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CSE 564 Class Contents
§ Introduction to Computer Architecture (CA)
§ Quantitative Analysis, Trend and Performance of CA

– Chapter 1
§ Instruction Set Principles and Examples

– Appendix A
§ Pipelining and Implementation, RISC-V ISA and Implementation

– Appendix C, RISC-V (riscv.org) and UCB RISC-V impl
§ Memory System (Technology, Cache Organization and Optimization, Virtual 

Memory)
– Appendix B and Chapter 2
– Midterm covered till Memory Tech and Cache Organization

§ Instruction Level Parallelism (Dynamic Scheduling, Branch Prediction, Hardware 
Speculation, Superscalar, VLIW and SMT)
– Chapter 3

§ Data Level Parallelism (Vector, SIMD, and GPU)
– Chapter 4

§ Thread Level Parallelism
– Chapter 5

§ Domain-Specific Architecture
– Chapter 7
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Recent Manycore GPU processors

�
�

An�Overview�of�the�GK110�Kepler�Architecture�
Kepler�GK110�was�built�first�and�foremost�for�Tesla,�and�its�goal�was�to�be�the�highest�performing�
parallel�computing�microprocessor�in�the�world.�GK110�not�only�greatly�exceeds�the�raw�compute�
horsepower�delivered�by�Fermi,�but�it�does�so�efficiently,�consuming�significantly�less�power�and�
generating�much�less�heat�output.��

A�full�Kepler�GK110�implementation�includes�15�SMX�units�and�six�64�bit�memory�controllers.��Different�
products�will�use�different�configurations�of�GK110.��For�example,�some�products�may�deploy�13�or�14�
SMXs.��

Key�features�of�the�architecture�that�will�be�discussed�below�in�more�depth�include:�

� The�new�SMX�processor�architecture�
� An�enhanced�memory�subsystem,�offering�additional�caching�capabilities,�more�bandwidth�at�

each�level�of�the�hierarchy,�and�a�fully�redesigned�and�substantially�faster�DRAM�I/O�
implementation.�

� Hardware�support�throughout�the�design�to�enable�new�programming�model�capabilities�

�

Kepler�GK110�Full�chip�block�diagram�

�
�

Streaming�Multiprocessor�(SMX)�Architecture�

Kepler�GK110)s�new�SMX�introduces�several�architectural�innovations�that�make�it�not�only�the�most�
powerful�multiprocessor�we)ve�built,�but�also�the�most�programmable�and�power�efficient.��

�

SMX:�192�single�precision�CUDA�cores,�64�double�precision�units,�32�special�function�units�(SFU),�and�32�load/store�units�
(LD/ST).�

�
�

Kepler�Memory�Subsystem�/�L1,�L2,�ECC�

Kepler&s�memory�hierarchy�is�organized�similarly�to�Fermi.�The�Kepler�architecture�supports�a�unified�
memory�request�path�for�loads�and�stores,�with�an�L1�cache�per�SMX�multiprocessor.�Kepler�GK110�also�
enables�compiler�directed�use�of�an�additional�new�cache�for�read�only�data,�as�described�below.�

�

�

64�KB�Configurable�Shared�Memory�and�L1�Cache�

In�the�Kepler�GK110�architecture,�as�in�the�previous�generation�Fermi�architecture,�each�SMX�has�64�KB�
of�on�chip�memory�that�can�be�configured�as�48�KB�of�Shared�memory�with�16�KB�of�L1�cache,�or�as�16�
KB�of�shared�memory�with�48�KB�of�L1�cache.�Kepler�now�allows�for�additional�flexibility�in�configuring�
the�allocation�of�shared�memory�and�L1�cache�by�permitting�a�32KB�/�32KB�split�between�shared�
memory�and�L1�cache.�To�support�the�increased�throughput�of�each�SMX�unit,�the�shared�memory�
bandwidth�for�64b�and�larger�load�operations�is�also�doubled�compared�to�the�Fermi�SM,�to�256B�per�
core�clock.�

48KB�Read�Only�Data�Cache�

In�addition�to�the�L1�cache,�Kepler�introduces�a�48KB�cache�for�data�that�is�known�to�be�read�only�for�
the�duration�of�the�function.�In�the�Fermi�generation,�this�cache�was�accessible�only�by�the�Texture�unit.�
Expert�programmers�often�found�it�advantageous�to�load�data�through�this�path�explicitly�by�mapping�
their�data�as�textures,�but�this�approach�had�many�limitations.��

§ Massively Parallelism, e.g. ~5k cores
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Introduction
Moore’s Law enabled:
§ Deep memory hierarchy, e.g. 3- or even 4-level caches
§ Wide SIMD units, e.g. 512 bit SIMD register
§ Deep pipelines, e.g. 10-20 stages
§ Branch prediction, e.g. close to > 90% accurate rate
§ Out-of-order execution to achieve data-flow and remove 

