
Lecture	9:	Dense	Matrices	and	
Decomposition

1

CSCE	569	Parallel	Computing

Department	of	Computer	Science	and	Engineering
Yonghong Yan

yanyh@cse.sc.edu
http://cse.sc.edu/~yanyh

Review:	Parallel	Algorithm	Design	and	
Decomposition

• Introduction	to	Parallel	Algorithms	
– Tasks	and	Decomposition	
– Processes	and	Mapping	

• Decomposition	Techniques	
– Recursive	Decomposition	
– Data	Decomposition	
– Exploratory	Decomposition	
– Hybrid	Decomposition	

• Characteristics	of	Tasks	and	Interactions	
– Task	Generation,	Granularity,	and	Context	
– Characteristics	of	Task	Interactions.

2

Decomposition,	Tasks,	and	Dependency	Graphs

• Decompose	work	into	tasks	that	can	be	executed	concurrently	
• Decomposition	could	be	in	many	different	ways.	
• Tasks	may	be	of	same,	different,	or	even	indeterminate	sizes.	
• Task	dependency	graph:

– node	=	task	
– edge	=	control	dependence,	output-input	dependency	
– No	dependency	==	parallelism

3

Degree	of	Concurrency	

• Definition:	the	number	of	tasks	that	can	be	executed	in	parallel	
• May	change	over	program	execution

• Metrics
– Maximum	degree	of	concurrency

• Maximum	number	of	concurrent	tasks	at	any	point	during	
execution.	

– Average	degree	of	concurrency
• The	average	number	of	tasks	that	can	be	processed	in	parallel	over	
the	execution	of	the	program

• Speedup:	serial_execution_time/parallel_execution_time
• Inverse	relationship	of	degree	of	concurrency	and	task	

granularity	
– Task	granularity	é(less	tasks),	degree	of	concurrency	ê
– Task	granularity	ê(more	tasks),	degree	of	concurrency	é

4

Critical	Path	Length	

• A	directed	path: a	sequence	of	tasks	that	must	be	serialized
– Executed	one	after	another

• Critical	path:
– The	longest	weighted	path	throughout	the	graph

• Critical	path	length:	shortest	time	in	which	the	program	can	
be	finished
– Lower	bound	on	parallel	execution	time

5

A	building	project

Critical	Path	Length	and	Degree	of	Concurrency	
Database	query	task	dependency	graph

Questions:
What	are	the	tasks	on	the	critical	path	for	each	dependency	graph?	
What	is	the	shortest	parallel	execution	time?	
How	many	processors	are	needed	to	achieve	the	minimum	time?	
What	is	the	maximum	degree	of	concurrency?
What	is	the	average	parallelism	(average	degree	of	concurrency)?

Total	amount	of	work/(critical	path	length)
2.33	(63/27)	and	1.88	(64/34)

6

• Finer	task	granularity	èmore	overhead	of	task	interactions
– Overhead	as	a	ratio	of	useful	work	of	a	task

• Example:	sparse	matrix-vector	product	interaction	graph

• Assumptions:
– each	dot	(A[i][j]*b[j])	takes	unit	time	to	process	
– each	communication	(edge)	causes	an	overhead	of	a	unit	time

• If	node	0	is	a	task:	communication	=	3;	computation	=	4
• If	nodes	0,	4,	and	5	are	a	task:	communication	=	5;	computation	=	15

– coarser-grain	decomposition	→	smaller	communication/computation	
ratio	(3/4	vs 5/15)

Task	Interaction	Graphs,	Granularity,	and	
Communication	

7

Processes	and	Mapping	

A	good	mapping	must	minimize	parallel	execution	time	by:

• Mapping	independent	tasks	to	different	processes
– Maximize	concurrency	

• Tasks	on	critical	path	have	high	priority	of	being	assigned	to	
processes

• Minimizing	interaction	between	processes	
– mapping	tasks	with	dense	interactions	to	the	same	process.	

• Difficulty:	these	criteria	often	conflict	with	each	other
– E.g.	No	decomposition,	i.e.	one	task,	minimizes	interaction	but	

no	speedup	at	all!

