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Course	Information

• Meeting	Time: 9:40AM	– 10:55AM	Monday	Wednesday
• Class	Room:	2A15, Swearingen	Engineer	Center,	301	Main	St,	

Columbia,	SC	29208
• Grade:	60%	for	four	homeworks +	40%	for	two	exams

• Instructor:	Yonghong	Yan
– http://cse.sc.edu/~yanyh,	yanyh@cse.sc.edu
– Office:	Room	2211, Storey Innovation	Center	(Horizon	II),	550	

Assembly	St,	Columbia,	SC	29201
– Tel:	803-777-7361
– Office	Hours:	11:00AM	– 12:30AM	(after	class)	or	by	appointment

• Public	Course	website: http://passlab.github.io/CSCE569
• Homework	submission:	https://dropbox.cse.sc.edu
• Syllabus	or	website	for	more	details
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Objectives

• Learn	fundamentals	of	concurrent	and	parallel	computing
– Describe	benefits	and	applications	of	parallel	computing.
– Explain	architectures	of	multicore	CPU,	GPUs	and	HPC	

clusters
• Including	the	key	concepts	in	parallel	computer	
architectures,	e.g.	shared	memory	system,	distributed	
system,	NUMA	and	cache	coherence,	interconnection

– Understand	principles	for	parallel	and	concurrent	program	
design,	e.g.	decomposition	of	works,	task	and	data	
parallelism,	processor	mapping,	mutual	exclusion,	locks.

• Develop	skills	writing	and	analyzing	parallel	programs
– Write	parallel	program	using	OpenMP,	CUDA,	and	MPI	

programming	models.
– Perform	analysis	of	parallel	program	problem.
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• Lots	of	materials	on	Internet.
– On	the	website,	there	is	a	“Resources”	section	that	provides	web	

page	links,	documents,	and	other	materials	for	this	course

Textbooks
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• Required:	Introduction	to	Parallel	Computing	(2nd	
Edition), PDF, Amazon,	cover	theory,	MPI	and	OpenMP
introduction,	by	Ananth Grama,	Anshul Gupta,	George	
Karypis,	and	Vipin Kumar,	Addison-Wesley,	2003

• Recommended:	John	Cheng,	Max	Grossman,	and	Ty	
McKercher, Professional	CUDA	C	Programming,	1st	Edition	
2014, PDF, Amazon.

• Reference	book	for	OpenMP:	Barbara	Chapman,	Gabriele	
Jost,	and	Ruud	van	der	Pas, Using	OpenMP:	Portable	
Shared	Memory	Parallel	Programming,	2007, PDF, Amazon.

• Reference	book	for	MPI:	Choose	from Recommended	
Books	for	MPI



Homeworks and	Exams

• Four	homeworks:	practice	programming	skills
– Require	both	good	and	correct	programming

• Write	organized	program	that	is	easy	to	read
– Report	and	discuss	your	findings	in	report

• Writing	good	document
– 60%	Total	(10%	+	10%	+	20%	+	20%)

• Exams:	Test	fundamentals	
– Close/Open	book	(?)
– 40%	Total

• Midterm:	15%,	March	7th	Wednesday	during	class
– The	week	before	spring	break.	

• Final	Exam:	25%,	May	2nd	Wednesday,	9:00AM	- 11:30AM
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Machine	for	Development	for	OpenMP and	
MPI

• Linux	machines	in	Swearingen	1D39	and	3D22
– All	CSCE	students	by	default	have	access	to	these	machine	

using	their	standard	login	credentials
• Let	me	know	if	you,	CSCE	or	not,	cannot	access	

– Remote	access	is	also	available	via	SSH	over	port	
222. Naming	schema	is	as	follows:
• l-1d39-01.cse.sc.edu	through	l-1d39-26.cse.sc.edu
• l-3d22-01.cse.sc.edu	through	l-3d22-20.cse.sc.edu

• Restricted	to	2GB	of	data	in	their	home	folder	(~/).
– For	more	space,	create	a	directory	in	/scratch	on	the	login	

machine,	however	that	data	is	not	shared	and	it	will	only	be	
available	on	that	specific	machine.
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Putty	SSH	Connection	on	Windows
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l-1d39-08.cse.sc.edu 222



SSH	Connection	from	Linux/Mac	OS	X	Terminal
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-X	for	enabling	X-
windows	forwarding	so	
you	can	use	the	graphics	
display	on	your	computer.	
For	Mac	OS	X,	you	need	
have	X	server	software	
installed,	e.g.	
Xquartz(https://www.xqu
artz.org/)	is	the	one	I	use.	



