Lecture 1: An Introduction
Parallel Computing
CSCE 569, Spring 2018

Department of Computer Science and Engineering
Yonghong Yan
vanyh@cse.sc.edu
http://cse.sc.edu/~yanyh



Course Information

* Meeting Time: 9:40AM - 10:55AM Monday Wednesday

* Class Room: 2A15, Swearingen Engineer Center, 301 Main St,
Columbia, SC 29208

* @Grade: 60% for four homeworks + 40% for two exams

* Instructor: Yonghong Yan
— http://cse.sc.edu/~yanyh, yanyh@cse.sc.edu

— Office: Room 2211, Storey Innovation Center (Horizon Il), 550
Assembly St, Columbia, SC 29201

— Tel: 803-777-7361
— Office Hours: 11:00AM - 12:30AM (after class) or by appointment

* Public Course website: http://passlab.github.io/CSCE569
* Homework submission: https://dropbox.cse.sc.edu
* Syllabus or website for more details




Objectives

* Learn fundamentals of concurrent and parallel computing
— Describe benefits and applications of parallel computing.

— Explain architectures of multicore CPU, GPUs and HPC
clusters
* Including the key concepts in parallel computer
architectures, e.g. shared memory system, distributed
system, NUMA and cache coherence, interconnection

— Understand principles for parallel and concurrent program
design, e.g. decomposition of works, task and data
parallelism, processor mapping, mutual exclusion, locks.

* Develop skills writing and analyzing parallel programs

— Write parallel program using OpenMP, CUDA, and MPI
programming models.

— Perform analysis of parallel program problem.



Textbooks

* Required: Introduction to Parallel Computing (2nd

McKercher, Professional CUDA C Programming, 1st Edition
2014, PDF, Amazon.

* Reference book for OpenMP: Barbara Chapman, Gabriele
Jost, and Ruud van der Pas, Using OpenMP: Portable
Shared Memory Parallel Programming, 2007, PDF, Amazon.

* Reference book for MPI: Choose from Recommended
Books for MPI

N R Edition), PDF, Amazon, cover theory, MPl and OpenMP
. Parallel introduction, by Ananth Grama, Anshul Gupta, G

L Computing introduction, by Ananth Grama, Anshul Gupta, George
s Karypis, and Vipin Kumar, Addison-Wesley, 2003

: ey e Recommended: John Cheng, Max Grossman, and Ty

3

.
. - .
LA

* Lots of materials on Internet.

— On the website, there is a “Resources” section that provides web
page links, documents, and other materials for this course



Homeworks and Exams

Four homeworks: practice programming skills
— Require both good and correct programming

* Write organized program that is easy to read
— Report and discuss your findings in report

* Writing good document
— 60% Total (10% + 10% + 20% + 20%)

Exams: Test fundamentals
— Close/Open book (?)
— 40% Total

Midterm: 15%, March 7th Wednesday during class
— The week before spring break.

Final Exam: 25%, May 2nd Wednesday, 9:00AM - 11:30AM

5



Machine for Development for OpenMP and
MPI

* Linux machines in Swearingen 1D39 and 3D22

— All CSCE students by default have access to these machine
using their standard login credentials

* Let me know if you, CSCE or not, cannot access

— Remote access is also available via SSH over port
222. Naming schema is as follows:

e |-1d39-01.cse.sc.edu through I-1d39-26.cse.sc.edu
e |-3d22-01.cse.sc.edu through I-3d22-20.cse.sc.edu

* Restricted to 2GB of data in their home folder (/).

— For more space, create a directory in /scratch on the login
machine, however that data is not shared and it will only be
available on that specific machine.



Putty SSH Connection on Windows

@ PuTTY Configuration @
| Basic options for your PUuTTY session
L _Hhaging Specify the destination you want to connect to
=- Terminal ) _ )
Oard HOSL 1IN L) =o(8|L
vy
. - Features Connection type:
=) Window (JRaw () Telnet () Rlogin @ SSH () Serial
. .. Appearance
App . Load, save or delete a stored session
.- Behaviour
... Translation Saved Sessions
Selection
H Cologrs Default Settings Load
= Connection = |
-~ Data Save
- Telnet Delete
- Rlogin
+- SSH
""" Serial Close window on exit:
) Aways () Never @ Only on clean exit
[ About [ Open | [ Cancel ]




SSH Connection from Linux/Mac OS X Terminal

yanyh@cocsce-11d39-15:~/0pencv$ exit
logout
Connection to 1-1d39-15.cse.sc.edu closed.

MacBook-Pro-7:yanyh yanyh$fssh —-p 222 1-1d39-15.cse.sc.edu —lyanyh|[-X] |

skokskokokokokokokskskokskkkokokokokokokokokokokok Rk *
* *

* This system is for the use of authorized users only. Usage of this\system x

* may be monitored and recorded by system personnel. *

* *

* Anyone using this system expressly consents to such monitoring and is *

* advised that if such monitoring reveals possible evidence of criminal *

* activity, system personnel may provide the evidence from such monitoring *

* to law enforcement officials. *

* .

KKK KKK KKK KK oK oK oK oK oK KKKk Sk Sk Sk ok ok ok ok ok ok ok ok ok kK Sk sk ok ok ok ok ok ok ok sk sk sk sk sk sk ok ok ok ok ok ok k ok oF -X for enabllng X-
Password: windows forwarding so

/usr/bin/xauth: file /acct/yanyh/.Xauthority does not exist

Duo two-factor login for yanyh you can use the graphics

display on your computer.

Enter a passcode or select one of the following options: For Mac OS X, you need
1. Duo Push to XXX-XXX-5878 have X server software
2. Phone call to XXX-XXX-5878 installed, e.g.

