
Lecture	8:	Principles	of	Parallel	
Algorithm	Design

1

CSCE	569	Parallel	Computing

Department	of	Computer	Science	and	Engineering
Yonghong Yan

yanyh@cse.sc.edu
http://cse.sc.edu/~yanyh

Topics

• Introduction
• Programming	on	shared	memory	system	(Chapter	7)

– OpenMP
• Principles	of	parallel	algorithm	design	(Chapter	3)	
• Programming	on	large	scale	systems	(Chapter	6)

– MPI	(point	to	point	and	collectives)
– Introduction	to	PGAS	languages,	UPC	and	Chapel

• Analysis	of	parallel	program	executions	(Chapter	5)
– Performance	Metrics	for	Parallel	Systems

• Execution	Time,	Overhead,	Speedup,	Efficiency,	Cost	
– Scalability	of	Parallel	Systems
– Use	of	performance	tools

2

Topics

• Programming	on	shared	memory	system	(Chapter	7)
– Cilk/Cilkplus and	OpenMP Tasking
– PThread,	mutual	exclusion,	locks,	synchronizations

• Parallel	architectures	and	hardware
– Parallel	computer	architectures
– Memory	hierarchy	and	cache	coherency

• Manycore GPU	architectures	and	programming
– GPUs	architectures
– CUDA	programming
– Introduction	to	offloading	model	in	OpenMP

3

“parallel	and	for”	OpenMP	Constructs

4

for(i=0;i<N;i++) { a[i] = a[i] + b[i]; }

#pragma omp parallel shared (a, b)

{

int id, i, Nthrds, istart, iend;
id = omp_get_thread_num();
Nthrds = omp_get_num_threads();
istart = id * N / Nthrds;
iend = (id+1) * N / Nthrds;
for(i=istart;i<iend;i++) { a[i] = a[i] + b[i]; }

}

#pragma omp parallel shared (a, b) private (i)
#pragma omp for schedule(static)

for(i=0;i<N;i++) { a[i] = a[i] + b[i]; }

Sequential code

OpenMP parallel
region

OpenMP parallel
region and a
worksharing for
construct

OpenMP	Best	Practices

#pragma	omp parallel	private(i)
{
#pragma	omp for	nowait
for(i=0;i<n;i++)
a[i]	+=b[i];

#pragma	omp for	nowait
for(i=0;i<n;i++)
c[i]	+=d[i];

#pragma	omp barrier
#pragma	omp for	nowait reduction(+:sum)
for(i=0;i<n;i++)
sum	+=	a[i]	+	c[i];

}	

5

• False	sharing
– When	at	least	one	thread	write	to	a	

cache	line	while	others	access	it
• Thread	0:		=	A[1]				(read)
• Thread	1:	A[0]	=	…	(write)

• Solution:	use	array	padding

int a[max_threads];
#pragma omp parallel for schedule(static,1)
for(int i=0; i<max_threads; i++)

a[i] +=i;

int a[max_threads][cache_line_size];
#pragma omp parallel for schedule(static,1)
for(int i=0; i<max_threads; i++)

a[i][0] +=i;

False-sharing	in	OpenMP	and	Solution

Getting OpenMP Up To Speed

RvdP/V1 Tutorial IWOMP 2010 – CCS Un. of Tsukuba, June 14, 2010

False Sharing

CPUs Caches Memory

A store into a shared cache line invalidates the other
copies of that line:

The system is not able to
distinguish between changes

within one individual line

6

A

T0

T1

NUMA	First-touch

7

Getting OpenMP Up To Speed

RvdP/V1 Tutorial IWOMP 2010 – CCS Un. of Tsukuba, June 14, 2010

About “First Touch” placement/2

for (i=0; i<100; i++)
 a[i] = 0;

a[0]
 :
a[49]

#pragma omp parallel for num_threads(2)

First Touch
Both memories each have “their half” of

the array

a[50]
 :
a[99]

SPMD Program	Models	in	OpenMP

8

• SPMD	(Single	Program,	Multiple	Data)	for	parallel	regions
– All	threads	of	the	parallel	region	execute	the	same	code
– Each	thread	has	unique	ID

