search
— generate successor states of the current state
— explore each as an independent task
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Exploratory Decomposition Speedup

Solve a 15 puzzle

* The decomposition behaves according to the parallel
formulation
— May change the amount of work done

@, @,
\ Solution/
Total serial work: 2m+1 Total serial work: m
Total parallel work: 1 Total parallel work: 4m

(a) (b)

Execution terminate when a solution is found



Speculative Decomposition

* Dependencies between tasks are not known a-priori.
— Impossible to identify independent tasks

* Two approaches

— Conservative approaches, which identify independent tasks
only when they are guaranteed to not have dependencies

* May vield little concurrency

— Optimistic approaches, which schedule tasks even when they
may potentially be inter-dependent

* Roll-back changes in case of an error



Speculative Decomposition: Example

Discrete event simulation

* Centralized time-ordered event list
— you get up 2> get ready—>drive to work—>work—>eat lunch—>
work some more—2>drive back—=>eat dinner—->and sleep
* Simulation
— extract next event in time order
— process the event
— if required, insert new events into the event list

* Optimistic event scheduling
— assume outcomes of all prior events
— speculatively process next event
— if assumption is incorrect, roll back its effects and continue



Speculative Decomposition: Example

Simulation of a network of nodes

* Simulate network behavior for various input and node delays
— The input are dynamically changing
* Thus task dependency is unknown
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System Components

* Speculate execution: tasks’ input
— Correct: parallelism
— Incorrect: rollback and redo
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Speculative vs Exploratory

* Exploratory decomposition
— The output of multiple tasks from a branch is unknown
— Parallel program perform more, less or same amount of work
as serial program
* Speculative

— The input at a branch leading to multiple parallel tasks is
unknown

— Parallel program perform more or same amount of work as the
serial algorithm
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Hybrid Decompositions

Use multiple decomposition techniques together

®* One decomposition may be not optimal for concurrency
— Quicksort recursive decomposition limits concurrency (Why?)

[5[12[11] 1 ]10]6 |8 |3 [7]|4a|o[2]

[5 [12]11]10]6[8 [ 7 [ 9]

®* Combined recursive and data decomposition for MIN
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Today’s lecture

* Decomposition Techniques - continued
— Exploratory Decomposition

Mapping tasks to processes/cores/CPU/PEs

@™ Characteristics of Tasks and Interactions
— Task Generation, Granularity, and Context
— Characteristics of Task Interactions

* Mapping Techniques for Load Balancing
— Static and Dynamic Mapping

* Methods for Minimizing Interaction Overheads
* Parallel Algorithm Design Models
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Characteristics of Tasks

* Theory
— Decomposition: to parallelize theoretically
* Concurrency available in a problem

® Practice

— Task creations, interactions and mapping to PEs.

e Realizing concurrency practically
— Characteristics of tasks and task interactions
* Impact choice and performance of parallelism

* Characteristics of tasks
— Task generation strategies
— Task sizes (the amount of work, e.g. FLOPs)
— Size of data associated with tasks
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Task Generation

* Static task generation
— Concurrent tasks and task graph known a-priori (before execution)
— Typically using recursive or data decomposition
— Examples
* Matrix operations
* Graph algorithms
* Image processing applications
e Other regularly structured problems

* Dynamic task generation
— Computations formulate concurrent tasks and task graph on the fly
* Not explicit a priori, though high-level rules or guidelines known
— Typically by exploratory or speculative decompositions.
* Also possible by recursive decomposition, e.g. quicksort
— A classic example: game playing
e 15 puzzle board
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Task Sizes/Granularity

* The amount of work = amount of time to complete

— E.g. FLOPs, #memory access

* Uniform:

— Often by even data decomposition, i.e. regular

* Non-uniform
— Quicksort, the choice of pivot
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Size of Data Associated with Tasks

* May be small or large compared to the task sizes
— How relevant to the input and/or output data sizes
— Example:
* size(input) < size(computation), e.g., 15 puzzle
* size(input) = size(computation) > size(output), e.g., min
* size(input) = size(output) < size(computation), e.g., sort
* Considering the efforts to reconstruct the same task

context

— small data: small efforts: task can easily migrate to another
process

— large data: large efforts: ties the task to a process

* Context reconstructing vs communicating
— It depends
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Characteristics of Task Interactions

* Aspects of interactions

— What: shared data or synchronizations, and sizes of the media
— When: the timing

— Who: with which task(s), and overall topology/patterns

— Do we know details of the above three before execution
— How: involve one or both?