3. SMS des to XXX-XXX-5878
passcodes to Xquartz(https://www.xqu

Passcode or option (1-3): 1 artz.org/) is the one | use.

Pushed a login request to your device...
Success. Logging you in... 8

yanyh@cocsce-(1d39-15:~$ (s




Try in The Lab and From Remote

* Bring your laptop



Topics

Introduction

Programming on shared memory system (Chapter 7)
— OpenMP

— PThread, mutual exclusion, locks, synchronizations

— Cilk/Cilkplus(?)

Principles of parallel algorithm design (Chapter 3)

Analysis of parallel program executions (Chapter 5)
— Performance Metrics for Parallel Systems
e Execution Time, Overhead, Speedup, Efficiency, Cost
— Scalability of Parallel Systems
— Use of performance tools

10



Topics

Programming on large scale systems (Chapter 6)
— MPI (point to point and collectives)
— Introduction to PGAS languages, UPC and Chapel (?)

Parallel architectures and hardware
— Parallel computer architectures
— Memory hierarchy and cache coherency

Manycore GPU architectures and programming

— GPUs architectures

— CUDA programming

— Introduction to offloading model in OpenMP(?)
Parallel algorithms (Chapter 8,9 &10)

— Dense linear algebra, stencil and image processing

11



Prerequisites

Good reasoning and analytical skills
Familiarity with and Skills of C/C++ programming

— macro, pointer, array, struct, union, function pointer, etc.

Familiarity with Linux environment
— SSH, Linux commands, vim/Emacs editor

Basic knowledge of computer architecture and data
structures

— Memory hierarchy, cache, virtual address

— Array and link-list

Talk with me if you have concern
Turn in the survey

12



Introduction: What is and why
Parallel Computing



An Example: Grading

15 questions
300 exams

From An Introduction to Parallel Programming, By Peter Pacheco, Morgan Kaufmann Publishers
Inc, Copyright © 2010, Elsevier Inc. All rights Reserved

14



Three Teaching Assistants

&«

—

* To grade 300 copies of exams, each has 15 questions

15



Division of Work — Data Parallelism

* Each does the same type of work (task), but working on
different sheet (data)

TAH1

TAH#H3
100 exams

100 exams

TAH#H2
100 exams

16



Division of Work — Task Parallelism

* Each does different type of work (task), but working on
same sheets (data)

TAH#1 — E
— — p— —
(:: — o TA#3
— — _ e
om
— Questions 11 - 15

e TAH2

Questions 6 - 10

17



Summary

* Data: 300 copies of exam
* Task: grade total 300*15 questions

* Data parallelism

— Distributed 300 copies to three TAs  Which approach

— They work .|ndependently could be faster!
* Task Parallelism

— Distributed 300 copies to three TAs

— Each grades 5 questions of 100 copies

— Exchange copies

— Grade 5 questions again

— Exchange copies

— Grade 5 questions

* The three TAs can do in parallel, we can achieve 3 time speedup
theoretically

18



Challenges

* Are the three TAs grading in the same performance?
— One CPU may be slower than the other
— They may not work on grading the same time

* How the TAs communicate?

— Are they sit on the same table? Or each take copies and grade
from home? How they share intermediate results (task
parallelism)

* Where the solutions are stored so they can refer to when
grading

— Remember answers to 5 questions vs to 15 questions
 Cache and Memory issues

19



What is Parallel Computing?

* A form of computation™®:
— Large problems divided into smaller ones

— Smaller ones are carried out and solved
simultaneously

* Uses more than one CPUs or cores concurrently for one
program

— Not conventional time-sharing: multiple programs switch
between each other on one CPU

— Or multiple programs each on a CPU and not interacting

* Serial processing
— Some programs, or part of a program are inherently serial
— Most of our programs and desktop applications

*http://en.wikipedia.org/wiki/Parallel_computing

20



Why Parallel Computing?

* Save time (execution time) and money!

— Parallel program can run faster if running concurrently instead of
sequentially.

.., :;
4 'n

Picture from: Intro to Parallel Computmg https: //computmg IInI gov/tutonals/parallel comp

* Solve larger and more complex problems!
Utilize more computational resources

Current Grand Challenges

NIH, DARPA, and NSF’s BRAIN DOE s SunShot Grand Challenge to NASA'’s Asteroid Grand Challenge, to USAID’s Grand Challenges for
Initiative, to revolutionize our make solar energy cost competitive with find all asteroid threats to human Development, including Saving Lives at
understanding of the human mind and coal by the end of the decade, and EV populations and know what to do about Birth that catalyzes groundbreaking

From “21st Century Grand Challenges | The White House”, http://www.whitehouse.gov/administration/eop/ostp/grand-challenges
Grand challenges: http://en.wikipedia.org/wiki/Grand_Challenges

21



High Performance Computing (HPC) and
Parallel Computing

* HPCis what really needed *
— Parallel computing is so far the only way to get there!!

* Parallel computing makes sense! We WI" discuss ¢
* Applications that require HPC the two aSPECt t

— Many problem domains are naturally parallelizable
— Data cannot fit in memory of one machine

* Computer systems
— Physics limitation: has to build it parallel oo | DuiCore |
— Parallel systems are widely accessible

* Smartphone has 2 to 4 cores + GPU now

Quad Core
GPU

| ARMA9
g 1 TT g
{

*What is HPC: http://insidehpc.com/hpc-basic-training/what-is-hpc/
Supercomputer: http://en.wikipedia.org/wiki/Supercomputer
TOP500 (500 most powerful computer systems in the world): http://en.wikipedia.org/wiki/TOP500, http://top500.org/

HPC matter: http://sc14.supercomputing.org/media/social-media 29




Simulation: The Third Pillar of Science

* Traditional scientific and engineering paradigm:
1) Do theory or paper design.
2) Perform experiments or build system.