Try	in	The	Lab	and	From	Remote

• Bring	your	laptop	
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Topics

• Introduction
• Programming	on	shared	memory	system	(Chapter	7)

– OpenMP
– PThread,	mutual	exclusion,	locks,	synchronizations
– Cilk/Cilkplus(?)

• Principles	of	parallel	algorithm	design	(Chapter	3)
• Analysis	of	parallel	program	executions	(Chapter	5)

– Performance	Metrics	for	Parallel	Systems
• Execution	Time,	Overhead,	Speedup,	Efficiency,	Cost	

– Scalability	of	Parallel	Systems
– Use	of	performance	tools
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Topics

• Programming	on	large	scale	systems	(Chapter	6)
– MPI	(point	to	point	and	collectives)
– Introduction	to	PGAS	languages,	UPC	and	Chapel	(?)

• Parallel	architectures	and	hardware
– Parallel	computer	architectures
– Memory	hierarchy	and	cache	coherency

• Manycore GPU	architectures	and	programming
– GPUs	architectures
– CUDA	programming
– Introduction	to	offloading	model	in	OpenMP(?)

• Parallel	algorithms	(Chapter	8,9	&10)
– Dense	linear	algebra,	stencil	and	image	processing
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Prerequisites

• Good	reasoning	and	analytical	skills
• Familiarity	with	and	Skills	of	C/C++	programming

– macro,	pointer,	array,	struct,	union,	function	pointer,	etc.	
• Familiarity	with	Linux	environment

– SSH,	Linux	commands,	vim/Emacs editor
• Basic	knowledge	of	computer	architecture	and	data	
structures
– Memory	hierarchy,	cache,	virtual	address
– Array	and	link-list

• Talk	with	me	if	you	have	concern
• Turn	in	the	survey	
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Introduction:	What	is	and	why	
Parallel	Computing
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An	Example:	Grading
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15	questions
300	exams

From An Introduction to Parallel Programming, By Peter Pacheco, Morgan Kaufmann Publishers 
Inc, Copyright © 2010, Elsevier Inc. All rights Reserved



Three Teaching Assistants

• To	grade	300	copies	of	exams,	each	has	15	questions
15

TA#1
TA#2 TA#3



Division	of	Work	– Data	Parallelism

• Each	does	the	same	type	of	work	(task),	but	working	on	
different	sheet	(data)
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TA#1

TA#2

TA#3

100	exams

100	exams

100	exams



Division	of	Work	– Task	Parallelism

• Each	does	different	type	of	work	(task),	but	working	on	
same	sheets	(data)
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TA#1

TA#2

TA#3

Questions	1	- 5

Questions	6	- 10

Questions	11	- 15



Summary

• Data:	300	copies	of	exam
• Task:	grade	total	300*15	questions
• Data	parallelism

– Distributed	300	copies	to	three	TAs
– They	work	independently

• Task	Parallelism
– Distributed	300	copies	to	three	TAs
– Each	grades	5	questions	of	100	copies
– Exchange	copies
– Grade	5	questions	again
– Exchange	copies
– Grade	5	questions	

• The	three	TAs	can	do	in	parallel,	we	can	achieve	3	time	speedup	
theoretically
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Which	approach	
could	be	faster!



Challenges

• Are	the	three	TAs	grading	in	the	same	performance?
– One	CPU	may	be	slower	than	the	other
– They	may	not	work	on	grading	the	same	time

• How	the	TAs	communicate?
– Are	they	sit	on	the	same	table?	Or	each	take	copies	and	grade	

from	home?	How	they	share	intermediate	results	(task	
parallelism)

• Where	the	solutions	are	stored	so	they	can	refer	to	when	
grading
– Remember	answers	to	5	questions	vs to	15	questions

• Cache	and	Memory	issues
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What	is	Parallel	Computing?

