Lecture 10: Principles of Parallel
Algorithm Design

CSCE 569 Parallel Computing

Department of Computer Science and Engineering
Yonghong Yan
yanyh@cse.sc.edu
http://cse.sc.edu/~yanyh

Last two lectures: Algorithms and Concurrency

* Introduction to Parallel Algorithms
— Tasks and decomposition
— Processes and mapping

* Decomposition Techniques
— Recursive decomposition (divide-conquer)
— Data decomposition (input, output, input+output, intermediate)

* Terms and concepts
— Task dependency graph, task granularity, degree of concurrency
— Task interaction graph, critical path

* Examples:
— Dense vector addition, matrix vector and matrix matrix product
— Database query, quicksort, MIN
— Image convolution(filtering) and Jacobi

Today’s lecture

«@ Decomposition Techniques - continued
— Exploratory Decomposition

Mapping tasks to processes/cores/CPU/PEs

®* Characteristics of Tasks and Interactions
— Task Generation, Granularity, and Context
— Characteristics of Task Interactions

* Mapping Techniques for Load Balancing
— Static and Dynamic Mapping

* Methods for Minimizing Interaction Overheads
* Parallel Algorithm Design Models

Exploratory Decomposition

* Decomposition is fixed/static from the design
— Data and recursive

* Exploration (search) of a state space of solutions
— Problem decomposition reflects shape of execution
— Goes hand-in-hand with its execution

* Examples
— discrete optimization, e.g. 0/1 integer programming
— theorem proving
— game playing

Exploratory Decomposition: Example

Solve a 15 puzzle
* Seqguence of three moves from state (a) to final state (d)

1234 1234 1234 1234

506 t 8 56|78 56|78 5/6|7]|8

9 (10 11 9 |10 |11 9 (10|11 * 9 (101112

13|14|15| 12 13(14|15| 12 13|14|15|12 13|14 |15
(@))] ©) C))

®* From an arbitrary state, must search for a solution

Exploratory Decomposition: Example

Solving a 15 puzzle

* Search
— generate successor states of the current state
— explore each as an independent task

b -

after first move

- W

HEE

task 1 task 2 task 3 task 4

[AREYRR 2 B84

0 B
ve z|1 ~
€z

Slelm clelal=1[3 - Slelal=][cTelal=1[cTelal=][cTelw]- slelal=]zTe | o » Slelml -
RS v;ﬁﬁ =islaln RBONEEDNIEE B8 »“;.o«.n =l RNENS zislalnlzlzlaln
;.‘\..u slw vl sz w ;Fq'w ;.va‘ Slaulowl oi<wle|w =lzl<le] [zl ;‘q.u 1< RN V‘v".“'
MERNIREN A:oa& slclwlallglzlelallglzlela ;':‘a slelelal 5= E IR | ;@‘:. IS

final state (solution)

Exploratory Decomposition Speedup

Solve a 15 puzzle

* The decomposition behaves according to the parallel
formulation
— May change the amount of work done

@, @,
\ Solution/
Total serial work: 2m+1 Total serial work: m
Total parallel work: 1 Total parallel work: 4m

(a) (b)

Execution terminate when a solution is found

Speculative Decomposition

* Dependencies between tasks are not known a-priori.
— Impossible to identify independent tasks

* Two approaches

— Conservative approaches, which identify independent tasks
only when they are guaranteed to not have dependencies

* May vield little concurrency

— Optimistic approaches, which schedule tasks even when they
may potentially be inter-dependent

* Roll-back changes in case of an error

Speculative Decomposition: Example

Discrete event simulation

* Centralized time-ordered event list
— you get up 2> get ready—>drive to work—>work—>eat lunch—>
work some more—2>drive back—=>eat dinner—->and sleep
* Simulation
— extract next event in time order
— process the event
— if required, insert new events into the event list

* Optimistic event scheduling
— assume outcomes of all prior events
— speculatively process next event
— if assumption is incorrect, roll back its effects and continue