* Limitations of experiments:
— Too difficult -- build large wind tunnels.
— Too expensive -- build a throw-away passenger jet.
— Too slow -- wait for climate or galactic evolution.

— Too dangerous -- weapons, drug design, climate experimentation.

* Computational science paradigm:

3) Use high performance computer systems to simulate the phenomenon
* Base on known physical laws and efficient numerical methods.

From slides of Kathy Yelic’s 2007 course at Berkeley: http://www.cs.berkeley.edu/~yelick/cs267 sp07/
23



Applications: Science and Engineering

* Model many difficult problems by parallel computing

Atmosphere, Earth, Environment

Physics - applied, nuclear, particle, condensed matter, high
pressure, fusion, photonics

Bioscience, Biotechnology, Genetics

Chemistry, Molecular Sciences

Geology, Seismology

Mechanical Engineering - from prosthetics to spacecraft
Electrical Engineering, Circuit Design, Microelectronics
Computer Science, Mathematics

Defense, Weapons




Applications: Industrial and Commercial

* Processing large amounts of data in sophisticated ways
— Databases, data mining
— Oil exploration
— Medical imaging and diagnosis
— Pharmaceutical design %
— Financial and economic -
— Management of national and multi-national corporations

— Advanced graphics and virtual reality, particularly in the
entertainment industry

— Networked video and multi-media technologies
— Collaborative work environments
— Web search engines, web based business services

25



Economic Impact of HPC

* Airlines:
— System-wide logistics optimization systems on parallel systems.
— Savings: approx. $100 million per airline per year.
* Automotive design:
— Major automotive companies use large systems (500+ CPUs) for:
 CAD-CAM, crash testing, structural integrity and aerodynamics.
* One company has 500+ CPU parallel system.
— Savings: approx. S1 billion per company per year.
* Semiconductor industry:
— Semiconductor firms use large systems (500+ CPUs) for
» device electronics simulation and logic validation
— Savings: approx. S1 billion per company per year.
* Securities industry:
— Savings: approx. $15 billion per year for U.S. home mortgages.

From slides of Kathy Yelic’s 2007 course at Berkeley: http://www.cs.berkeley.edu/~yelick/cs267 sp07/

26



Inherent Parallelism of Applications

Many Classes of Applications are Massively Parallel

Neural Networks

N -

Chemical Ph
Dynamics ¥ ——— gtomic. ysics
C.

atterings
¥~ Electronic
- Structure

Ald

Condensed Matter
Electronic Structur

Cosmology
Astrophysics ~
Alaorlthms &
Miltary Numerical
Logistics Methods

Symboic Geophysical Fluids
Matehmg Ecosystems
Eoonom-cs
Models
~  —— Astrophysics
lnt Efnt

Databas

Number Theory

In teigent
Ag

°* Example: weather prediction and global climate modeling

27



Global Climate Modeling Problem

°* Problem is to compute:
— f(latitude, longitude, elevation, time) 2
temperature, pressure, humidity, wind velocity

* Approach:
— Discretize the domain, e.g., a measurement point every 10 km
— Devise an algorithm to predict weather at time t+dt given t

* Uses:
— Predict major events, e.g., El Nino
— Air quality forecasting

i

I A I

|
IR

'8




The Rise of Multicore Processors

29



Recent Multicore Processors

Sept 13: Intel lvy Bridge-EP Xeon E5-2695 v2
— 12 cores; 2-way SMT; 30MB cache
March 13: SPARC T5

— 16 cores; 8-way fine-grain MT per core
May 12: AMD Trinity

— 4 CPU cores; 384 graphics cores

Nov 12: Intel Xeon Phi coprocessor
— ~60 cores

Feb 12: Blue Gene/Q

— 17 cores; 4-way SMT

Q4 11: Intel Ivy Bridge

Figure credit: Ruud Haring, Blue

— 4 cores,; 2 way SMT, Gene/Q compute chip, Hot Chips
23, August, 2011.

November 11: AMD Interlagos

— 16 cores

Jan 10: IBM Power 7
— 8 cores; 4-way SMT; 32MB shared cache
Tilera TilePro64 21



Recent Manycore GPU processors

e ~3k cores

SMX

Kepler Memory Hierarchy

PCI Express 3.0 Host Interface

[ Warp Scheduler Warp Scheduler Warp Scheduler Warp Schediler
Dispatch | Dispatch  ~ Dispatch |  Dispatch | Dispatch | Dispatch  ~ Dispatch | Dispatch
- + S £ T £ T T

e File (65,536 x 32-bit)
2 2 e

e o I e ot I Thread

core core| B cor e coro [N =
core [ -~ y

cor [ -~
o [ \
B Shared La Read-Only
o S - Memory Cache Data Cache
core core [ -~ y
core o [ -
cors Core ]
con Core cor [ -~
Cord =
cor core con [ o
core cord o [ o

Cora Core Core

Jslionuo0D Kiowaw
JejjoueD Kiowe

Jalionuod Aiowan
Jejj0:3u0) Asouion

Core Core Core ks

J8)103u0D Alowel

=z
g
E
3
<
2
g
2
g
g

Smx: CUDA cores, 2 d 32 load/store units
(Lo/sT).