8

Recursive	Decomposition:	Min

9

procedure SERIAL_MIN (A, n)
min = A[0];
for i := 1 to n − 1 do
if (A[i] < min) min := A[i];

return min;

procedure RECURSIVE_MIN (A,	n)	
if (n	= 1)	thenmin :=	A [0]		;	
else
lmin :=	RECURSIVE_MIN (A,	n/2);	
rmin :=	RECURSIVE_MIN (&(A[n/2]),	n	- n/2);	
if (lmin <	rmin)	thenmin :=	lmin;	
elsemin :=	rmin;	

returnmin;	

Finding	the	minimum	in	a	vector	using	divide-and-conquer

Applicable	to	other	associative	operations,	e.g.	sum,	AND	…
Known	as	reduction	operation

Data	Decomposition
-- The	most	commonly	used	approach	

• Steps:	
1. Identify	the	data	on	which	computations	are	performed.	
2. Partition	this	data	across	various	tasks.	

• Partitioning	induces	a	decomposition	of	the	problem,	i.e.	
computation	is	partitioned

• Data	can	be	partitioned	in	various	ways
– Critical	for	parallel	performance	

• Decomposition	based	on
– output	data
– input	data
– input	+	output	data
– intermediate	data

10

Output	Data	Decomposition:	Example	
Count the frequency of item sets in database transactions

11

• Decompose	the	item	sets	to	count	
– each	task	computes	total	count	for	each	

of	its	item	sets
– append	total	counts	for	item	sets	to	

produce	total	count	result

Input	Data	Partitioning:	Example	

12

Dense	matrix	algorithms

• Dense	linear	algebra	and	BLAS
• Image	processing/stencil
• Iterative	methods

13

Motifs

The	Motifs	(formerly	“Dwarfs”)	from	“The	Berkeley	
View” (Asanovic et	al.)	form	key	computational	patterns

14
The	Landscape	of	Parallel	Computing	Research:	A	View	from	Berkeley
http://www.eecs.berkeley.edu/Pubs/TechRpts/2006/EECS-2006-183.pdf

Dense	linear	algebra	
• Software	library	solving	linear	system

• BLAS	(Basic	Linear	Algebra	Subprogram)
– Vector,	matrix	vector,	matrix	matrix

• Linear	Systems:		Ax=b
• Least	Squares:	choose	x	to	minimize	||Ax-b||2

– Overdetermined or	underdetermined
– Unconstrained,	constrained,	weighted

• Eigenvalues	and	vectors	of	Symmetric	Matrices
• Standard	(Ax	=	λx),	Generalized	(Ax=λBx)

• Eigenvalues	and	vectors	of	Unsymmetric matrices
• Eigenvalues,	Schur form,	eigenvectors,	invariant	subspaces
• Standard,	Generalized

• Singular	Values	and	vectors	(SVD)
– Standard,	Generalized

• Different	matrix	structures
– Real,	complex;	Symmetric,	Hermitian,	positive	definite;	dense,	triangular,	banded	…

• Level	of	detail
– Simple	Driver
– Expert	Drivers	with	error	bounds,		extra-precision,	other	options
– Lower	level	routines	(“apply	certain	kind	of	orthogonal	transformation”,	matmul…) 15

BLAS	(Basic	Linear	Algebra	Subprogram)

• BLAS	1,	1973-1977
– 15	operations	(mostly)	on	vectors	(1-d	array)

• “AXPY”		(y =	α·x	+	y),	dot	product,	scale	(x	=	α·x)
– Up	to	4	versions	of	each	(S/D/C/Z),	46	routines,	3300	LOC
– Why	BLAS	1	?		They	do	O(n1)	ops	on	O(n1)	data:	AXPY

• 2n	flops	on	3n	read/writes	
• Computational	intensity	=	(2n)/(3n)	=	2/3

16

BLAS	2

• BLAS	2,	1984-1986
– 25	operations	(mostly)	on	matrix/vector	pairs
– “GEMV”:	y	=	α·A·x +	β·x,	“GER”:	A	=	A	+	α·x·yT,		x	=	T-1·x
– Up	to	4	versions	of	each	(S/D/C/Z),	66	routines,	18K	LOC

• Why	BLAS	2	?		They	do	O(n2)	ops	on	O(n2)	data
– Computational	intensity	still	just	~(2n2)/(n2)	=	2

17

X																			=

BLAS	3

• BLAS 3,	1987-1988
– 9	operations	(mostly)	on	matrix/matrix	pairs

• “GEMM”:	C	=	α·A·B	+	β·C,	C	=	α·A·AT	+	β·C,		B	=	T-1·B
– Up	to	4	versions	of	each	(S/D/C/Z),	30	routines,	10K	LOC
– Why	BLAS	3	?		They	do	O(n3)	ops	on	O(n2)	data

• Computational	intensity	(2n3)/(4n2)	=	n/2	– big	at	last!
• Good	for	machines	with	caches,	deep	mem hierarchy

18

A[M][K]	*	B[K][N]	=	C[M][N]