Speculative Decomposition: Example

Simulation of a network of nodes

* Simulate network behavior for various input and node delays
— The input are dynamically changing
* Thus task dependency is unknown

C
n
5 —= A D -
Q =2
£ =
=
5 E G 1%2
n
N F H @
7 e T

System Components

* Speculate execution: tasks’ input
— Correct: parallelism
— Incorrect: rollback and redo

10

Speculative vs Exploratory

* Exploratory decomposition
— The output of multiple tasks from a branch is unknown
— Parallel program perform more, less or same amount of work
as serial program
* Speculative

— The input at a branch leading to multiple parallel tasks is
unknown

— Parallel program perform more or same amount of work as the
serial algorithm

11

Hybrid Decompositions

Use multiple decomposition techniques together

®* One decomposition may be not optimal for concurrency
— Quicksort recursive decomposition limits concurrency (Why?)

[5[12[11] 1]10]6 |8 |3 [7]|4a|o[2]

[5 [12]11]10]6[8 [7 [9]

®* Combined recursive and data decomposition for MIN

Data
decompositior

37 2|9 11/ 4] 5 8 7 10| 6] 13 1193 9

2 1 Recursive
decomposition

Today’s lecture

* Decomposition Techniques - continued
— Exploratory Decomposition

Mapping tasks to processes/cores/CPU/PEs

@™ Characteristics of Tasks and Interactions
— Task Generation, Granularity, and Context
— Characteristics of Task Interactions

* Mapping Techniques for Load Balancing
— Static and Dynamic Mapping

* Methods for Minimizing Interaction Overheads
* Parallel Algorithm Design Models

13

Characteristics of Tasks

* Theory
— Decomposition: to parallelize theoretically
* Concurrency available in a problem

® Practice

— Task creations, interactions and mapping to PEs.

e Realizing concurrency practically
— Characteristics of tasks and task interactions
* Impact choice and performance of parallelism

* Characteristics of tasks
— Task generation strategies
— Task sizes (the amount of work, e.g. FLOPs)
— Size of data associated with tasks

14

Task Generation

* Static task generation
— Concurrent tasks and task graph known a-priori (before execution)
— Typically using recursive or data decomposition
— Examples
* Matrix operations
* Graph algorithms
* Image processing applications
e Other regularly structured problems

* Dynamic task generation
— Computations formulate concurrent tasks and task graph on the fly
* Not explicit a priori, though high-level rules or guidelines known
— Typically by exploratory or speculative decompositions.
* Also possible by recursive decomposition, e.g. quicksort
— A classic example: game playing
e 15 puzzle board

15

Task Sizes/Granularity

* The amount of work = amount of time to complete

— E.g. FLOPs, #memory access

* Uniform:

— Often by even data decomposition, i.e. regular

* Non-uniform
— Quicksort, the choice of pivot

|5 [12]/11| 1]10|6 |8 |3 |7 |4 |9 | 2]

| @ [12]11]10]

lo | [10][12]11]

[10]

[11[12]

[11]

[12]

16

Size of Data Associated with Tasks

* May be small or large compared to the task sizes
— How relevant to the input and/or output data sizes
— Example:
* size(input) < size(computation), e.g., 15 puzzle
* size(input) = size(computation) > size(output), e.g., min
* size(input) = size(output) < size(computation), e.g., sort
* Considering the efforts to reconstruct the same task

context

— small data: small efforts: task can easily migrate to another
process

— large data: large efforts: ties the task to a process

* Context reconstructing vs communicating
— It depends

17

Characteristics of Task Interactions

* Aspects of interactions

— What: shared data or synchronizations, and sizes of the media
— When: the timing

— Who: with which task(s), and overall topology/patterns

— Do we know details of the above three before execution
— How: involve one or both?

 The implementation concern, implicit or explicit

Orthogonal classification

* Static vs. dynamic

®* Regular vs. irregular

* Read-only vs. read-write
®* One-sided vs. two-sided

18

Characteristics of Task Interactions

* Aspects of interactions

— Do we know details of the above three before execution

® Static interactions
— Partners and timing (and else) are known a-priori
— Relatively simpler to code into programs.