B EEEEMND
BER SRR RENI

Gcrv  crul BHEEHEE

EEMNMN

4 CORES 240 CORES &

31



Units of Measure in HPC

* Flop: floating point operation (*, /, +, -, etc)
* Flop/s: floating point operations per second, written also as FLOPS

* Bytes: size of data
— A double precision floating point number is 8 bytes

* Typical sizes are millions, billions, trillions...
— Mega Mflop/s =108 flop/sec Mzbyte = 220 = 1048576 = ~10° bytes
— Giga Gflop/s =10° flop/sec Gbyte = 230 = ~10° bytes
— Tera Tflop/s = 10* flop/secTbyte = 240 = ~10%? bytes
— Peta Pflop/s =10 flop/sec  Pbyte = 2°° = ~10?° bytes
— Exa Eflop/s = 1018 flop/secEbyte = 250 = ~1018 bytes
— Zetta Zflop/s = 10?1 flop/secZbyte = 270 = ~102! bytes

* www.top500.org for the units of the fastest machines measured using
High Performance LINPACK (HPL) Benchmark
— The fastest: Sunway Taihulight, ~93 petaflop/s
— The third (fastest in US): DoE ORNL Titan, 17.59 petaflop/s

32



}

REAL sum(int N, REAL X[], REAL a) {

}
/*

* sum: a*X[]+Y[]
*/
REAL sumaxpy(int N, REAL X[], REAL Y[], REAL a) {

How to Measure and Calculate Performance
(FLOPS)

élapsedk= read_timer();
REAL result = sum(N, X, a);

1 d = d ti - el d); : :
R https://passlab.github.io/CSCE569/resources/sum.c
double elapsed 2 = read timer();
result = sumaxpy(N, X, Y, a);
elapsed 2 = (read_timer() - elapsed_2);

/* you should add the call to each function and time the execution */

printf (" =s============================================================= ============
printf("\tSum %d numbers\n", N);

printf( === ———————————————————————————————
printf ("Performance:\t\tRuntime (ms)\t MFLOPS \n");

printf("-—-——=—=———
printf("Sum:\t\t\t%4£f\t%4f\n", elapsed * 1.0e3, 2*N / (1.0e6 * elapsed));

printf ("SumAXPY:\t\t\t%4£f\t%4£f\n", elapsed 2 * 1.0e3, 3*N / (1l.0e6 * elapsed 2));
return 0;

* (Calculate # FLOPs (2*N or 3*N)

int i; — Check the loop count (N) and FLOPs per
REAL result = 0.0; loop iteration (2 or 3).

for (i = 0; i < N; ++i)
result += a * X[i];

return result; * Measure time to compute using timer
— elapsed and elapsed_2 are in second

* FLOPS = # FLOPs/Time
int i; — MFLOPS in the example

REAL result = 0.0;
for (i = 0; i < N; ++i)

result += a * X[i] + Y[i]; 33
return result;



High Performance LINPACK (HPL) Benchmark
Performance (Rmax) in Top500

* Measured using the High Performance LINPACK (HPC)
Benchmark that solves a dense system of linear equations
= Ranking the machines

— Ax=b
— https://www.top500.org/project/linpack/
— https://en.wikipedia.org/wiki/LINPACK benchmarks

Rpeak Power
(TFlop/s) J(TFlop/s) (kW)

Rank System Cores

1 Sunway TaihuLight - Sunway MPP, Sunway SW26010 260C 1.45GHz, 10,649,600Q0 93,014.6§125,435.9 15,371
Sunway , NRCPC
National Supercomputing Center in Wuxi
China

2 Tianhe-2 (MilkyWay-2) - TH-IVB-FEP Cluster, Intel Xeon E5-2692 12C 3,120,000y 33,862.7Q§ 54,902.4 17,808
2.200GHz, TH Express-2, Intel Xeon Phi 31S1P, NUDT

National Super Computer Center in Guangzhou
China

3 Piz Daint - Cray XC50, Xeon E5-2690v3 12C 2.6GHz, Aries interconnect, 361,760 19,590.0 § 25,326.3 2,272
NVIDIA Tesla P100, Cray Inc.
Swiss National Supercomputing Centre (CSCS)
Switzerland



Top500 (www.top500.org), Nov 2017

Rank System

1

Sunway TaihuLight - Sunway MPP, Sunway SW26010 260C 1.45GHz,
Sunway , NRCPC

National Supercomputing Center in Wuxi

China

Tianhe-2 (MilkyWay-2) - TH-IVB-FEP Cluster, Intel Xeon E5-2692 12C
2.200GHz, TH Express-2, Intel Xeon Phi 31S1P, NUDT

National Super Computer Center in Guangzhou

China

Piz Daint - Cray XC50, Xeon E5-2690v3 12C 2.6GHz, Aries interconnect,
NVIDIA Tesla P100, Cray Inc.

Swiss National Supercomputing Centre (CSCS)

Switzerland

Gyoukou - ZettaScaler-2.2 HPC system, Xeon D-1571 16C 1.3GHz,
Infiniband EDR, PEZY-SC2 700Mhz , ExaScaler

Japan Agency for Marine-Earth Science and Technology

Japan

Titan - Cray XK7, Opteron 6274 16C 2.200GHz, Cray Gemini interconnect,

NVIDIA K20x , Cray Inc.
DOE/SC/0Oak Ridge National Laboratory
United States

Sequoia - BlueGene/Q, Power BQC 16C 1.60 GHz, Custom , IBM
DOE/NNSA/LLNL
United States

ol N . VNIN Mo I Vo NLIFIACN 700N A4 N Do A e a2

Cores

10,649,600

3,120,000

361,760

19,860,000

560,640

1,572,864

Rmax
(TFlop/s)

93,014.6

33,862.7

19,590.0

19,135.8

17,590.0

17,173.2

500

The List.

Rpeak Power
(TFlop/s) | (kW)

125,435.94 15,371

17,808

2,272

1,350

8,209

7,890

Nnrz



HPC Peak Performance (Rpeak) Calculation

* Node performance in Gflop/s = (CPU speed in GHz) x
(number of CPU cores) x (CPU instruction per cycle) x
(number of CPUs per node).