 The implementation concern, implicit or explicit

Orthogonal classification

* Static vs. dynamic

®* Regular vs. irregular

* Read-only vs. read-write
®* One-sided vs. two-sided
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Characteristics of Task Interactions

* Aspects of interactions

— Do we know details of the above three before execution

® Static interactions
— Partners and timing (and else) are known a-priori
— Relatively simpler to code into programs.

®* Dynamic interactions
— The timing or interacting tasks cannot be determined a-priori.
— Harder to code, especially using explicit interaction.

19



Characteristics of Task Interactions

* Aspects of interactions

— When: the timing
— Who: with which task(s), and overall topology/patterns

* Regular interactions
— Definite pattern of the interactions
* E.g. amesh orring
— Can be exploited for efficient implementation.

* Irregular interactions
— lack well-defined topologies
— Modeled as a graph
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Example of Regular Static Interaction

Image processing algorithms: dithering, edge detection

* Nearest neighbor interactions on a 2D mesh
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Example of Irregular Static Interaction

Sparse matrix vector multiplication
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Characteristics of Task Interactions

* Aspects of interactions

— What: shared data or synchronizations, and sizes of the
media

* Read-only interactions \
— Tasks only read data items associated with other tasks

* Read-write interactions
— Read, as well as modify data items associated with other tasks.
— Harder to code

e Require additional synchronization primitives
— to avoid read-write and write-write ordering races
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Characteristics of Task Interactions

* Aspects of interactions

— How: involve one or both?
 The implementation concern, implicit or explicit

®* One-sided
— initiated & completed independently by 1 of 2 interacting tasks
* GET and PUT sender Recever
* Two-sided [ |

— both tasks coordinate in an interaction
e SEND + RECV

24
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Today’s lecture

* Decomposition Techniques - continued
— Exploratory Decomposition

Mapping tasks to processes/cores/CPU/PEs

®* Characteristics of Tasks and Interactions
— Task Generation, Granularity, and Context
— Characteristics of Task Interactions

@ Mapping Techniques for Load Balancing
— Static and Dynamic Mapping

* Methods for Minimizing Interaction Overheads
* Parallel Algorithm Design Models
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Mapping Techniques

* Parallel algorithm design
— Program decomposed

— Characteristics of task and interactions
identified

Assign large amount of concurrent tasks to

equal or relatively small amount of processes
for execution

* Though often we do 1:1 mapping
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Mapping Techniques

* Goal of mapping: minimize overheads
— There is cost to do parallelism
* Interactions and idling(serialization)

* Contradicting objectives: interactions vs idling
— |ldling (serialization) 1': insufficient parallelism
— Interactions 1I': excessive concurrency

— E.g. Assigning all work to one processor trivially
minimizes interaction at the expense of significant
idling.
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Mapping Techniques for Minimum ldling

* Execution: alternating stages of computation and interaction

* Mapping must simultaneously minimize idling and load balance
— Idling means not doing useful work
— Load balance: doing the same amount of work

* Merely balancing load does not minimize idling
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Mapping Techniques for Minimum ldling

Static or dynamic mapping

* Static Mapping
— Tasks are mapped to processes a-prior
— Need a good estimate of task sizes
— Optimal mapping may be NP complete

* Dynamic Mapping
— Tasks are mapped to processes at runtime
— Because:
e Tasks are generated at runtime
* Their sizes are not known.