WAR/WAR hazards
§ Speculative prefetching
§ Multithreading
§ Multiprocessing

§ Objective:
– Extract performance from software that is oblivious to 

architecture
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Introduction
§ Need factor of 100 improvements in number of 

operations per instruction

– Requires domain specific architectures
– For ASICs, NRE cannot be amoratized over large volumes
– FPGAs are less efficient than ASICs

§ Video: https://www.acm.org/hennessy-patterson-turing-lecture
§ Short summary: https://www.hpcwire.com/2018/04/17/hennessy-patterson-a-new-golden-age-

for-computer-architecture
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Machine Learning Domain
On Images and Videos Language Understanding

Robotics
Reasoning 



9

Artificial Intelligence, Machine Learning and Deep 
Learning

Artificial Intelligence

Machine 
Learning

Deep 
Learning

Statistics and 
mathematics, including 
optimization and linear 

algebra

Big Data 
Processing

Sophisticated 
Algorithms

High 
Performance 

Machines
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Example: Deep Neural Networks
§ Inpired by neuron of 

the brain
§ Computes non-linear 

“activiation” function 
of the weighted sum of 
input values

§ Neurons arranged in 
layers

https://en.wikipedia.org/wiki/Nervous_system
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Example: Deep Neural Networks
§ Inpired by neuron of 

the brain
§ Computes non-linear 

“activiation” function 
of the weighted sum of 
input values

§ Neurons arranged in 
layers
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Example:  Deep Neural Networks
§ Most practioners will choose an existing design

– Topology and Data type
§ Training (learning):

– Calculate weights using backpropagation algorithm
– Supervised learning:  stocastic gradient descent

§ Inferrence:  use neural network for classification
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§ Parameters:
– Dim[i]:  number of neurons
– Dim[i-1]:  dimension of input vector
– Number of weights:  Dim[i-1] x Dim[i]
– Operations:  2 x Dim[i-1] x Dim[i]
– Operations/weight:  2

Multi-Layer Perceptrons
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§ Computer vision
§ Each layer raises the level of abstraction

– First layer recognizes horizontal and vertical lines
– Second layer recognizes corners
– Third layer recognizes shapes
– Fourth layer recognizes features, such as ears of a dog
– Higher layers recognizes different breeds of dogs

Convolutional Neural Network
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§ Parameters:
– DimFM[i-1]: Dimension of the (square) input 

Feature Map
– DimFM[i]: Dimension of the (square) output 

Feature Map
– DimSten[i]: Dimension of the (square) stencil
– NumFM[i-1]: Number of input Feature Maps
– NumFM[i]: Number of output Feature Maps
– Number of neurons: NumFM[i] x DimFM[i]2

– Number of weights per output Feature Map: 
NumFM[i-1] x DimSten[i]2

– Total number of weights per layer: NumFM[i] 
x Number of weights per output Feature Map

– Number of operations per output Feature 
Map: 2 x DimFM[i]2 x Number of weights per 
output Feature Map

– Total number of operations per layer: 
NumFM[i] x Number of operations per output 
Feature Map = 2 x DimFM[i]2 x NumFM[i] x 
Number of weights per output Feature Map = 
2 x DimFM[i]2 x Total number of weights per 
layer

– Operations/Weight: 2 x DimFM[i]2

Convolutional Neural Network
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§ Batches:
– Reuse weights once fetched from memory across multiple inputs
– Increases operational intensity

§ Quantization
– Use 8- or 16-bit fixed point

§ Summary:
– Need the following kernels:

» Matrix-vector multiply
» Matrix-matrix multiply
» Stencil
» ReLU
» Sigmoid
» Hyperbolic tangeant

Convolutional Neural Network
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§ Speech recognition and language translation
§ Long short-term memory (LSTM) network

Recurrent Neural Network
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Recurrent Neural Network
n Parameters:

n Number of weights per 
cell: 3 x (3 x Dim x 
Dim)+(2 x Dim x Dim) + (1 
x Dim x Dim) = 12 x Dim2

n Number of operations for 
the 5 vector-matrix 
multiplies per cell: 2 x 
Number of weights per 
cell = 24 x Dim2

n Number of operations for 
the 3 element-wise 
multiplies and 1 addition 
(vectors are all the size of 
the output): 4 x Dim

n Total number of 
operations per cell (5 
vector-matrix multiplies 
and the 4 element-wise 
operations): 24 x Dim2 + 4 
x Dim

n Operations/Weight: ~2
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Summary
§ Need high-efficient (performance and power) 

implementation for dense matrix operations
– Matrix-vector, matrix-matrix multiplication, and stencil 

§ Other non-linear functions
– ReLU, Sigmoid, tanh, etc
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Guidelines for Domain Specific 
Architectures (DSAs)

1. Use dedicated memories to minimize distances of data 
movement
– Hardware-controlled multi-level cache è domain-specific software 

controlled scratch-pad
2. Invest resources into more arithmetic units or bigger 

memories
– Core optimization (OoO, speculation, threading, etc) è more 

domain-specific FU/memory 
3. Use the easiest form of parallelism that matches the domain