®* Dynamic interactions
— The timing or interacting tasks cannot be determined a-priori.
— Harder to code, especially using explicit interaction.

19

Characteristics of Task Interactions

* Aspects of interactions

— When: the timing
— Who: with which task(s), and overall topology/patterns

* Regular interactions
— Definite pattern of the interactions
* E.g. amesh orring
— Can be exploited for efficient implementation.

* Irregular interactions
— lack well-defined topologies
— Modeled as a graph

20

Example of Regular Static Interaction

Image processing algorithms: dithering, edge detection

* Nearest neighbor interactions on a 2D mesh

ONONONO.
ONONONG,
OO0O0O0
OO0OO0O0

©OO0O0O0
ONORONG)
ONONONG)
OO0 OO0

O00O0
0000
0000
O0O0O0

ONONONE)
ONONONG®
OO0O0O0
OO0O0O

ONONONG®)
OO0O0O0
OO0O0O0
ONONON®)

ONONONG,
000
©OO0O0O0
OOO0O0

0000
0 00Q

O O O O]

O0O0Q

ONONONG®)
000
O00O0
ONONON®)

ONORONO,

O O O O}

000 ¢
Q000

G, =

Sobel Edge

Detection Stencils

-1 0 +1
-2 0 +2

-1 0 +1

-1 -2 -1
0O 0 0
+1 +2 +1

|

21

Example of Irregular Static Interaction

Sparse matrix vector multiplication

7 8 91011

[JEN
@ oo

Task 0

o0
00—
o0 (o>

o0 o000 |

o0
o000 00

3 |@

LTI IrIr] &

Task 11

~~
oo
V

(b)

22

Characteristics of Task Interactions

* Aspects of interactions

— What: shared data or synchronizations, and sizes of the
media

* Read-only interactions \
— Tasks only read data items associated with other tasks

* Read-write interactions
— Read, as well as modify data items associated with other tasks.
— Harder to code

e Require additional synchronization primitives
— to avoid read-write and write-write ordering races

23

Characteristics of Task Interactions

* Aspects of interactions

— How: involve one or both?
 The implementation concern, implicit or explicit

®* One-sided
— initiated & completed independently by 1 of 2 interacting tasks
* GET and PUT sender Recever
* Two-sided [|

— both tasks coordinate in an interaction
e SEND + RECV

24

MPI Finalize MPI Finalize

Today’s lecture

* Decomposition Techniques - continued
— Exploratory Decomposition

Mapping tasks to processes/cores/CPU/PEs

®* Characteristics of Tasks and Interactions
— Task Generation, Granularity, and Context
— Characteristics of Task Interactions

@ Mapping Techniques for Load Balancing
— Static and Dynamic Mapping

* Methods for Minimizing Interaction Overheads
* Parallel Algorithm Design Models

25

Mapping Techniques

* Parallel algorithm design
— Program decomposed

— Characteristics of task and interactions
identified

Assign large amount of concurrent tasks to

equal or relatively small amount of processes
for execution

* Though often we do 1:1 mapping

26

Mapping Techniques

* Goal of mapping: minimize overheads
— There is cost to do parallelism
* Interactions and idling(serialization)

* Contradicting objectives: interactions vs idling
— |ldling (serialization) 1': insufficient parallelism
— Interactions 1I': excessive concurrency

— E.g. Assigning all work to one processor trivially
minimizes interaction at the expense of significant
idling.

27

Mapping Techniques for Minimum ldling

* Execution: alternating stages of computation and interaction

* Mapping must simultaneously minimize idling and load balance
— Idling means not doing useful work
— Load balance: doing the same amount of work

* Merely balancing load does not minimize idling

start synchronization finish start synchronization finish
A A
| |
| |
1 5| ! 9 1 2 3! .
PoLE P! .|| A poor mapping,
| |
P 2| |s6] 1 |10 P] [5] [6]!| 50% waste
| |
| |
P 3 7] 11 P3 7 8 9
. o ! o
| |
P4 4] 8] o+ a2 P4 ilO 11| |12
v v
t=0 t=2 t=3 t=0 t=3 t=6
(@ (b)

Mapping Techniques for Minimum ldling

Static or dynamic mapping

* Static Mapping
— Tasks are mapped to processes a-prior
— Need a good estimate of task sizes
— Optimal mapping may be NP complete

* Dynamic Mapping
— Tasks are mapped to processes at runtime
— Because:
e Tasks are generated at runtime
* Their sizes are not known.