* Other factors determining the choice of mapping techniques
— the size of data associated with a task
— the characteristics of inter-task interactions
— even the programming models and target architectures

29



Schemes for Static Mapping

* Mappings based on data decomposition
— Mostly 1-1 mapping

* Mappings based on task graph partitioning
* Hybrid mappings
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Mappings Based on Data Partitioning

* Partition the computation using a combination of
— Data decomposition
— The owner-computes' rule

Example: 1-D block distribution of 2-D dense matrix
1-1 mapping of task/data and process

row-wise distribution column-wise distribution
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Block Array Distribution Schemes
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In general, higher dimension decomposition allows the use of larger # of processes.
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Block Array Distribution Schemes: Examples

Multiplying two dense matrices: A *B=C

* Partition the output matrix C using a block decomposition
— Load balance: Each task compute the same number of
elements of C
* Note: each element of C corresponds to a single dot product
— The choice of precise decomposition: 1-D (row/col) or 2-D
* Determined by the associated communication overhead

A(ll) A(12) A(13) B(1ll) B(12) B(13) C(ll) C(12) C(13)
A(21) A(22) A(23)| * |B(21) B(22) B(23)] = |C(21) C(22) C(23)
A(31) A(32) A(33) B(31l) B(32) B(33) C(31) C(32) C(33)
C(1ll) = A(11l)*B(1ll) + A(12)*B(21) + A(1l3)*B(31)

C(21) = A(21)*B(1ll) + A(22)*B(21) + A(23)*B(31)

C(31) = A(31)*B(1ll) + A(32)*B(21) + A(33)*B(31)
C(l2) = A(1l1l)*B(1l2) + A(1l2)*B(22) + A(1l3)*B(32)
C(22) = A(21)*B(12) + A(22)*B(22) + A(23)*B(32)
C(32) = A(31)*B(12) + A(32)*B(22) + A(33)*B(32)
C(13) = A(1ll)*B(1l3) + A(12)*B(23) + A(13)*B(33)
C(23) = A(21)*B(13) + A(22)*B(23) + A(23)*B(33) 33

C(33) = A(31)*B(13) + A(32)*B(23) + A(33)*B(33)



Block Distribution and Data Sharing for Dense
Matrix Multiplication
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Cyclic and Block Cyclic Distributions

* Consider a block distribution for LU decomposition (Gaussian
Elimination)

— The amount of computation per data item varies
— Block decomposition would lead to significant load imbalance

-

.Factorization . Swap . Triangular Solve

M M M M
M M ’l M M 1. procedure COL LU (A)
2. begin
3. for kK := 1 to n do
4. for 7 := k to n do
M M M M 5. Alj, kl:= Alj, k1/Alk, kIl:
6. endfor;
A 4 v 7. for j := k + 1 to n do
M 8. for i1 := k + 1 to n do
M M M 9. Ali, j] := Ali, j] - Ali, k) x ALk, jl;
10. endfor;
Matrix 11./* endfor;
Multiplicati

After this iteration, column A[k + 1 : n, k] is logically the kth
column of L and row A[k, k : n] is logically the kth row of U.
*/
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LU Factorization of a Dense Matrix

A decomposition of LU factorization into 14 tasks

Arn Aip A Lin O 0 Uig Ui Uigs
Asq Ass Asz | — | La2i Las O : 0 Usa Usgs
Az Az Ass Lzy L3a L3gs 0 0 Usgs
10 A11 — LU 6: Aso=Aos— Lo Ui |11 L35 = A3,2U2_,21
2: Lyg = A2,1U1_,11 71 Aso=As2— L3 Urs |12 Uss = Ly A5 5
3: Lsy = A3 Uy 8. Ay =Asz—Ls1Uiz |13: Az = As3 — L3 Uz 3
4: Uy, = L71A1 9. A33=A33— L31U13 |14 As s — L3 3Us 3
5. Uiz = Ll_jz‘h,s 100 Ay 5 — Lo oUs o
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Block Distribution for LU

Notice the significant load imbalance
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Block Cyclic Distributions

* Variation of the block distribution scheme

— Partition an array into many more blocks (i.e. tasks) than the
number of available processes.

— Blocks are assigned to processes in a round-robin manner so
that each process gets several non-adjacent blocks.

— N-1 mapping of tasks to processes

* Used to alleviate the load-imbalance and idling problems.