• Use	the	thread	ID	to	diverge	the	execution	of	the	threads
– Different	thread	can	follow	different	paths	through	the	same	

code

• SPMD	is	by	far	the	most	commonly	used	pattern	for	
structuring	parallel	programs
– MPI,	OpenMP,	CUDA,	etc

if(my_id == x) { }
else { }

Overview:	Algorithms	and	Concurrency	(part	1)

• Introduction	to	Parallel	Algorithms	
– Tasks	and	Decomposition	
– Processes	and	Mapping	

• Decomposition	Techniques	
– Recursive	Decomposition	
– Data	Decomposition	
– Exploratory	Decomposition	
– Hybrid	Decomposition	

• Characteristics	of	Tasks	and	Interactions	
– Task	Generation,	Granularity,	and	Context	
– Characteristics	of	Task	Interactions.

9

Overview:	Concurrency	and	Mapping	(part	2)

• Mapping	Techniques	for	Load	Balancing	
– Static	and	Dynamic	Mapping	

• Methods	for	Minimizing	Interaction	Overheads	
– Maximizing	Data	Locality	
– Minimizing	Contention	and	Hot-Spots	
– Overlapping	Communication	and	Computations	
– Replication	vs.	Communication	
– Group	Communications	vs.	Point-to-Point	Communication	

• Parallel	Algorithm	Design	Models	
– Data-Parallel,	Work-Pool,	Task	Graph,	Master-Slave,	Pipeline,	

and	Hybrid	Models	

10

Decomposition,	Tasks,	and	Dependency	Graphs

• Decompose	work	into	tasks	that	can	be	executed	concurrently	
• Decomposition	could	be	in	many	different	ways.	
• Tasks	may	be	of	same,	different,	or	even	indeterminate	sizes.	
• Task	dependency	graph:

– node	=	task	
– edge	=	control	dependence,	output-input	dependency	
– No	dependency	==	parallelism

11

Example:	DenseMatrix	Vector	Multiplication

12

X																			=

• Computation	of	each	element	of	output	vector	y	is	
independent

• Decomposed	into	n	tasks,	one	per	element	in	y	à Easy
• Observations

– Each	task	only	reads	one	row	of	A,	and	writes	one	element	of	y
– All	tasks	share	vector	b	(the	shared	data)
– No	control	dependencies	between	tasks
– All	tasks	are	of	the	same	size	in	terms	of	number	of	operations.	

REAL	A[n][n],	b[n],	y[n];	int i,	j;
for	(i =	0;	i <	n;	i++)	{
sum	=	0.0;
for	(j	=	0;	j	<	n;	j++)	
sum	+=	A[i][j]	*	b[j];	

c[i]	=	sum;
}

Example:	Database	Query	Processing	
Consider	the	execution	of	the	query:

MODEL	=	``CIVIC''	AND YEAR	=	2001	AND
(COLOR	=	``GREEN''	OR COLOR	=	``WHITE”)

on	the	following	table:	

ID# Model Year Color Dealer Price
4523 Civic 2002 Blue MN $18,000
3476 Corolla 1999 White IL $15,000
7623 Camry 2001 Green NY $21,000
9834 Prius 2001 Green CA $18,000
6734 Civic 2001 White OR $17,000
5342 Altima 2001 Green FL $19,000
3845 Maxima 2001 Blue NY $22,000
8354 Accord 2000 Green VT $18,000
4395 Civic 2001 Red CA $17,000
7352 Civic 2002 Red WA $18,000

13

Example:	Database	Query	Processing	
• Tasks:	Each	task	search	the	whole	table	for	entries	that	satisfy	

one	predicate
– Results:	A	list	of	entries

• Edges:	output	of	one	task	serves	as	input	to	the	next
MODEL	=	``CIVIC''	AND YEAR	=	2001	AND

(COLOR	=	``GREEN''	OR COLOR	=	``WHITE”)

14

Example:	Database	Query	Processing	
• An	alternate	decomposition

MODEL	=	``CIVIC''	AND YEAR	=	2001	AND
(COLOR	=	``GREEN''	OR COLOR	=	``WHITE)