* Other factors determining the choice of mapping techniques
— the size of data associated with a task
— the characteristics of inter-task interactions
— even the programming models and target architectures

29

Schemes for Static Mapping

* Mappings based on data decomposition
— Mostly 1-1 mapping

* Mappings based on task graph partitioning
* Hybrid mappings

30

Mappings Based on Data Partitioning

* Partition the computation using a combination of
— Data decomposition
— The owner-computes' rule

Example: 1-D block distribution of 2-D dense matrix
1-1 mapping of task/data and process

row-wise distribution column-wise distribution

31

Block Array Distribution Schemes

ibution

tr

ional Block dis

imens

Mult

< <

< <

< <

< <

< <

£ S

< o

< <
< | <] g <
S I
< | | | &
< < & <

In general, higher dimension decomposition allows the use of larger # of processes.

32

Block Array Distribution Schemes: Examples

Multiplying two dense matrices: A *B=C

* Partition the output matrix C using a block decomposition
— Load balance: Each task compute the same number of
elements of C
* Note: each element of C corresponds to a single dot product
— The choice of precise decomposition: 1-D (row/col) or 2-D
* Determined by the associated communication overhead

A(ll) A(12) A(13) B(1ll) B(12) B(13) C(ll) C(12) C(13)
A(21) A(22) A(23)| * |B(21) B(22) B(23)] = |C(21) C(22) C(23)
A(31) A(32) A(33) B(31l) B(32) B(33) C(31) C(32) C(33)
C(1ll) = A(11l)*B(1ll) + A(12)*B(21) + A(1l3)*B(31)

C(21) = A(21)*B(1ll) + A(22)*B(21) + A(23)*B(31)

C(31) = A(31)*B(1ll) + A(32)*B(21) + A(33)*B(31)
C(l2) = A(1l1l)*B(1l2) + A(1l2)*B(22) + A(1l3)*B(32)
C(22) = A(21)*B(12) + A(22)*B(22) + A(23)*B(32)
C(32) = A(31)*B(12) + A(32)*B(22) + A(33)*B(32)
C(13) = A(1ll)*B(1l3) + A(12)*B(23) + A(13)*B(33)
C(23) = A(21)*B(13) + A(22)*B(23) + A(23)*B(33) 33

C(33) = A(31)*B(13) + A(32)*B(23) + A(33)*B(33)

Block Distribution and Data Sharing for Dense
Matrix Multiplication

7 PO
_ _ _ P
® Row-based 1-D X / - o
A B % = P3
C
PO P1 P2 P3
* Column-based 1-D -
C

* Row/Col-based2-D i

Cyclic and Block Cyclic Distributions

* Consider a block distribution for LU decomposition (Gaussian
Elimination)

— The amount of computation per data item varies
— Block decomposition would lead to significant load imbalance

-

.Factorization . Swap . Triangular Solve

M M M M
M M ’l M M 1. procedure COL LU (A)
2. begin
3. for kK := 1 to n do
4. for 7 := k to n do
M M M M 5. Alj, kl:= Alj, k1/Alk, kIl:
6. endfor;
A 4 v 7. for j := k + 1 to n do
M 8. for i1 := k + 1 to n do
M M M 9. Ali, j] := Ali, j] - Ali, k) x ALk, jl;
10. endfor;
Matrix 11./* endfor;
Multiplicati

After this iteration, column A[k + 1 : n, k] is logically the kth
column of L and row A[k, k : n] is logically the kth row of U.
*/