Decomposition	for	
AXPY,	Matrix	Vector,	and	Matrix	
Multiplication

19

BLAS	1:	AXPY

• y	=	α·x	+	y
– x and	y are	vectors	of	size	N

• In	C,	x[N],	y[N]
– α is	scalar

• Decomposition	is	simple
– N	iterations	(N	elements	of	X	and	Y)	are	distributed	among	threads
– 1:1	mapping	between	iteration	and	element	of	X	and	Y
– X	and	Y	are	shared

20

chunk	=	3

T0 T1

BLAS	2:	Matrix	Vector	Multiplication

• y	=	A·x
– A[M][N],	x[N],	y[N]

• Row-wise	decomposition

21

Mt

i_start

BLAS	3:	Dense	Matrix	Multiplication

22

A[M][K]	*	B[k][N]	=	C[M][N]
• Base
• Base_1:	column	major	order	of	access
• row1D_dist
• column1D_dist
• rowcol2D_dist

• Decomposition	is	to	calculate	Mt	and	Nt

M

K N

BLAS	3:	Dense	Matrix	Multiplication

23

• Row-based	1-D

!!!!!!!!!!!!!!!!!!X!!!!!!!!!!!!!!!!!!!!!!!!!!=!

!!!!!!!A!!!!!!!!!X!!!!!!!!!!!!B!!!!!!!!!!!!=!!!!!!!!!!!!!!C!

T0!
T1!
T2!
T3!

BLAS	3:	Dense	Matrix	Multiplication

24

• Column-based	1-D

!!!!!!!!!!!!!!!!!!X!!!!!!!!!!!!!!!!!!!!!!!!!!=!

!!!!!!!A!!!!!!!!!X!!!!!!!!!!!!B!!!!!!!!!!!!=!!!!!!!!!!!!!!C!

T0!!!T1!!T2!!T3!

BLAS	3:	Dense	Matrix	Multiplication

25

• Row/Column-based	2-D

Need	nested	parallelism
export	OMP_NESTED=true

Dense	matrix	algorithms

• Dense	linear	algebra	and	BLAS
• Image	processing/stencil
• Iterative	methods

26

What	is	Multimedia
• Multimedia is a combination of

text, graphic, sound, animation,
and video that is delivered
interactively to the user by
electronic or digitally
manipulated means.

https://en.wikipedia.org/wiki/Multimedia

Videos	contains	frame	(images)

Image	Format	and	Processing

• Pixels
– Images	are	matrix	of	pixels

• Binary	images
– Each	pixel	is	either	0	or	1

Image	Format	and	Processing

• Pixels
– Images	are	matrix	of	pixels

• Grayscale images
– Each	pixel	value	normally	range	from	0	(black)	to	255	(white)
– 8	bits	per	pixel

Image	Format	and	Processing

• Pixels
– Images	are	matrix	of	pixels

• Color	images
– Each	pixel	has	three/four	values	(4	bits	or	8	bits	each)	each	

representing	a	color	scale

Histogram

• An	image	histogram	is	a	graph	of	pixel	intensity	(on	the x-
axis)	versus	number	of	pixels	(on	the y-axis).	The x-axis	has	
all	available	gray	levels,	and	the y-axis	indicates	the	number	
of	pixels	that	have	a	particular	gray-level	value.

31
https://www.allaboutcircuits.com/technical-articles/image-histogram-characteristics-machine-learning-image-processing/

Histograms	of	Monochrome	Image

32http://homepages.inf.ed.ac.uk/rbf/BOOKS/PHILLIPS/cips2edsrc/HIST.C

Histogram	of	Color	Images

• Image	density

33
https://docs.opencv.org/3.4.0/d3/dc1/tutorial_basic_linear_transform.html

OpenMP Parallelization	of	Histogram

• Decomposition	based	on	output	(pixel	values,	0	- 255)
– Each	thread	searches	the	whole	image	to	only	count	those	

pixels	that	have	the	value	it	should	count	for
• E.g.	with	4	threads:	0-63	for	thread	0,	64-127	for	thread	1,	…

• Decomposition	based	on	the	input	(image)
– Each	thread	search	part	of	the	image	to	count	all	the	pixels	

and	store	the	partial histogram	locally
– Add	up	all	the	partial	histogram	

34

Image	Filtering	

• Changing	pixel	values	by	doing	a convolution between	a	
kernel	(filter)	and	an image.