• Different	decompositions	may	yield	different	parallelism	and	
performance	

15

Granularity	of	Task	Decompositions	
• Granularity	is	task	size	(amount	of	computation)

– Depending	on	the	number	of	tasks	for	the	same	problem	size
• Fine-grained	decomposition	=	large	number	of	tasks	
• Coarse	grained	decomposition	=	small	number	of	tasks	
• Granularity	for	dense	matrix-vector	product

– fine-grain:	each	task	computes	an	individual	element	in	y
– coarser-grain:	each	task	computes	3	elements	in	y	

X																				=

16

Degree	of	Concurrency	

• Definition:	the	number	of	tasks	that	can	be	executed	in	parallel	
• May	change	over	program	execution

• Metrics
– Maximum	degree	of	concurrency

• Maximum	number	of	concurrent	tasks	at	any	point	during	
execution.	

– Average	degree	of	concurrency
• The	average	number	of	tasks	that	can	be	processed	in	parallel	over	
the	execution	of	the	program

• Speedup:	serial_execution_time/parallel_execution_time
• Inverse	relationship	of	degree	of	concurrency	and	task	

granularity	
– Task	granularity	é(less	tasks),	degree	of	concurrency	ê
– Task	granularity	ê(more	tasks),	degree	of	concurrency	é

17

Examples:	Degree	of	Concurrency	

• Maximum	degree	of	concurrency
• Average	degree	of	concurrency

18

X																			=

• Database	query
– Max:	4
– Average:	7/3	(each	task	takes	the	same	time)

• Matrix-vector	multiplication
– Max:	n
– Average:	n

Critical	Path	Length	

• A	directed	path: a	sequence	of	tasks	that	must	be	serialized
– Executed	one	after	another

• Critical	path:
– The	longest	weighted	path	throughout	the	graph

• Critical	path	length:	shortest	time	in	which	the	program	can	
be	finished
– Lower	bound	on	parallel	execution	time

19

A	building	project

Critical	Path	Length	and	Degree	of	Concurrency	
Database	query	task	dependency	graph

Questions:
What	are	the	tasks	on	the	critical	path	for	each	dependency	graph?	
What	is	the	shortest	parallel	execution	time?	
How	many	processors	are	needed	to	achieve	the	minimum	time?	
What	is	the	maximum	degree	of	concurrency?
What	is	the	average	parallelism	(average	degree	of	concurrency)?

Total	amount	of	work/(critical	path	length)
2.33	(63/27)	and	1.88	(64/34)

20

Limits	on	Parallel	Performance	

• What	bounds	parallel	execution	time?
– minimum	task	granularity

• e.g.	dense	matrix-vector	multiplication	≤	n2 concurrent	tasks
– fraction	of	application	work	that	can’t	be	parallelized

• more	about	Amdahl’s	law	in	a	later	lecture	…
– dependencies	between	tasks
– parallelization	overheads

• e.g.,	cost	of	communication	between	tasks

• Metrics	of	parallel	performance
– T1:	sequential	execution	time,	Tp parallel	execution	time	on	p	

processors/cores/threads

– speedup	=	T1/Tp
– parallel	efficiency	=	T1/(p*Tp)

21

Task	Interaction	Graphs	

• Tasks	generally	exchange	data	with	others	
– example:	dense	matrix-vector	multiply

• If	b	is	not	replicated	in	all	tasks:	each	task	has	some,	but	not	all
• Tasks	will	have	to	communicate	elements	of	b

• Task	interaction	graph	
– node	=	task
– edge	=	interaction	or	data	exchange

• Task	interaction	graphs	vs.	task	dependency	graphs	
– Task	dependency	graphs	represent	control	dependences
– Task	interaction	graphs	represent	data	dependences

22

Task	Interaction	Graphs:	An	Example	

Sparsematrix	vector	multiplication:	A x	b
• Computation	of	each	result	element	=	an	independent	task.	
• Only	non-zero	elements	of	sparse	matrix	A participate	in	

computation.	
• If	partition	b across	tasks,	i.e.	task	Ti	has	b[i]	only
• The	task	interaction	graph	of	the	computation	=	graph	of	the	matrix	A
• A	is	the	adjacent	matrix	of	the	graph