35

LU Factorization of a Dense Matrix

A decomposition of LU factorization into 14 tasks

Arn Aip A Lin O 0 Uig Ui Uigs
Asq Ass Asz | — | La2i Las O : 0 Usa Usgs
Az Az Ass Lzy L3a L3gs 0 0 Usgs
10 A11 — LU 6: Aso=Aos— Lo Ui |11 L35 = A3,2U2_,21
2: Lyg = A2,1U1_,11 71 Aso=As2— L3 Urs |12 Uss = Ly A5 5
3: Lsy = A3 Uy 8. Ay =Asz—Ls1Uiz |13: Az = As3 — L3 Uz 3
4: Uy, = L71A1 9. A33=A33— L31U13 |14 As s — L3 3Us 3
5. Uiz = Ll_jz‘h,s 100 Ay 5 — Lo oUs o

36

Block Distribution for LU

Notice the significant load imbalance

Py Pj; Pg
T, T, T,

Block Cyclic Distributions

* Variation of the block distribution scheme

— Partition an array into many more blocks (i.e. tasks) than the
number of available processes.

— Blocks are assigned to processes in a round-robin manner so
that each process gets several non-adjacent blocks.

— N-1 mapping of tasks to processes

* Used to alleviate the load-imbalance and idling problems.

REAL, DIMENSIOH({(N) :: A, B
REAK, DIMENSIOHN{12) :: C
IHPFS DISTRIBUTE A(CYCLIC)
IHPFS$ DISTRIBUTE B (CYCLIC({4))
IHPFS DISTRIBUTE C (BLOCK)

123456789111

A NN I e N
" ‘gEEs mEERmEEn RER

o) | EEEE NEEN
ceulo M 2 3 *

Block-Cyclic Distribution for Gaussian
Elimination

* Active submatrix shrinks as elimination progresses

* Assigning blocks in a block-cyclic fashion
— Each PEs receives blocks from different parts of the matrix

— In one batch of mapping, the PE doing the most will most likely
receive the least jn the next batch

8 ¥l
Inactive part = :E
O o]
W o
CRew k[)
Activepart |- >
T Rewi | (=G

....... = Alk,j] = A[k,jJ/A[kK]

------- = Alij] = Alij] - Alik] x Ak,

Block-Cyclic Distribution

® A cyclic distribution: a special case with block size =1

® A block distribution: a special case with block size = n/p

e nisthe dimension of the matrix and p is the #of processes.

P : [|| HEEENEENEEREN e N
‘ | — P AT Po T P T
Py |] HREE ' []
P | o] L
: ' | — TP P Py —
3 ‘:] |]
P, L | L
). ; — PR AT P P T
P | 1| | | | [
py | AEEEEEEEEEEE RN EEEET RN EEEE
- | ‘{ _Pg—'_P} P P.?_'
Py | Pl | et |

(a) (b)

40

Block Partitioning and Random Mapping

Sparse matrix computations
* Load imbalance using block-cyclic partitioning/mapping

— more non-zero blocks to diagonal processes PO, P5, P10, and

P15 than others
— P12 gets nothing

(a)

P2 Pia Py Pis |Pr2

Fo Py Py Py Py
Py Ps P P Py
Pyl Pa P P | Py

-

Ph Py P PPy

Py
Ps
Py
Pi3

P

Ph

Plll
P4

'Ik'
(o] |
.Iﬂ'.
.Fﬁﬁ.

P

Py Ps P | P | Py

Ps

I)I’l

Pq

I’,\; | Pq _PHI 'P” f’a

Pia Pia Py Pis| P2

(b)

Py
Pi3

P

Py

Py
Pis

41

Block Partitioning and Random Mapping

V=10,1,2,3,4,5,6,7,8,9, 10, 11]

random(V)=[8,2,6,0,3,7,11, 1,9, 5,4, 10]

mapping=8 26 037 11195410
I I J J |

Po Py Py P

D1 23 4567 891001112131415 NG 401131 X 7142159 51512
I'II 4]
| 10
} 14 7 P, P
3 |
H 5
3 I3 2 3 3
(4] i 'l I) 'h
7 9
N 3
u 15 ,
i) 4 l"'- Pll P|;|
| I
2 7
':\ 12 i » »
.3 2 {l P13 ’I;
5 | A . v e