• A form	of	computation*:
– Large	problems	divided	into	smaller	ones
– Smaller	ones	are	carried	out	and	solved	
simultaneously

• Uses	more	than	one	CPUs	or	cores	concurrently	for	one	
program
– Not	conventional	time-sharing:	multiple	programs	switch	

between	each	other	on	one	CPU
– Or	multiple	programs	each	on	a	CPU	and	not	interacting

• Serial	processing
– Some	programs,	or	part	of	a	program	are	inherently	serial
– Most	of	our	programs	and	desktop	applications

*http://en.wikipedia.org/wiki/Parallel_computing 20



Why	Parallel	Computing?

• Save	time	(execution	time)	and	money!
– Parallel	program	can	run	faster	if	running	concurrently	instead	of	

sequentially.

• Solve	larger	and	more	complex	problems!
– Utilize	more	computational	resources

From	“21st	Century	Grand	Challenges	|	The	White	House”,	http://www.whitehouse.gov/administration/eop/ostp/grand-challenges
Grand	challenges:	http://en.wikipedia.org/wiki/Grand_Challenges
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Picture	from:	Intro	to	Parallel	Computing:	https://computing.llnl.gov/tutorials/parallel_comp



High	Performance	Computing	(HPC)	and	
Parallel	Computing

• HPC	is	what	really	needed	*
– Parallel	computing	is	so	far	the	only	way	to	get	there!!

• Parallel	computing	makes	sense!

• Applications	that	require	HPC
– Many	problem	domains	are	naturally	parallelizable
– Data	cannot	fit	in	memory	of	one	machine

• Computer	systems
– Physics	limitation:	has	to	build	it	parallel
– Parallel	systems	are	widely	accessible	

• Smartphone	has	2	to	4	cores	+	GPU	now

22

*What	is	HPC:	http://insidehpc.com/hpc-basic-training/what-is-hpc/
Supercomputer:	http://en.wikipedia.org/wiki/Supercomputer
TOP500	(500	most	powerful	computer	systems	in	the	world):	http://en.wikipedia.org/wiki/TOP500,	http://top500.org/
HPC	matter:	http://sc14.supercomputing.org/media/social-media

We	will	discuss	each	of	
the	two	aspect	today!



Simulation:	The	Third Pillar	of	Science	

• Traditional	scientific	and	engineering	paradigm:
1) Do	theory or	paper	design.
2) Perform	experiments or	build	system.

• Limitations	of	experiments:
– Too	difficult	-- build	large	wind	tunnels.
– Too	expensive	-- build	a	throw-away	passenger	jet.
– Too	slow	-- wait	for	climate	or	galactic	evolution.
– Too	dangerous	-- weapons,	drug	design,	climate	experimentation.

• Computational	science	paradigm:
3) Use	high	performance	computer	systems	to	simulate the	phenomenon

• Base	on	known	physical	laws	and	efficient	numerical	methods.

23

From	slides	of	Kathy	Yelic’s 2007	course	at	Berkeley:	http://www.cs.berkeley.edu/~yelick/cs267_sp07/	



Applications:	Science	and	Engineering	

• Model	many	difficult	problems	by	parallel	computing
– Atmosphere,	Earth,	Environment
– Physics	- applied,	nuclear,	particle,	condensed	matter,	high	

pressure,	fusion,	photonics
– Bioscience,	Biotechnology,	Genetics
– Chemistry,	Molecular	Sciences
– Geology,	Seismology
– Mechanical	Engineering	- from	prosthetics	to	spacecraft
– Electrical	Engineering,	Circuit	Design,	Microelectronics
– Computer	Science,	Mathematics
– Defense,	Weapons
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Applications:	Industrial	and	Commercial

• Processing	large	amounts	of	data	in	sophisticated	ways
– Databases,	data	mining
– Oil	exploration
– Medical	imaging	and	diagnosis
– Pharmaceutical	design
– Financial	and	economic	modeling
– Management	of	national	and	multi-national	corporations
– Advanced	graphics	and	virtual	reality,	particularly	in	the	

entertainment	industry
– Networked	video	and	multi-media	technologies
– Collaborative	work	environments
– Web	search	engines,	web	based	business	services
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Economic	Impact	of	HPC

• Airlines:
– System-wide	logistics	optimization	systems	on	parallel	systems.
– Savings:	approx.	$100	million	per	airline	per	year.