REAL, DIMENSIOH({(N) :: A, B
REAK, DIMENSIOHN{12) :: C
IHPFS DISTRIBUTE A(CYCLIC)
IHPFS$ DISTRIBUTE B (CYCLIC({4))
IHPFS DISTRIBUTE C (BLOCK)
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Block-Cyclic Distribution for Gaussian
Elimination

* Active submatrix shrinks as elimination progresses

* Assigning blocks in a block-cyclic fashion
— Each PEs receives blocks from different parts of the matrix

— In one batch of mapping, the PE doing the most will most likely
receive the least jn the next batch
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Block-Cyclic Distribution

® A cyclic distribution: a special case with block size =1

® A block distribution: a special case with block size = n/p

e nisthe dimension of the matrix and p is the #of processes.
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Block Partitioning and Random Mapping

Sparse matrix computations
* Load imbalance using block-cyclic partitioning/mapping

— more non-zero blocks to diagonal processes PO, P5, P10, and

P15 than others
— P12 gets nothing
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Block Partitioning and Random Mapping

V=10,1,2,3,4,5,6,7,8,9, 10, 11]

random(V)=[8,2,6,0,3,7,11, 1,9, 5,4, 10]

mapping=8 26 037 11195410
I I J J |

Po Py Py P

D1 23 4567 891001112131415 NG 401131 X 7142159 51512
I'II 4]
| 10
} 14 7 P, P
3 |
H 5
3 I3 2 3 3
(4] i 'l I) 'h
7 9
N 3
u 15 ,
i) 4 l"'- Pll P|;|
| I
2 7
':\ 12 i » »
.3 2 {l P13 ’I;
5 | A . v e

(a) (b) (c)



Graph Partitioning Based Data Decomposition

* Array-based partitioning and static mapping
— Regular domain, i.e. rectangular, mostly dense matrix
— Structured and regular interaction patterns

— Quite effective in balancing the computations and minimizing
the interactions

® Irregular domain
— Spars matrix-related
— Numerical simulations of physical phenomena
 Car, water/blood flow, geographic

* Partition the irregular domain so as to
— Assign equal number of nodes to each process
— Minimizing edge count of the partition.
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Partitioning the Graph of Lake Superior

* Each mesh point has the
same amount of
computation
— Easy for load balancing

* Minimize edges
* Optimal partition is an Random Partitioning

NP-complete
— Use heuristics
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Mappings Based on Task Paritioning

* Schemes for Static Mapping
— Mappings based on data partitioning
* Mostly 1-1 mapping
— Mappings based on task graph partitioning
— Hybrid mappings

* Data partitioning
— Data decomposition and then 1-1 mapping of tasks to PEs

Partitioning a given task-dependency graph across processes

* An optimal mapping for a general task-dependency graph
— NP-complete problem.

* Excellent heuristics exist for structured graphs.
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Mapping a Binary Tree Dependency Graph

Mapping dependency graph of quicksort to

processes in a hypercube

* Hypercube: n-dimensional analogue of a square and a cube
— node numbers that differ in 1 bit are adjacent
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Mapping a Sparse Graph

Sparse matrix vector multiplication
Using data partitioning

A " 17 items to
012345678 91011 communicate
0 [o/@ . ®
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L J( J z
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® o0
8 () ® o (o
Process 2 °°e oe C2=(04,5,6)
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Mapping a Sparse Graph

Sparse matrix vector multiplication
Using task graph partitioning

\
A b 17 items to 1
01234567891011 _ communicate 1
0 o [ [® ® ] |
Process0 (%905l o'e -l [ C0=(45678) I
e - Il C1=(0,5,6) Process 1
Process 1 oo olelesiessl M |C1=(012389,1011)| ,
o [ lee . ;0
8 o o |® || 7/
Process 2 *Cereel [ |C2=0456)| _~
11 o [ L _ ”
- " Process0
————— C0=(1,2,6,9)
Process 1 1,2,3,7
Process 2 6,9,10,11

Process 2 C2=(1,2,4,5,7,8)




Hierarchical/Hybrid Mappings

* Asingle mapping is inadequate.
— E.g. task graph mapping of the binary tree (quicksort) cannot
use a large number of processors.
® Hierarchical mapping
— Task graph mapping at the top level
— Data partitioning within each level.
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e e
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Today’s lecture