(a) (b) (c)

Graph Partitioning Based Data Decomposition

* Array-based partitioning and static mapping
— Regular domain, i.e. rectangular, mostly dense matrix
— Structured and regular interaction patterns

— Quite effective in balancing the computations and minimizing
the interactions

® Irregular domain
— Spars matrix-related
— Numerical simulations of physical phenomena
 Car, water/blood flow, geographic

* Partition the irregular domain so as to
— Assign equal number of nodes to each process
— Minimizing edge count of the partition.

43

Partitioning the Graph of Lake Superior

* Each mesh point has the
same amount of
computation
— Easy for load balancing

* Minimize edges
* Optimal partition is an Random Partitioning

NP-complete
— Use heuristics

£ X
T
. v“"""“h -

VAL

B AT 23
Tl AL DU
RNV ANRIALS

RN N SR
S*lﬁ‘ﬁ"w(?‘ﬁ:igép i
A

Partitioning for minimum edge-cut.

RS o
RIS AV LV
SOF qgélvl, T

44

Mappings Based on Task Paritioning

* Schemes for Static Mapping
— Mappings based on data partitioning
* Mostly 1-1 mapping
— Mappings based on task graph partitioning
— Hybrid mappings

* Data partitioning
— Data decomposition and then 1-1 mapping of tasks to PEs

Partitioning a given task-dependency graph across processes

* An optimal mapping for a general task-dependency graph
— NP-complete problem.

* Excellent heuristics exist for structured graphs.

45

Mapping a Binary Tree Dependency Graph

Mapping dependency graph of quicksort to

processes in a hypercube

* Hypercube: n-dimensional analogue of a square and a cube
— node numbers that differ in 1 bit are adjacent

\ /

/ \
/ \ / \
/ \ /
/ \: :/

0 I 2 I\ 4 I\ 6
/o /o R I
/ \ / \ / \ / \
/ \ / \ / \ / \

0 1 2 3 4 5 6 7

Q ©O—®

k=1,n=2

46

Mapping a Sparse Graph

Sparse matrix vector multiplication
Using data partitioning

A " 17 items to
012345678 91011 communicate
0 [o/@ . ®
Process0 (2oaiel o'e C0=(4,5,6,7.8)
L J(J z
4 [[] C)
Process 1 te Yot ecee C1=(0,1,2,3,8,9,10,11)
® o0
8 () ® o (o
Process 2 °°e oe C2=(04,5,6)
11 ® ®

47

Mapping a Sparse Graph

Sparse matrix vector multiplication
Using task graph partitioning

\
A b 17 items to 1
01234567891011 _ communicate 1
0 o [[® ®] |
Process0 (%905l o'e -l [C0=(45678) I
e - Il C1=(0,5,6) Process 1
Process 1 oo olelesiessl M |C1=(012389,1011)| ,
o [lee . ;0
8 o o |® || 7/
Process 2 *Cereel [|C2=0456)| _~
11 o [L _ ”
- " Process0
————— C0=(1,2,6,9)
Process 1 1,2,3,7
Process 2 6,9,10,11

Process 2 C2=(1,2,4,5,7,8)

Hierarchical/Hybrid Mappings

* Asingle mapping is inadequate.
— E.g. task graph mapping of the binary tree (quicksort) cannot
use a large number of processors.
® Hierarchical mapping
— Task graph mapping at the top level
— Data partitioning within each level.