• Automotive	design:
– Major	automotive	companies	use	large	systems	(500+	CPUs)	for:

• CAD-CAM,	crash	testing,	structural	integrity	and	aerodynamics.
• One	company	has	500+	CPU	parallel	system.

– Savings:	approx.	$1	billion	per	company	per	year.
• Semiconductor	industry:

– Semiconductor	firms	use	large	systems	(500+	CPUs)	for
• device	electronics	simulation	and	logic	validation	

– Savings:	approx.	$1	billion	per	company	per	year.
• Securities	industry:

– Savings:	approx.	$15	billion	per	year	for	U.S.	home	mortgages.

26From	slides	of	Kathy	Yelic’s 2007	course	at	Berkeley:	http://www.cs.berkeley.edu/~yelick/cs267_sp07/	



Inherent	Parallelism	of	Applications

• Example:	weather	prediction	and	global	climate	modeling
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Global	Climate	Modeling	Problem

• Problem	is	to	compute:
– f(latitude,	longitude,	elevation,	time)	à

temperature,	pressure,	humidity,	wind	velocity
• Approach:

– Discretize the	domain,	e.g.,	a	measurement	point	every	10	km
– Devise	an	algorithm	to	predict	weather	at	time	t+dt given	t

• Uses:
– Predict	major	events,	e.g.,	El	Nino
– Air	quality	forecasting
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The	Rise	of	Multicore	Processors
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Recent	Multicore	Processors
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Recent	Manycore GPU	processors
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An�Overview�of�the�GK110�Kepler�Architecture�
Kepler�GK110�was�built�first�and�foremost�for�Tesla,�and�its�goal�was�to�be�the�highest�performing�
parallel�computing�microprocessor�in�the�world.�GK110�not�only�greatly�exceeds�the�raw�compute�
horsepower�delivered�by�Fermi,�but�it�does�so�efficiently,�consuming�significantly�less�power�and�
generating�much�less�heat�output.��

A�full�Kepler�GK110�implementation�includes�15�SMX�units�and�six�64�bit�memory�controllers.��Different�
products�will�use�different�configurations�of�GK110.��For�example,�some�products�may�deploy�13�or�14�
SMXs.��

Key�features�of�the�architecture�that�will�be�discussed�below�in�more�depth�include:�

� The�new�SMX�processor�architecture�
� An�enhanced�memory�subsystem,�offering�additional�caching�capabilities,�more�bandwidth�at�

each�level�of�the�hierarchy,�and�a�fully�redesigned�and�substantially�faster�DRAM�I/O�
implementation.�

� Hardware�support�throughout�the�design�to�enable�new�programming�model�capabilities�

�

Kepler�GK110�Full�chip�block�diagram�

�
�

Streaming�Multiprocessor�(SMX)�Architecture�

Kepler�GK110)s�new�SMX�introduces�several�architectural�innovations�that�make�it�not�only�the�most�
powerful�multiprocessor�we)ve�built,�but�also�the�most�programmable�and�power�efficient.��

�

SMX:�192�single�precision�CUDA�cores,�64�double�precision�units,�32�special�function�units�(SFU),�and�32�load/store�units�
(LD/ST).�

�
�

Kepler�Memory�Subsystem�/�L1,�L2,�ECC�

Kepler&s�memory�hierarchy�is�organized�similarly�to�Fermi.�The�Kepler�architecture�supports�a�unified�
memory�request�path�for�loads�and�stores,�with�an�L1�cache�per�SMX�multiprocessor.�Kepler�GK110�also�
enables�compiler�directed�use�of�an�additional�new�cache�for�read�only�data,�as�described�below.�

�

�

64�KB�Configurable�Shared�Memory�and�L1�Cache�

In�the�Kepler�GK110�architecture,�as�in�the�previous�generation�Fermi�architecture,�each�SMX�has�64�KB�
of�on�chip�memory�that�can�be�configured�as�48�KB�of�Shared�memory�with�16�KB�of�L1�cache,�or�as�16�
KB�of�shared�memory�with�48�KB�of�L1�cache.�Kepler�now�allows�for�additional�flexibility�in�configuring�
the�allocation�of�shared�memory�and�L1�cache�by�permitting�a�32KB�/�32KB�split�between�shared�
memory�and�L1�cache.�To�support�the�increased�throughput�of�each�SMX�unit,�the�shared�memory�
bandwidth�for�64b�and�larger�load�operations�is�also�doubled�compared�to�the�Fermi�SM,�to�256B�per�
core�clock.�

48KB�Read�Only�Data�Cache�

In�addition�to�the�L1�cache,�Kepler�introduces�a�48KB�cache�for�data�that�is�known�to�be�read�only�for�
the�duration�of�the�function.�In�the�Fermi�generation,�this�cache�was�accessible�only�by�the�Texture�unit.�
Expert�programmers�often�found�it�advantageous�to�load�data�through�this�path�explicitly�by�mapping�
their�data�as�textures,�but�this�approach�had�many�limitations.��

• ~3k	cores



Units	of	Measure	in	HPC

• Flop:	floating	point	operation	(*,	/,	+,	-,	etc)
• Flop/s:	floating	point	operations	per	second,	written	also	as	FLOPS
• Bytes:	size	of	data

– A double	precision	floating	point	number	is	8	bytes
• Typical	sizes	are	millions,	billions,	trillions…

– Mega Mflop/s	=	106 flop/sec Mzbyte =	220 =	1048576	=	~106 bytes
– Giga Gflop/s	=	109 flop/sec Gbyte =	230 =	~109 bytes
– Tera Tflop/s	=	1012 flop/secTbyte =	240 =	~1012 bytes	
– Peta Pflop/s	=	1015 flop/sec Pbyte =	250 =	~1015 bytes
– Exa Eflop/s	=	1018 flop/secEbyte =	260 =	~1018 bytes
– Zetta Zflop/s	=	1021 flop/secZbyte =	270 =	~1021 bytes

• www.top500.org	for	the	units	of	the	fastest	machines	measured	using	
High	Performance	LINPACK	(HPL)	Benchmark	
– The	fastest:	Sunway	TaihuLight,	~93	petaflop/s
– The	third	(fastest	in	US):	DoE	ORNL	Titan,	17.59	petaflop/s
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How	to	Measure	and	Calculate	Performance	
(FLOPS)
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https://passlab.github.io/CSCE569/resources/sum.c

• Calculate	#	FLOPs	(2*N	or	3*N)
– Check	the	loop	count	(N)	and	FLOPs	per	

loop	iteration	(2	or	3).

• Measure	time	to	compute	using	timer
– elapsed	and	elapsed_2	are	in	second	

• FLOPS	=	#	FLOPs/Time
– MFLOPS	in	the	example



High	Performance	LINPACK	(HPL)	Benchmark	
Performance	(Rmax)	in	Top500

• Measured using	the	High	Performance	LINPACK	(HPC)	
Benchmark	that	solves	a	dense	system	of	linear	equations	
à Ranking	the	machines
– Ax	=	b
– https://www.top500.org/project/linpack/
– https://en.wikipedia.org/wiki/LINPACK_benchmarks
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Top500	(www.top500.org),	Nov	2017
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HPC	Peak	Performance	(Rpeak)	Calculation

• Node	performance	in	Gflop/s	=	(CPU	speed	in	GHz)	x	
(number	of	CPU	cores)	x	(CPU	instruction	per	cycle)	x	
(number	of	CPUs	per	node).
– CPU	instructions	per	cycle	(IPC)	=	#Flops	per	cycle

• Because	pipelined	CPU	can	do	one	instruction	per	cycle
• 4	or	8	for	most	CPU	(Intel	or	AMD)

– http://www.calcverter.com/calculation/CPU-peak-
theoretical-performance.php

• HPC	Peak	(Rpeak)	=	#	nodes	*	Node	Performance	in	
GFlops
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CPU	Peak	Performance	Example
• Intel	X5600	series	CPUs	and	AMD	6100/6200/6300	series	CPUs	have	4	

instructions	per	cycle
Intel	E5-2600	series	CPUs	have	8	instructions	per	cycle

• Example	1:	Dual-CPU	server	based	on	Intel	X5675	(3.06GHz	6-cores)	
CPUs:
– 3.06	x	6	x	4	x	2	=	144.88	GFLOPS