23

• Finer	task	granularity	èmore	overhead	of	task	interactions
– Overhead	as	a	ratio	of	useful	work	of	a	task

• Example:	sparse	matrix-vector	product	interaction	graph

• Assumptions:
– each	dot	(A[i][j]*b[j])	takes	unit	time	to	process	
– each	communication	(edge)	causes	an	overhead	of	a	unit	time

• If	node	0	is	a	task:	communication	=	3;	computation	=	4
• If	nodes	0,	4,	and	5	are	a	task:	communication	=	5;	computation	=	15

– coarser-grain	decomposition	→	smaller	communication/computation	
ratio	(3/4	vs 5/15)

Task	Interaction	Graphs,	Granularity,	and	
Communication	

24

Processes	and	Mapping	

• Generally
– #	of	tasks	>=	#	processing	elements	(PEs)	available
– parallel	algorithm	must	map	tasks	to	processes

• Mapping:	aggregate	tasks	into	processes
– Process/thread	=	processing	or	computing	agent	that	performs	work
– assign	collection	of	tasks	and	associated	data	to	a	process

• An	PE,	e.g.	a	core/thread,	has	its	system	abstraction
– Not	easy	to	bind	tasks	to	physical	PEs,	thus,	more	layers	at	least	

conceptually	from	PE	to	task	mapping
– Process	in	MPI,	thread	in	OpenMP/pthread,	etc

• The	overloaded	terms	of	processes	and	threads
– Task	à processes	à OS	processes	à CPU	à cores
– For	the	sake	of	simplicity,	processes	=	PEs/cores

25

Processes	and	Mapping	

• Mapping	of	tasks	to	processes	is	critical	to	the	parallel	
performance	of	an	algorithm.	

• On	what	basis	should	one	choose	mappings?
– Task	dependency	graph
– Task	interaction	graph	

• Task	dependency	graphs
– To	ensure	equal	spread	of	work	across	all	processes	at	any	point	

• minimum	idling
• optimal	load	balance	

• Task	interaction	graphs
– To	minimize	interactions

• Minimize	communication	and	synchronization
26

Processes	and	Mapping	

A	good	mapping	must	minimize	parallel	execution	time	by:

• Mapping	independent	tasks	to	different	processes
– Maximize	concurrency	

• Tasks	on	critical	path	have	high	priority	of	being	assigned	to	
processes

• Minimizing	interaction	between	processes	
– mapping	tasks	with	dense	interactions	to	the	same	process.	

• Difficulty:	these	criteria	often	conflict	with	each	other
– E.g.	No	decomposition,	i.e.	one	task,	minimizes	interaction	but	

no	speedup	at	all!

27

Processes	and	Mapping:	Example	

28

Example:	mapping	database	queries	to	processes
• Consider	the	dependency	graphs	in	levels	

– no	nodes	in	a	level	depend	upon	one	another
• Assign	all	tasks	within	a	level	to	different	processes

Overview:	Algorithms	and	Concurrency

• Introduction	to	Parallel	Algorithms	
– Tasks	and	Decomposition	
– Processes	and	Mapping	

• Decomposition	Techniques	
– Recursive	Decomposition	
– Data	Decomposition	
– Exploratory	Decomposition	
– Hybrid	Decomposition	

• Characteristics	of	Tasks	and	Interactions	
– Task	Generation,	Granularity,	and	Context	
– Characteristics	of	Task	Interactions.

29

Decomposition	Techniques	

30

So	how	does	one	decompose	a	task	into	various	subtasks?	