* Decomposition Techniques - continued
— Exploratory Decomposition

Mapping tasks to processes/cores/CPU/PEs

®* Characteristics of Tasks and Interactions
— Task Generation, Granularity, and Context
— Characteristics of Task Interactions

* Mapping Techniques for Load Balancing
— Static Mapping
@™ - Dynamic Mapping
* Methods for Minimizing Interaction Overheads
* Parallel Algorithm Design Models
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Schemes for Dynamic Mapping

* Also referred to as dynamic load balancing
— Load balancing is the primary motivation for dynamic
mapping.
* Dynamic mapping schemes can be
— Centralized
— Distributed
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Centralized Dynamic Mapping

Processes are designated as masters or slaves
— Workers (slave is politically incorrect)

General strategies
— Master has pool of tasks and as central dispatcher

Master

/ 1\

Slave

Slave

Slave

— When one runs out of work, it requests from master for more work.

Challenge

— When process # increases, master may become the bottleneck.

Approach

— Chunk scheduling: a process picks up multiple tasks at once

— Chunk size:

* Large chunk sizes may lead to significant load imbalances as well

* Schemes to gradually decrease chunk size as the computation

progresses.
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Distributed Dynamic Mapping

All processes are created equal
— Each can send or receive work from others
e Alleviates the bottleneck in centralized schemes.

Four critical design questions:

— how are sending and receiving processes paired together
— who initiates work transfer

— how much work is transferred

— when is a transfer triggered?

Answers are generally application specific.

Workstealing
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Today’s lecture

* Decomposition Techniques - continued
— Exploratory Decomposition

Mapping tasks to processes/cores/CPU/PEs

®* Characteristics of Tasks and Interactions
— Task Generation, Granularity, and Context
— Characteristics of Task Interactions

* Mapping Techniques for Load Balancing
— Static and Dynamic Mapping

@ Methods for Minimizing Interaction Overheads
* Parallel Algorithm Design Models
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Minimizing Interaction Overheads

Rules of thumb

Maximize data locality
— Where possible, reuse intermediate data

— Restructure computation so that data can be reused in smaller

time windows.

Minimize volume of data exchange
— partition interaction graph to minimize edge crossings

Minimize frequency of interactions

— Merge multiple interactions to one, e.g. aggregate small msgs.

Minimize contention and hot-spots
— Use decentralized techniques
— Replicate data where necessary
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Minimizing Interaction Overheads (continued)

Techniques

* QOverlapping computations with interactions
— Use non-blocking communications
— Multithreading
— Prefetching to hide latencies.

* Replicating data or computations to reduce communication

® Using group communications instead of point-to-point
primitives.

* Qverlap interactions with other interactions.
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Today’s lecture

* Decomposition Techniques - continued
— Exploratory Decomposition

Mapping tasks to processes/cores/CPU/PEs

®* Characteristics of Tasks and Interactions
— Task Generation, Granularity, and Context
— Characteristics of Task Interactions

* Mapping Techniques for Load Balancing
— Static and Dynamic Mapping

* Methods for Minimizing Interaction Overheads
«@ Parallel Algorithm Design Models
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Parallel Algorithm Models

* Ways of structuring parallel algorithm
— Decomposition techniques
— Mapping technique
— Strategy to minimize interactions.

* Data Parallel Model
— Each task performs similar operations on different data
— Tasks are statically (or semi-statically) mapped to processes

* Task Graph Model

— Use task dependency graph to guide the model for better
locality or low interaction costs.
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Parallel Algorithm Models (continued)

* Master-Slave Model
— Master (one or more) generate work
— Dispatch work to workers.
— Dispatching may be static or dynamic.

* Pipeline / Producer-Consumer Model

— Stream of data is passed through a succession of processes,
each of which perform some task on it

— Multiple stream concurrently

* Hybrid Models

— Applying multiple models hierarchically

— Applying multiple models sequentially to different phases of a
parallel algorithm.

59



References

* Adapted from slides “Principles of Parallel Algorithm
Design” by Ananth Grama

* Based on Chapter 3 of “Introduction to Parallel Computing”

by Ananth Grama, Anshul Gupta, George Karypis, and Vipin
Kumar. Addison Wesley, 2003

60