— CPU instructions per cycle (IPC) = #Flops per cycle
* Because pipelined CPU can do one instruction per cycle
* 4 or 8 for most CPU (Intel or AMD)

— http://www.calcverter.com/calculation/CPU-peak-
theoretical-performance.php

* HPC Peak (Rpeak) = # nodes * Node Performance in
GFlops

36



CPU Peak Performance Example

* |ntel X5600 series CPUs and AMD 6100/6200/6300 series CPUs have 4
instructions per cycle
Intel E5-2600 series CPUs have 8 instructions per cycle

* Example 1: Dual-CPU server based on Intel X5675 (3.06GHz 6-cores)
CPUs:

— 3.06x6x4x2=144.88 GFLOPS

* Example 2: Dual-CPU server based on Intel E5-2670 (2.6GHz 8-cores)
CPUs:
— 2.6 x8x8x2=332.8GFLOPS
— With 8 nodes: 332.8 GFLOPS x 8 = 2,442.4 GFLOPS = 2.44 TFLOPS

* Example 3: Dual-CPU server based on AMD 6176 (2.3GHz 12-cores)
CPUs:
— 2.3x12x4x2=220.8 GFLOPS

* Example 4: Dual-CPU server based on AMD 6274 (2.2GHz 16-cores)
CPUs:
— 2.2x16x4x2=281.6 GFLOPS

https://saiclearning.wordpress.com/2014/04/08/how-to-calculate-peak-theoretical-performance-of-a-cpu-based-hpc-system/ 37



Performance (HPL) Development Over Years of

Performance

10 EFlop/s

1 EFlop/s

100 PFlop/s

10 PFlop/s

1 PFlop/s

100 TFlop/s

10 TFlop/s

1 TFlop/s

100 GFlop/s

10 GFlop/s

1 GFlop/s

100 MFlop/s

Top500 Machines

o
oP
0@
o0 ®
.. AA AA
..
. AA AA AA
o
o® ot
A
A
a
o
... A
[s] A A
.. AA A
.. A ..l
.. A AA A .l
... A ....
® A n®
|
.. AA AA A a"
... au "
o o
Q AA u
... A ..
Qb AA A -
=}
.. AA AA -
o
A o
A n
A AA =
A A .I
A -
"
]
.l
st
]
|
-
|
|
L

1994 1996 1998 2000 2002 2004 2006 2008 2010 2012 2014 2016

Lists

—=— #500

—8— Sum
38



4 Kinds of Ranking of HPC/Supercomputers

1. Top500: according to the Measured High Performance
LINPACK (HPL) Benchmark performance

— Not Peak performance, Not other applications

2. Ranking according to HPCG benchmark performance

3. Graph500 Ranking according to graph processing capability
— Shortest Path and Breadth First Search
— https://graph500.org

4. Green500 Ranking according to Power efficiency
(GFLOPS/Watts)
— https://www.top500.0org/green500/

— Generate sublist in the following slides from
https://www.top500.0rg/statistics/sublist/

39



HPCG Ranking

* HPCG: High Performance Conjugate Gradients (HPCG)
Benchmark (http://www.hpcg-benchmark.org/)

Rank

TOP500
Rank

Rmax
System Cores (TFlop/s)
K computer, SPARC64 VllIfx 2.0GHz, Tofu interconnect , Fujitsu 705,024 10,510.0

RIKEN Advanced Institute for Computational Science (AICS)
Japan

Tianhe-2 (MilkyWay-2) - TH-IVB-FEP Cluster, Intel Xeon E5- 3,120,000 33,862.7
2692 12C 2.200GHz, TH Express-2, Intel Xeon Phi 31S1P, NUDT

National Super Computer Center in Guangzhou

China

Trinity - Cray XC40, Intel Xeon Phi 7250 68C 1.4GHz, Aries 979,968 14,137.3
interconnect , Cray Inc.

DOE/NNSA/LANL/SNL

United States

Piz Daint - Cray XC50, Xeon E5-2690v3 12C 2.6GHz, Aries 361,760 19,590.0
interconnect , NVIDIA Tesla P100, Cray Inc.
Swiss National Supercomputing Centre (CSCS)

Sunway TaihuLight - Sunway MPP, Sunway SW26010 260C 10,649,600 93,014.6

1.45GHz, Sunway , NRCPC
National Supercomputing Center in Wuxi

Oakforest-PACS - PRIMERGY CX1640 M1, Intel Xeon Phi 7250 556,104 13,554.6
68C 1.4GHz, Intel Omni-Path , Fujitsu

Rpeak HPCG
(TFlop/s) (TFlop/s)

11,280.4 602.736

54,902.4 580.109

43,902.6 546.124

25,326.3 486.398

125,435.9

24,9135 385.479 40



Graph500 (https://graph500.org)

‘GR

* Ranking according to the capability of processing large-scale
graph (Shortest Path and Breadth First Search)

Top Ten from November 2017 BFS

RANK ¢

PREVIOUS _
RANK v

new

MACHINE =<

K computer

Sunway
TaihuLight

DOE/NNSA/LLNL
Sequoia

DOE/SC/Argonne
National
Laboratory Mira

JUQUEEN

Al CF Mira - R192

VENDOR

Fujitsu

NRCPC

IBM

IBM

IBM

IRM

s TYPE ¢

Custom

Sunway
MPP

BlueGene/Q
Power BQC
16C 1.60
GHz

BlueGene/Q
Power BQC
16C 1.60
GHz

BlueGene/Q
Power BQC
16C 1.60
GHz

IRM -

NETWORK

Tofu

Sunway

Custom

Custom

Custom

s
v

INSTALLATION

SITE ¢ LOCATION $§ COUNTRY $§ YEAR $ APPLICATION
RIKEN Advanced Kobe Hyogo Japan 2011 Various scie
Institute for and instudri
Computational fields
Science (AICS)