• Example	2:	Dual-CPU	server	based	on	Intel	E5-2670	(2.6GHz	8-cores)	
CPUs:
– 2.6	x	8	x	8	x	2	=	332.8	GFLOPS
– With	8	nodes:	332.8	GFLOPS	x	8	=	2,442.4	GFLOPS	=	2.44	TFLOPS

• Example	3:	Dual-CPU	server	based	on	AMD	6176	(2.3GHz	12-cores)	
CPUs:
– 2.3	x	12	x	4	x	2	=	220.8	GFLOPS

• Example	4:	Dual-CPU	server	based	on	AMD	6274	(2.2GHz	16-cores)	
CPUs:
– 2.2	x	16	x	4	x	2	=	281.6	GFLOPS

37
https://saiclearning.wordpress.com/2014/04/08/how-to-calculate-peak-theoretical-performance-of-a-cpu-based-hpc-system/



Performance	(HPL)	Development	Over	Years	of	
Top500	Machines
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4	Kinds	of	Ranking	of	HPC/Supercomputers

1. Top500:	according	to	the	Measured High	Performance	
LINPACK	(HPL)	Benchmark	performance

– Not	Peak	performance,	Not	other	applications

2. Ranking	according	to	HPCG benchmark	performance
3. Graph500	Ranking	according	to	graph	processing	capability

– Shortest	Path	and	Breadth	First	Search
– https://graph500.org

4. Green500	Ranking	according	to	Power	efficiency	
(GFLOPS/Watts)

– https://www.top500.org/green500/
– Generate	sublist in	the	following	slides	from	

https://www.top500.org/statistics/sublist/
39



HPCG	Ranking

• HPCG:	High	Performance	Conjugate	Gradients	(HPCG)	
Benchmark	(http://www.hpcg-benchmark.org/)

40



Graph500	(https://graph500.org)

• Ranking	according	to	the	capability	of	processing	large-scale	
graph	(Shortest	Path	and	Breadth	First	Search)
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Green500:	Power	Efficiency	(GFLOPS/Watts)

42

• Power	Efficiency	=	HPL	Performance	/	Power
– E.g.	TaihuLight #1	of	Top500:	=	93,014.6	/	15,371	=	6.051	

Gflops/watts)
• https://www.top500.org/green500/



Green500:	Power	Efficiency	(GFLOPS/Watts)
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• https://www.top500.org/green500/



Performance	Efficiency

• HPC	Performance	Efficiency	=	Actual	Measured
Performance	GFLOPS	/	Theoretical	Peak	Performance	
GFLOPS
– E.g.	#1	in	Top500

• 93,014.6/125,435.9	=	74.2%
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https://www.penguincomputing.com/company/blog/calculate-hpc-efficiency/



HPL	Performance	Efficiency	of	Top500	(2015	
list)

• Mostly	40%	- 90%	(ok)
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HPCG	Efficiency	of	Top	70	of	Top500	(2015	list)

• Mostly	below	5%	and	only	some	around	10%
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Ranking	Summary
• High	Performance	LINPACK	(HPL)	for	Top500

– Dense	linear	algebra	(Ax	=	b),	highly	computation	intensive
– Rank	Top500	for	absolute	computation	capability

• HPCG:	High	Performance	Conjugate	Gradients	(HPCG)	Benchmark,	
HPL	alternatives
– Sparse	Matrix-vector	multiplication,	balanced	memory	and	computation	

intensity
– Ranking	machines	with	regards	to	the	combination	of	computation	and	

memory	performance

• Graph500:	Shortest	Path	and	Breadth	First	Search
– Ranking	according	to	the	capability	of	processing	large-scale	graph
– Stressing	network	and	memory	systems

• Green500	of	Top500	(HPL	GFlops/watts)
– Power	efficiency
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Why	is	parallel	computing,	namely	
multicore,	manycore and	clusters,	the	
only	way,	so	far,	for	high	performance?
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Semiconductor	Trend:	“Moore’s	Law”

Gordon	Moore,	Founder	of	Intel
• 1965:	since	the	integrated	circuit	was	invented,	the	number	of	

transistors/inch2 in	these	circuits	roughly	doubled	every	year;	
this	trend	would	continue	for	the	foreseeable	future