Image	Filtering:	The	magic	of	the	filter	matrix

• http://lodev.org/cgtutor/filtering.html
• https://en.wikipedia.org/wiki/Kernel_(image

_processing)

• It	is	the	basic	of	convolution	neural	network

Convolution	Neural	Network	for	Object	
Detection

• Pooling:	sample-based	discretization	process

37

http://cs231n.github.io/convolutional-networks/

OpenMP Parallelization	of	Image	Filtering

• Decomposition	according	to	the	input	image
• Since	input	and	output	images	are	separate,	it	is	
straightforward
– Could	be	row1D,	col1D,	rowcol2D

• False-sharing	for	writing
boundary	of	output	images

38

Dense	matrix	algorithms

• Dense	linear	algebra	and	BLAS
• Image	processing/stencil
• Iterative	methods

39

Iterative	Methods

• Iterative	methods	can	be	expressed	in	the	general	form:	
x(k) =F(x(k-1))

Hopefully:	x(k)® s	(solution	of	my	problem)

• Wide	variety	of	computational	science	problem
– CFD,	molecular	dynamics,	weather/climate	forecast,	

cosmology,	

• Will	it	converge?	How	rapidly?

Iterative	Stencil	Applications

Loop	until	some	condition	is	true

Perform	computation	which	involves
communicating	with	N,E,W,S	neighbors
of	a	point	(5	point	stencil)

[Convergence	test?]

Stencil	is	similar	as	image	filtering/convolution

x(k) =F(x(k-1))

Jacobi.c

• Assignment	2	and	3:

42https://passlab.github.io/CSCE569/Assignment_2/jacobi.c

Jacobi

• An	iterative	method	for	approximating	the	solution	to	a	
system	of	linear	equations.	

• Ax=b where	the	ith equation	is

• a’s	and	b’s	are	known,	want	to	solve	for	x’s

inniii bxaxaxa =+++ ,11,11, !

ú
û

ù
ê
ë

é
-= å

¹ij
jjii

ii
i xab
a

x ,
,

1

OpenMP Parallelization	of	Jacobi

• Similar	as	image	filtering
– Enclosed	by	the	while to	be	iterative

• omp parallel for	outer	while loop
• omp for for	inner	for loops
• single and	reduction	are	needed

44

Ghost	Cell	Exchange

• For	assignment	3:

45

Background:	
C	multidimensional	array

46

Vector/Matrix	and	Array	in	C

• C	has	row-major	storage	for	multiple	dimensional	array
– A[2,2]	is	followed	by	A[2,3]

• 3-dimensional	array
– B[3][100][100]

• Think	it	as	recursive	definition
– A[4][10][32]

47

char	A[4][4]

Column	Major

Fortran	is	column	major

48

Array	Layout:	Why	We	Care?

1.	Makes	a	big	difference	for	access	speed
• For	performance,	set	up	code	to	go	in	row	major	order	in	C

– Caching:	each	read	from	memory	will	bring	other	adjacent	
elements	to	the	cache	line		

• (Bad)	Example:	4	vs 16	accesses
– matmul_base_1

49

for i = 1 to n
for j = 1 to n

A[j][i] = value

Array	Layout:	Why	We	Care?

2.	Affect	decomposition	and	data	movement
• Decomposition	may	create	submatrices that	are	in	non-
contiguous	memory	locations,	e.g.	A3	and	B1

• Submatrices in	contiguous	memory	location	of	2-D	row	
major	matrix
– A	single-row	submatrix,	e.g.	A2
– A	submatrix formed	with	adjacent	rows	with	full	column	

length,	e.g.	A1

50

A1

A2 B1

A3

Array	Layout:	Why	We	Care?

2.	Affect	decomposition	and	submatrix
• Row	or	column	wise	distribution	of	2-D	row-major	array
• #	of	data	movement	to	exchange	data	between	T0	and	T1

– Row-wise:	one	memory	copy	by	each
– Column-wise:	16	copies	each

51
T0										T1										T2								T3

Row-wise	distribution Column-wise	distribution

Array	and	pointers	in	C

• In	C,	an	array	is	a	pointer	+	dimensionality
– They	are	literally	the	same	in	binary,	i.e.	pointer	to	the	first	

element,	referenced	as	base	address
• Cast	and	assignment	from	array	to	pointe,	int A[M][N]

• A,	&A[0][0],	and	A[0]	have	the	same	value,	i.e.	the	pointer	to	
the	first	element	of	the	array

• Cast	a	pointer	to	an	array
– int *ap;	int (*A)[N]	=	(int(*)[N])ap;	A[i][j]	….

• Address	calculation	for	array	references
– Address	of	A[i][j]	=	A	+	(i*N+j)*sizeof (int)

52