National Wuxi China 2015 research
Supercomputing

Center in Wuxi

Lawrence Livermore CA USA 2012 Scientific
Livermore National Research
Laboratory

Argonne National Chicago IL USA 2012 Scientific
Laboratory Research
Forschungszentrum Juelich Germany 2012 Scientific
Juelich (FZ)) Research
Aronnne Natinnal Chiraon Il [ Inited 2012 Srientifir



The

Green500: Power Efficiency (GFLOPS/Watts) Lk

* Power Efficiency = HPL Performance / Power

— E.g. TaihuLight #1 of Top500: = 93,014.6 / 15,371 = 6.051
Gflops/watts)

* https://www.top500.org/green500/

TOP500
Rank Rank |JSystem

Power
Rmax Power Efficiency

(TFlop/s) (kW) (GFlops/watts)
10,649,600493,014.6 15,371 6.051

Cores

20 1

Sunway TaihuLight - Sunway MPP, Sunway SW26010 260C
1.45GHz, Sunway , NRCPC

National Supercomputing Center in Wuxi
China

42



The
GREEN

Green500: Power Efficiency (GFLOPS/Watts)

* https://www.top500.org/green500/

Power
Rmax Power | Efficieny
Ran System (TFlop/s) (kW) (GFlops/watts)

Shoubu system B - ZettaScaler-2.2, Xeon D-1571 16C 1.3GHz, 842.0 49.5 17.009
Infiniband EDR, PEZY-SC2 , PEZY Computing / Exascaler Inc.
Advanced Center for Computing and Communication, RIKEN

Japan

2 Suiren2 - ZettaScaler-2.2, Xeon D-1571 16C 1.3GHz, Infiniband EDR, 788.2 47.0
PEZY-SC2, PEZY Computing / Exascaler Inc.
High Energy Accelerator Research Organization /KEK
Japan

3 Sakura - ZettaScaler-2.2, Xeon E5-2618Lv3 8C 2.3GHz, Infiniband EDR, 824.7 49.5
PEZY-SC2, PEZY Computing / Exascaler Inc.
PEZY Computing K.K.
Japan

4 DGX SaturnV Volta - NVIDIA DGX-1 Volta36, Xeon E5-2698v4 20C 1,070.0 97
2.2GHz, Infiniband EDR, NVIDIA Tesla V100, Nvidia
NVIDIA Corporation
United States

5 Gyoukou - ZettaScaler-2.2 HPC system, Xeon D-1571 16C 1.3GHz, 19,135.8 1,350.2
Infiniband EDR, PEZY-SC2 700Mhz , ExaScaler
Japan Agency for Marine-Earth Science and Technology
Japan

6

TSUBAMES3.0 - SGI ICE XA, IP139-SXM2, Xeon E5-2680v4 14C 2.4GHz, 8,125.0 792.1



Performance Efficiency

* HPC Performance Efficiency = Actual Measured
Performance GFLOPS / Theoretical Peak Performance
GFLOPS

— E.g. #1 in Top500
* 93,014.6/125,435.9 = 74.2%

Rmax Rpeak ‘
Rank System Cores (TFlop/s) fiTFlop/s)
1 Sunway TaihuLight - Sunway MPP, Sunway SW26010 260C 1.45GHz, 10,649,600 93,014.6 §125,435.9

Sunway, NRCPC
National Supercomputing Center in Wuxi
China

https://www.penguincomputing.com/company/blog/calculate-hpc-efficiency/

44



HPL Performance Efficiency of Top500 (2015
list)

* Mostly 40% - 90% (ok)

100

A A
A A A A
50 AAﬂA { A‘AA ‘A‘A N A N A“tA}A‘AA ‘/‘AA A, A 4 N ‘A‘““
AA AAAAAAI AAA . 2404 A A:* A‘ M&d v R A
70 A A A 7y AA A ATA A . A AdaMag 2 A
v 2 N LA AL 4 A A AA A%A Adl
60 A A VLA BEAR A A A A A A
AA A"‘ A %A A A AA A A A
50 { N N - A A
AA AAA LA AL A Adid M A
N A, A A
A, A
~ - A A A A
L2 40 AAA AA A A
g A
3‘ A A A
: a4
‘e 30 A
£ A
w
AA A
A
20

0 100 200 300 400 500



HPCG Efficiency of Top 70 of Top500 (2015 list)

* Mostly below 5% and only some around 10%

HPCG Efficiency of the top 70 of TOP500 as of June 2016

14.0%

12.0%

"
 HPCG/HPL Ratio . e
I ¢
W HPCG Efficiency (% of Peak) - ™ . U
10.0%
8.0%
&
2
.U
E
W s.0%
v ~
— veée e ¢ L
o
4.0% ~ = = s - "
S~
N~ - 2o WNg - . = . _
e B ¢ ¥ v e g * B e o N - VE v
| o o S . . o - 1] - 5
- o - - o wiw . I o ¢ g g E W
g" = . -
.|
0.0% < oS

0 10 20 30 40 50 60 70
HPL Rank of TOP500



Ranking Summary

* High Performance LINPACK (HPL) for Top500
— Dense linear algebra (Ax = b), highly computation intensive
— Rank Top500 for absolute computation capability

* HPCG: High Performance Conjugate Gradients (HPCG) Benchmark,
HPL alternatives

— Sparse Matrix-vector multiplication, balanced memory and computation
intensity

— Ranking machines with regards to the combination of computation and
memory performance

* Graph500: Shortest Path and Breadth First Search

— Ranking according to the capability of processing large-scale graph
— Stressing network and memory systems

* Green500 of Top500 (HPL GFlops/watts)
— Power efficiency

47



Why is parallel computing, namely
multicore, manycore and clusters, the
only way, so far, for high performance?