• 1975:	revised	- circuit	complexity	doubles	every	two	years
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Microprocessor	Transistor	Counts	1971-2011	&	
Moore's	Law
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Moore’s	Law	Trends

• More	transistors	=	↑	opportunities	for	exploiting	parallelism	in	the	
instruction	level	(ILP)
– Pipeline,	superscalar,	VLIW	(Very	Long	Instruction	Word),	SIMD	(Single	

Instruction	Multiple	Data)	or	vector,	speculation,	branch	prediction
• General	path	of	scaling

– Wider	instruction	issue,	longer	piepline
– More	speculation
– More	and	larger	registers	and	cache

• Increasing	circuit	density	~=	increasing	frequency	~=	increasing	
performance

• Transparent	to	users
– An	easy	job	of	getting	better	performance:	buying	faster	processors	(higher	

frequency)

• We	have	enjoyed	this	free	lunch	for	several	decades,	however	…
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Problems	of	Traditional	ILP	Scaling

• Fundamental	circuit	limitations1
– delays	⇑ as	issue	queues	⇑ and	multi-port	register	files	⇑
– increasing	delays	limit	performance	returns	from	wider	issue

• Limited	amount	of	instruction-level	parallelism1

– inefficient	for	codes	with	difficult-to-predict	branches

• Power	and	heat	stall	clock	frequencies
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[1]	The	case	for	a	single-chip	multiprocessor,	K.	Olukotun,	B.	Nayfeh,	L.	
Hammond,	K.	Wilson,	and	K.	Chang,	ASPLOS-VII,	1996.



ILP	Impacts
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Simulations	of	8-issue	Superscalar
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Power/Heat	Density	Limits	Frequency
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• Some	fundamental	physical	limits	are	being	reached



We	Will	Have	This	…
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Revolution	Happed	Already
• Chip	density	is	

continuing	increase	~2x	
every	2	years
– Clock	speed	is	not
– Number	of	processor	

cores	may	double	
instead

• There	is	little	or	no	
hidden	parallelism	(ILP)	
to	be	found

• Parallelism	must	be	
exposed	to	and	
managed	by	software
– No	free	lunch

Source:	Intel,	Microsoft	(Sutter)	and	
Stanford	(Olukotun,	Hammond)



IBM
BG/L

ASCI	White
Pacific

EDSAC	1
UNIVAC	1

IBM	7090

CDC	6600

IBM	360/195CDC	7600

Cray	1

Cray	X-MP
Cray	2

TMC	CM-2

TMC	CM-5 Cray	T3D

ASCI	Red

1950 1960 1970 1980 1990 2000 2010

1	KFlop/s

1	MFlop/s

1	GFlop/s

1	TFlop/s

1	PFlop/s

Scalar

Super Scalar

Parallel

Vector

1941  1 (Floating Point operations / second, Flop/s)
1945  100 
1949  1,000 (1 KiloFlop/s, KFlop/s) 
1951  10,000  
1961  100,000 
1964  1,000,000 (1 MegaFlop/s, MFlop/s) 
1968  10,000,000 
1975  100,000,000 
1987  1,000,000,000 (1 GigaFlop/s, GFlop/s) 
1992  10,000,000,000 
1993  100,000,000,000 
1997  1,000,000,000,000 (1 TeraFlop/s, TFlop/s) 
2000  10,000,000,000,000 
2005 131,000,000,000,000 (131 Tflop/s)

Super Scalar/Vector/Parallel

(103)

(106)

(109)

(1012)

(1015)

2X	Transistors/Chip	
Every	1.5	Years	

The	Trends



Now	it’s	Up	To	Programmers

• Adding	more	processors	doesn’t	help	much	if	programmers	
aren’t	aware	of	them…
– …	or	don’t	know	how	to	use	them.

• Serial	programs	don’t	benefit	from	this	approach	(in	most	
cases).
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Concluding	Remarks

• The	laws	of	physics	have	brought	us	to	the	doorstep	of	
multicore	technology
– The	worst	or	the	best	time	to	major	in	computer	science

• IEEE	Rebooting	Computing	(http://rebootingcomputing.ieee.org/)

• Serial	programs	typically	don’t	benefit	from	multiple	cores.
• Automatic	parallelization	from	serial	program	isn’t	the	most	
efficient	approach	to	use	multicore	computers.
– Proved	not	a	viable	approach

• Learning	to	write	parallel	programs	involves	
– learning	how	to	coordinate	the	cores.