• No	single	recipe	that	works	for	all	problems
• Practically	used	techniques

– Recursive	decomposition
– Data	decomposition
– Exploratory	decomposition
– Speculative	decomposition	

Recursive	Decomposition	

Generally	suited	to	problems	solvable	using	the	divide-and-
conquer	strategy	
Steps:
1. decompose	a	problem	into	a	set	of	sub-problems
2. recursively	decompose	each	sub-problem	
3. stop	decomposition	when	minimum	desired	granularity	

reached

31

Recursive	Decomposition:	Quicksort

32

At	each	level and	for	each	vector
1. Select	a	pivot
2. Partition	set	around	pivot
3. Recursively	sort	each	subvector

ê

quicksort(A,	lo,	hi)
if	lo	<	hi
p	=	pivot_partition(A,	lo,	hi)	
quicksort(A,	lo,	p-1)
quicksort(A,	p+1,	hi)

Each	vector	can	be	sorted	
concurrently	(i.e.,	each	sorting	
represents	an	independent	subtask).	

Recursive	Decomposition:	Min

33

procedure SERIAL_MIN (A, n)
min = A[0];
for i := 1 to n − 1 do
if (A[i] < min) min := A[i];

return min;

procedure RECURSIVE_MIN (A,	n)	
if (n	= 1)	thenmin :=	A [0]		;	
else
lmin :=	RECURSIVE_MIN (A,	n/2);	
rmin :=	RECURSIVE_MIN (&(A[n/2]),	n	- n/2);	
if (lmin <	rmin)	thenmin :=	lmin;	
elsemin :=	rmin;	

returnmin;	

Finding	the	minimum	in	a	vector	using	divide-and-conquer

Applicable	to	other	associative	operations,	e.g.	sum,	AND	…
Known	as	reduction	operation

Recursive	Decomposition:	Min
finding the minimum in set {4, 9, 1, 7, 8, 11, 2, 12}.

34

Task dependency graph:
• RECURSIVE_MIN forms the

binary tree
• min finishes and closes
• Parallel in the same level

Fib	with	OpenMP	Tasking

• Task	completion	occurs	when	the	task	reaches	the	end	of	
the	task	region	code

• Multiple	tasks	joined	to	complete	through	the	use	of	task	
synchronization	constructs
– taskwait
– barrier construct

• taskwait constructs:
– #pragma	omp taskwait
– !$omp taskwait

35

int fib(int n)	{
int x,	y;
if	(n	<	2)		return	n;
else	{

#pragma	omp task	shared(x)
x	=	fib(n-1);
#pragma	omp task	shared(y)
y	=	fib(n-2);
#pragma	omp taskwait
return	x	+	y;			

}
}

Data	Decomposition
-- The	most	commonly	used	approach	

• Steps:	
1. Identify	the	data	on	which	computations	are	performed.	
2. Partition	this	data	across	various	tasks.	

• Partitioning	induces	a	decomposition	of	the	problem,	i.e.	
computation	is	partitioned

• Data	can	be	partitioned	in	various	ways
– Critical	for	parallel	performance	

• Decomposition	based	on
– output	data
– input	data
– input	+	output	data
– intermediate	data

36

Output	Data	Decomposition	

• Each	element	of	the	output	can	be	computed	
independently	of	others
– simply	as	a	function	of	the	input.	

• A	natural	problem	decomposition

37

Output	Data	Decomposition:	Matrix	
Multiplication

multiplying	two	n	x	nmatrices	A and	B to	yield	matrix	C

The	output	matrix	C can	be	partitioned	into	four	tasks:	

Task	1:

Task	2:

Task	3:

Task	4: 38

Output	Data	Decomposition:	Example	
A	partitioning	of	output	data	does	not	result	in	a	unique	decomposition	into	tasks.	
For	example,	for	the	same	problem	as	in	previus	foil,	with	identical	output	data	
distribution,	we	can	derive	the	following	two	(other)	decompositions:	

Decomposition I Decomposition II
Task 1: C1,1 = A1,1 B1,1

Task 2: C1,1 = C1,1 + A1,2 B2,1

Task 3: C1,2 = A1,1 B1,2

Task 4: C1,2 = C1,2 + A1,2 B2,2

Task 5: C2,1 = A2,1 B1,1

Task 6: C2,1 = C2,1 + A2,2 B2,1

Task 7: C2,2 = A2,1 B1,2

Task 8: C2,2 = C2,2 + A2,2 B2,2

Task 1: C1,1 = A1,1 B1,1

Task 2: C1,1 = C1,1 + A1,2 B2,1

Task 3: C1,2 = A1,2 B2,2

Task 4: C1,2 = C1,2 + A1,1 B1,2

Task 5: C2,1 = A2,2 B2,1

Task 6: C2,1 = C2,1 + A2,1 B1,1

Task 7: C2,2 = A2,1 B1,2

Task 8: C2,2 = C2,2 + A2,2 B2,2
39

Output	Data	Decomposition:	Example	
Count the frequency of item sets in database transactions