48



Semiconductor Trend: “Moore’s Law”

Gordon Moore, Founder of Intel

®* 1965: since the integrated circuit was invented, the number of

transistors/inch? in these circuits roughly doubled every year;
this trend would continue for the foreseeable future

* 1975: revised - circuit complexity doubles every two years

Transistors
Per Die

1010
# 1965 Actual Data c 25 ¥

10°- = MOS Arrays o MOS Logic 1975 Actual Data 256M 212M
28M

108 1975 Projection : Itatr.liurg)""1
entium
107 L Pentium® Il

A Microprocessor E %entiumwll
108 Pentium

1960 1965 1970 1975 1980 1985 1990 1995 2000 2005 2010

Image credit: Intel

49



Microprocessor Transistor Counts 1971-2011 &

Moore's Law

Transistor count

100,000,000

10,000,000 -

1,000,000

100,000

10,000

2,300~

POWERGO® '. v 8.Care Xeon Nehalem-EX
Eaium 2 with SVE cache @ " " Six A-Ccrc;:fcnm 2400
AMD K10 @ Caore |17 (Quad)
Cae20Dw0
rium2 @ Cell
@ AMD K3
Periun 4 @ ®E=tan @ Ao
4 e KT
curve shows transistor AMD Ko-m
count doubling every AMD K6
@Pomum il
two years P it
@ AMD K3

@ FPernum

80435 @

20335 @,
20235 @

G20000 ©20155
0

20500 9088

8083

90 te  ewem
2030, 4+, @za0

.

+ eMOSs om0z

. hﬁps%enﬁvﬂé?ediarefg%wiki/ﬁansistor count
1980 1 000 2011 -

Date of introduction

2008 @
4004 @ rca 1902

|
1971

50



Moore’s Law Trends

* More transistors = * opportunities for exploiting parallelism in the
instruction level (ILP)

— Pipeline, superscalar, VLIW (Very Long Instruction Word), SIMD (Single
Instruction Multiple Data) or vector, speculation, branch prediction
* General path of scaling
— Wider instruction issue, longer piepline
— More speculation
— More and larger registers and cache

* Increasing circuit density ~= increasing frequency ~= increasing
performance

®* Transparent to users

— An easy job of getting better performance: buying faster processors (higher
frequency)

* We have enjoyed this free lunch for several decades, however ...

51



Problems of Traditional ILP Scaling

* Fundamental circuit limitations!
— delays T as issue queues T and multi-port register files
— increasing delays limit performance returns from wider issue

* Limited amount of instruction-level parallelism?
— inefficient for codes with difficult-to-predict branches

* Power and heat stall clock frequencies

[1] The case for a single-chip multiprocessor, K. Olukotun, B. Nayfeh, L.
Hammond, K. Wilson, and K. Chang, ASPLOS-VII, 1996.
52



ILP Impacts

Issue Waste
iIssue slots .
N B full issue slot
= O empty issue slot

ol
171
EEEN
Ll
|
i1
HEEN

horizontal waste=9 slots
s/

)

vertical waste =12 slots

-—— cycles

e Contributing factors
—instruction dependencies
—long-latency operations within a thread

53



100 -

[~ ~ oo o
o (=] o o
i )

Percent of Total Issue Cycles
W
[=]

20

ES
o
o

w
o
)

- Ei

Y I VIV I I I PP PP PP S RRRR!

S NNNNNNNAY

su2cor

swm

tomcatv

R NN |

Simulations of 8-issue Superscalar

Simultaneous multithreading: maximizing

on-chip parallelism, Tullsen et. al. ISCA, 1995.

. memory conflict

long fp

short fp

long integer
. short integer
load delays

] control hazards
B3 branch misprediction
B dcache miss
[[D icache miss
By dtib miss

B itb miss

. processor busy

A

ions: m

Summary:

f SPE

e Onaverage <1.5IPC (19%)

Highly underutilized

2

e Dominant waste differs by application

e Short FP dependences: 37%

54



Power/Heat Density Limits Frequency

* Some fundamental physical limits are being reached

Moore’s Law Extrapolation:
Power Density for Leading Edge Microprocessors

10000

—_

—_ o
— o o
o o o

—

Power Density (Watts / cm?)

Rocket NozZzle we—p

Nuclear Reactor )

d—— Hot Plate

1996 1998 2000 2002 2004 2006 2008

Power Density Becomes Too High to Cool Chips Inexpensively

Source: Shekhar Borkar, Inteil Corp

55



We Will Have This ...

56



Revolution Happed Already

10,000,000

* Chip density is
continuing increase ~2x
every 2 years

— Clock speed is not

— Number of processor
cores may double
instead 15,000

®* There is little or no
hidden parallelism (ILP)
to be found

* Parallelism must be
exposed to and
managed by software

— No free lunch

1,000,000

100,000

1,000

100

1 / ‘ = Transistors (000)
| | ¢ Clock Speed (MHz)

. 4 Power (W)

Source: Intel, Microsoft (Sutter) and ks # Perf/Clock (ILP)

Stanford (Olukotun, Hammond) 0 | | | |
1970 1975 1980 1985 1990 1995 2000 2005 2010




The Trends

1.PElop/s |
(107)