• Parallel	programs	are	usually	very	complex	and	therefore,	
require	sound	program	techniques	and	development.
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• Introduction	to	Parallel	Computing,	Blaise Barney,	Lawrence	
Livermore	National	Laboratory
– https://computing.llnl.gov/tutorials/parallel_comp
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• “I	think	there	is	a	world	market	for	maybe	five	computers.”
– Thomas	Watson,	chairman	of	IBM,	1943.

• “There	is	no	reason	for	any	individual	to	have	a	computer	in	
their	home”

– Ken	Olson,	president	and	founder	of	Digital	Equipment	Corporation,	
1977.

• “640K	[of	memory]	ought	to	be	enough	for	anybody.”
– Bill	Gates,	chairman	of	Microsoft,1981.

• “On	several	recent	occasions,	I	have	been	asked	whether	
parallel	computing	will	soon	be	relegated	to	the	trash	heap	
reserved	for	promising	technologies	that	never	quite	make	it.”

– Ken	Kennedy,	CRPC	Directory,	1994

http://highscalability.com/blog/2014/12/31/linus-the-whole-parallel-
computing-is-the-future-is-a-bunch.html

Vision	and	Wisdom	by	Experts



A simple example
• Compute	n	values	and	add	them	together.
• Serial	solution:
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Example	(cont.)

• We	have	p	cores,	p	much	smaller	than	n.
• Each	core	performs	a	partial	sum	of	approximately	n/p	
values.

Each core uses it’s own private variables
and executes this block of code
independently of the other cores.
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Example	(cont.)

• After	each	core	completes	execution	of	the	code,	is	a	
private	variable	my_sum contains	the	sum	of	the	values	
computed	by	its	calls	to	Compute_next_value.

• Ex.,	8	cores,	n	=	24,	then	the	calls	to	Compute_next_value
return:

1,4,3,			9,2,8,				5,1,1,			5,2,7,			2,5,0,			4,1,8,			6,5,1,			2,3,9
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Example	(cont.)

• Once	all	the	cores	are	done	computing	their	private	
my_sum,	they	form	a	global	sum	by	sending	results	to	a	
designated	“master” core	which	adds	the	final	result.

66



Example	(cont.)
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SPMD:	All	run	the	same	program,	but	perform	
differently	depending	on	who	they	are.	



Example	(cont.)

Core 0 1 2 3 4 5 6 7
my_sum 8 19 7 15 7 13 12 14

Global	sum
8	+	19	+	7	+	15	+	7	+	13	+	12	+	14	=	95

Core 0 1 2 3 4 5 6 7
my_sum 95 19 7 15 7 13 12 14
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But	wait!
There’s	a	much	better	way
to	compute	the	global	sum.

69



Better	parallel	algorithm

• Don’t	make	the	master	core	do	all	the	work.
• Share	it	among	the	other	cores.
• Pair	the	cores	so	that	core	0	adds	its	result	with	core	1’s	
result.

• Core	2	adds	its	result	with	core	3’s	result,	etc.
• Work	with	odd	and	even	numbered	pairs	of	cores.
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Better	parallel	algorithm	(cont.)

• Repeat	the	process	now	with	only	the	evenly	ranked	cores.
• Core	0	adds	result	from	core	2.
• Core	4	adds	the	result	from	core	6,	etc.

• Now	cores	divisible	by	4	repeat	the	process,	and	so	forth,	
until	core	0	has	the	final	result.
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Multiple	cores	forming	a	global	sum
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Analysis

• In	the	first	example,	the	master	core	performs	7	receives	
and	7	additions.

• In	the	second	example,	the	master	core	performs	3	
receives	and	3	additions.

• The	improvement	is	more	than	a	factor	of	2!
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Analysis	(cont.)

• The	difference	is	more	dramatic	with	a	larger	number	of	
cores.

• If	we	have	1000	cores:
– The	first	example	would	require	the	master	to	perform	999	

receives	and	999	additions.
– The	second	example	would	only	require	10	receives	and	10	

additions.

• That’s	an	improvement	of	almost	a	factor	of	100!
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