POIP1 P41 PS5

e e

P2'P3'P6'P7

/\I
PO Pl P4 1 PS5

P2'P3 P6 ' P7
I/\ I/\
PO P1 P2 P3 P4 1 P5 P61 P7

PO P1 P2 P3 P4 P5 P6 P7 49

Today’s lecture

* Decomposition Techniques - continued
— Exploratory Decomposition

Mapping tasks to processes/cores/CPU/PEs

®* Characteristics of Tasks and Interactions
— Task Generation, Granularity, and Context
— Characteristics of Task Interactions

* Mapping Techniques for Load Balancing
— Static Mapping
@™ - Dynamic Mapping
* Methods for Minimizing Interaction Overheads
* Parallel Algorithm Design Models

50

Schemes for Dynamic Mapping

* Also referred to as dynamic load balancing
— Load balancing is the primary motivation for dynamic
mapping.
* Dynamic mapping schemes can be
— Centralized
— Distributed

51

Centralized Dynamic Mapping

Processes are designated as masters or slaves
— Workers (slave is politically incorrect)

General strategies
— Master has pool of tasks and as central dispatcher

Master

/ 1\

Slave

Slave

Slave

— When one runs out of work, it requests from master for more work.

Challenge

— When process # increases, master may become the bottleneck.

Approach

— Chunk scheduling: a process picks up multiple tasks at once

— Chunk size:

* Large chunk sizes may lead to significant load imbalances as well

* Schemes to gradually decrease chunk size as the computation

progresses.

52

Distributed Dynamic Mapping

All processes are created equal
— Each can send or receive work from others
e Alleviates the bottleneck in centralized schemes.

Four critical design questions:

— how are sending and receiving processes paired together
— who initiates work transfer

— how much work is transferred

— when is a transfer triggered?

Answers are generally application specific.

Workstealing

53

Today’s lecture

* Decomposition Techniques - continued
— Exploratory Decomposition

Mapping tasks to processes/cores/CPU/PEs

®* Characteristics of Tasks and Interactions
— Task Generation, Granularity, and Context
— Characteristics of Task Interactions

* Mapping Techniques for Load Balancing
— Static and Dynamic Mapping

@ Methods for Minimizing Interaction Overheads
* Parallel Algorithm Design Models

54

Minimizing Interaction Overheads

Rules of thumb

Maximize data locality
— Where possible, reuse intermediate data

— Restructure computation so that data can be reused in smaller

time windows.

Minimize volume of data exchange
— partition interaction graph to minimize edge crossings

Minimize frequency of interactions

— Merge multiple interactions to one, e.g. aggregate small msgs.

Minimize contention and hot-spots
— Use decentralized techniques
— Replicate data where necessary

55

Minimizing Interaction Overheads (continued)

Techniques

* QOverlapping computations with interactions
— Use non-blocking communications
— Multithreading
— Prefetching to hide latencies.

* Replicating data or computations to reduce communication

® Using group communications instead of point-to-point
primitives.

* Qverlap interactions with other interactions.

56

Today’s lecture

* Decomposition Techniques - continued
— Exploratory Decomposition

Mapping tasks to processes/cores/CPU/PEs

®* Characteristics of Tasks and Interactions
— Task Generation, Granularity, and Context
— Characteristics of Task Interactions

* Mapping Techniques for Load Balancing
— Static and Dynamic Mapping

* Methods for Minimizing Interaction Overheads
«@ Parallel Algorithm Design Models

57

Parallel Algorithm Models

* Ways of structuring parallel algorithm
— Decomposition techniques
— Mapping technique
— Strategy to minimize interactions.

* Data Parallel Model
— Each task performs similar operations on different data
— Tasks are statically (or semi-statically) mapped to processes

* Task Graph Model

— Use task dependency graph to guide the model for better
locality or low interaction costs.

58

Parallel Algorithm Models (continued)

* Master-Slave Model
— Master (one or more) generate work
— Dispatch work to workers.
— Dispatching may be static or dynamic.

* Pipeline / Producer-Consumer Model

— Stream of data is passed through a succession of processes,
each of which perform some task on it

— Multiple stream concurrently

* Hybrid Models

— Applying multiple models hierarchically

— Applying multiple models sequentially to different phases of a
parallel algorithm.

59

References

* Adapted from slides “Principles of Parallel Algorithm
Design” by Ananth Grama

* Based on Chapter 3 of “Introduction to Parallel Computing”

by Ananth Grama, Anshul Gupta, George Karypis, and Vipin
Kumar. Addison Wesley, 2003

60