1 TFlop/s
(1012)

~ Every 1.5 Years

Super Scalar/Vector/Parallel

IBM

ASCI Re ASCI \.N.hlte
Pacific

-

MC CM)A‘W T3D

2X Transistors/Chip

Vector

[ eem

1 GFlop/s
(10°)

Super Scala

¥ Cray X-MP

-

ray 1

J

\

1 MFlop/s
(10

¢bc W IBM 360/1/JS

1941
1945
1949

1951
1961
1964

1968
1975

1987
1992
1993

1 KFlop/s

(103) ¥ UNIVAC1
ﬁ» EDSAC 1

1997
2000

1950

1960 1970

1980

1 (Floating Point operations / second, Flop/s) |

100

1,000 (1 KiloFlop/s, KFlop/s)
10,000

100,000

1,000,000 (1 MegaFlop/s, MFlop/s)
10,000,000

100,000,000

1,000,000,000 (1 GigaFlop/s, GFlop/s)

10,000,000,000
100,000,000,000

1,000,000,000,000 (1 TeraFlop/s, TFlop/s)

10,000,000,000,000

2005 131,000,000,000,000 (131 Tflop/s)
|

1990 2000

2010



Now it’s Up To Programmers

* Adding more processors doesn’t help much if programmers

aren’t aware of them... ”M’”
— ...or don’t know how to use them. E:\/T ,

* Serial programs don’t benefit from this approach (in most
cases). N\

S, - Py
O o D : tll.d,llowall'.i(‘()!n 59



Concluding Remarks

* The laws of physics have brought us to the doorstep of
multicore technology

— The worst or the best time to major in computer science
* |EEE Rebooting Computing (http://rebootingcomputing.ieee.org/)

* Serial programs typically don’t benefit from multiple cores.

* Automatic parallelization from serial program isn’t the most
efficient approach to use multicore computers.
— Proved not a viable approach

® Learning to write parallel programs involves
— learning how to coordinate the cores.

* Parallel programs are usually very complex and therefore,
require sound program techniques and development.

60



References

Introduction to Parallel Computing, Blaise Barney, Lawrence
Livermore National Laboratory

— https://computing.linl.gov/tutorials/parallel comp

Some slides are adapted from notes of Rice University John
Mellor-Crummey’s class and Berkely Kathy Yelic’s class.

Examples are from chapter 01 slides of book “An
Introduction to Parallel Programming” by Peter Pacheco
— Note the copyright notice

Latest HPC news
— http://www.hpcwire.com

World-wide premier conference for supercomputing

— http://www.supercomputing.org/, the week before
thanksgiving week 61




Vision and Wisdom by Experts

“l think there is a world market for maybe five computers.”
— Thomas Watson, chairman of IBM, 1943.

“There is no reason for any individual to have a computer in
their home”
— Ken Olson, president and founder of Digital Equipment Corporation,
1977.
“640K [of memory] ought to be enough for anybody.”
— Bill Gates, chairman of Microsoft,1981.

“On several recent occasions, | have been asked whether
parallel computing will soon be relegated to the trash heap
reserved for promising technologies that never quite make it.”

— Ken Kennedy, CRPC Directory, 1994

Linus: The Whole "Parallel Computing Is

The Future" Is A Bunch Of Crock. _
http://highscalability.com/blog/2014/12/31/linus-the-whole-parallel-

computing-is-the-future-is-a-bunch.html 62



A simple example

* Compute n values and add them together.
* Serial solution:

i < n: i++) {
Compute_next_value (.

wro s
Axb -



Example (cont.)

* We have p cores, p much smaller than n.

* Each core performs a partial sum of approximately n/p

values.

(tz>my_sum = 0;

my_first_i =
my_last_i = .

for (my_i = my_first_i;

— e

my_X = Compute_next
my_sum += my_xX;

ff‘_y_i < _'ny_;a_c:_: i: r.}’_i++) {

_value( . . .);

L7 -

Each core uses it' s own private variables

and executes this block of code
independently of the other cores.

64



Example (cont.)

* After each core completes execution of the code, is a
private variable my sum contains the sum of the values
computed by its calls to Compute next value.

* Ex., 8 cores, n = 24, then the calls to Compute next value
return:

1,4,3, 9,2,8, 5,1,1, 5,2,7, 2,5,0, 4,1,8, 6,5,1, 2,3,9

65



Example (cont.)

®* Once all the cores are done computing their private
, they form a global sum by sending results to a
designated “master’ core which adds the final result.

66



Example (cont.)

if (I'm the master core)
sum = my_X;
for each core other than mysel
receive value from core;
sum += value;

o 3

P

send my_X CO the master;

SPMD: All run the same program, but perform
differently depending on who they are.

67



Example (cont.)

Core ﬂ_____ﬂ-

my_sum

Global sum
8+19+7+15+7+13+12+14=95

Core ﬂ-____ﬂ-

my_sum

68



But wait!

There’ s a much better way
to compute the global sum.

69



Better parallel algorithm

Don’ t make the master core do all the work.
Share it among the other cores.

Pair the cores so that core 0 adds its result with core 1’ s
result.

Core 2 adds its result with core 3’ s result, etc.
Work with odd and even numbered pairs of cores.

70



Better parallel algorithm (cont.)

Repeat the process now with only the evenly ranked cores.
Core 0 adds result from core 2.
Core 4 adds the result from core 6, etc.

Now cores divisible by 4 repeat the process, and so forth,
until core 0 has the final result.

71



- 2
(¥y) =
© -3
O \/
oo o (¥)-----(&)
@ /
»| e
S -+ “,M_J\ ||||| J/WWT ||||| _/%/_
5
% © (@)
S
@)
O
9
om - "”mul.uJ
= | | |
S ) T B ) W &

72



Analysis

In the first example, the master core performs 7 receives
and 7 additions.

In the second example, the master core performs 3
receives and 3 additions.

The improvement is more than a factor of 2!

73



Analysis (cont.)

* The difference is more dramatic with a larger number of
cores.

* |f we have 1000 cores:

— The first example would require the master to perform 999
receives and 999 additions.

— The second example would only require 10 receives and 10
additions.

* That’ s an improvement of almost a factor of 100!

74