40

• Decompose	the	item	sets	to	count	
– each	task	computes	total	count	for	each	

of	its	item	sets
– append	total	counts	for	item	sets	to	

produce	total	count	result

Output	Data	Decomposition:	Example	

From	the	previous	example,	the	following	observations	can	
be	made:	

• If	the	database	of	transactions	is	replicated	across	the	
processes,	each	task	can	be	independently	accomplished	
with	no	communication.	

• If	the	database	is	partitioned	across	processes	as	well	(for	
reasons	of	memory	utilization),	each	task	first	computes	
partial	counts.	These	counts	are	then	aggregated	at	the	
appropriate	task.	

41

Input	Data	Partitioning	

• Generally	applicable	if	each	output	can	be	naturally	
computed	as	a	function	of	the	input.	

• In	many	cases,	this	is	the	only	natural	decomposition	if	the	
output	is	not	clearly	known	a-priori
– e.g.,	the	problem	of	finding	the	minimum,	sorting.	

• A	task	is	associated	with	each	input	data	partition
– The	task	performs	computation	with	its	part	of	the	data.
– Subsequent	processing	combines	these	partial	results.	

• MapReduce

42

Input	Data	Partitioning:	Example	

43

Partitioning	Input	and Output	Data	

44

• Partition	on	both	input	and	output	for	more	concurrency
• Example:	item	set	counting

Histogram

• Parallelizing	Histogram	using	OpenMP in	Assignment	2
– Similar	as	count	frequency

45

Intermediate	Data	Partitioning	

46

• If	computation	is	a	sequence	of	transforms
– from	input	data	to	output	data,	e.g.	image	processing	

workflow
• Can	decompose	based	on	data	for	intermediate	stages

Task	1:

Task	2:

Task	3:

Task	4:

Intermediate	Data	Partitioning:	Example	

47

• dense matrix multiplication
– visualize this computation in terms of intermediate

matrices D.

Intermediate	Data	Partitioning:	Example	

Stage	II

Task 01: D1,1,1= A1,1 B1,1 Task 02: D2,1,1= A1,2 B2,1

Task 03: D1,1,2= A1,1 B1,2 Task 04: D2,1,2= A1,2 B2,2

Task 05: D1,2,1= A2,1 B1,1 Task 06: D2,2,1= A2,2 B2,1

Task 07: D1,2,2= A2,1 B1,2 Task 08: D2,2,2= A2,2 B2,2

Task 09: C1,1 = D1,1,1 + D2,1,1 Task 10: C1,2 = D1,1,2 + D2,1,2

Task 11: C2,1 = D1,2,1 + D2,2,1 Task 12: C2,,2 = D1,2,2 + D2,2,2 48

• A	decomposition	of	intermediate	data:	8	+	4	tasks:	
Stage	I

Intermediate	Data	Partitioning:	Example	
The task dependency graph for the decomposition
(shown in previous foil) into 12 tasks is as follows:

49

The	Owner	Computes	Rule	

50

• Each	datum	is	assigned	to	a	process
• Each	process	computes	values	associated	with	its	data
• Implications

– input	data	decomposition
• all	computations	using	an	input	datum	are	performed	by	its	
process	

– output	data	decomposition
• an	output	is	computed	by	the	process	assigned	to	the	output	
data

References

• Adapted	from	slides	“Principles	of	Parallel	Algorithm	
Design”	by	Ananth Grama

• Based	on	Chapter	3	of	“Introduction	to	Parallel	Computing”	
by	Ananth Grama,	Anshul Gupta,	George	Karypis,	and	Vipin
Kumar.	Addison	Wesley,	2003

51