– MIMD è SIMD or VLIW that matches domain
4. Reduce data size and type to the simplest needed for the 

domain
– General-purpose 32/64 integer/float è domain-specific 8/16 int/float

5. Use a domain-specific programming language
– General-purpose C/C++/Fortran è Domain-specific language

» Halide for vision processing, TensorFlow for DNN
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Guidelines for DSAs
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Tensor Processing Unit
§ Google’s DNN ASIC (Application-specific Integrated 

Circuit)
– Designed for inference phase
– TensorFlow programming interface
– First TPU in 2015, Second 2017, Third in May 2018

» Design-verification-build-deployment in 15 months for the first one

§ Heart:
– 256 x 256 8-bit matrix multiply-add unit
– Large software-managed scratchpad

§ Coprocessor on the PCIe bus
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Tensor Processing Unit
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TPU Details
§ TPU was designed to be a coprocessor on the PCIe I/O bus

– Plugged into existing servers and simplify hardware design and debugging,
§ Host server sends instructions over the PCIe bus directly to the 

TPU I-buffer for it to execute
– TPU is closer in spirit to an FPU (floating-point unit) coprocessor than it is to 

a GPU, which fetches instructions from its memory. 
§ The internal blocks are typically connected together by 256-byte-

wide (2048-bits) paths. 
§ Matrix Multiply Unit contains 256x256 ALUs that can perform 8-bit 

multiply-and-adds on signed or unsigned integers. 
– The 16-bit products are collected in the 4 MiB of 32-bit Accumulators below 

the matrix unit. 
– It reads and writes 256 values per clock cycle and can perform either a 

matrix multiply or a convolution. The nonlinear functions are calculated by 
the Activation hardware. 

§ The weights are staged through an on-chip Weight FIFO that reads 
from an off-chip 8 GiB DRAM called Weight Memory (for inference, 
weights are read-only; 

§ The intermediate results are held in the 24 MiB on-chip Unified 
Buffer, which can serve as inputs to the Matrix Multiply Unit. 

§ A programmable DMA controller transfers data to or from CPU Host 
memory and the Unified Buffer. 
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TPU ISA
§ TPU is CISC tradition, CPI are typically 10-20
§ No program counter, no branch instructions
§ About a dozen instructions, five key ones: 

§ Read_Host_Memory
– Reads data from the CPU memory into the unified buffer

§ Read_Weights
– Reads weights from the Weight Memory into the Weight FIFO as input to the 

Matrix Unit

§ MatrixMatrixMultiply/Convolve
– Perform a MM multiply, a MV multiply, an element-wise MM, an element-wise 

MV, or a convolution from the Unified Buffer into the accumulators
– Takes a variable-sized B*256 input, multiplies it by a 256x256 constant input, 

and produces a B*256 output, taking B pipelined cycles to complete
§ Activate

– Computes activation function, those nonlinear function of the artificial 
neuron, with options for ReLU, Sigmoid, tanh, and so on. 

– Its inputs are the Accumulators, and its output is the Unified Buffer. 

§ Write_Host_Memory
– Writes data from unified buffer into host memory
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TPU Microarchitecture – Systolic Array
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TPU Implementation
§ TPU chip fabricated using the 28-nm process, 700 MHz 

clock. 
– Less than half size of an Intel Haswell CPU, which is 662 mm2. 
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Improving the TPU
§ First, increasing memory bandwidth (memory) has the biggest impact: 

– improves 3 on average when memory bandwidth increases 4 , because it reduces the time 
waiting for weight memory. 

§ Second, clock rate has little benefit on average with or without more 
accumulators. 

§ Third, the average performance slightly degrades when the matrix unit expands 
from 256x256 to 512x512 for all applications, whether or not having more 
accumulators. 
– The issue is analogous to internal fragmentation of large pages, only worse because it’s in 

two dimensions. 
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§ Use dedicated memories
– 24 MiB dedicated buffer, 4 MiB accumulator buffers

§ Invest resources in arithmetic units and dedicated 
memories
– 60% of the memory and 250X the arithmetic units of a server-class CPU

§ Use the easiest form of parallelism that matches the 
domain
– Exploits 2D SIMD parallelism using systolic array 

§ Reduce the data size and type needed for the domain
– Primarily uses 8-bit integers

§ Use a domain-specific programming language
– Uses TensorFlow

The TPU and the Guidelines
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Class Lecture Stops Here

§ Other Important topics of this chapter
– Microsoft Catapult, FPGA-based DSA solution
– Intel Crest, more details needed
– Google Pixel Visual Core: DSA for stencil, very interesting

– Heterogeneity and Open Instruction Set (RISC-V)
» Checkout RISC-V Summit, 12/03 – 12/06 2018,  

https://tmt.knect365.com/risc-v-summit/
– CPU vs GPUs vs DNN accelerators

» Performance comparison and Roofline Model
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Microsoft Catapult
§ Needed to be general purpose and power efficient

– Uses FPGA PCIe board with dedicated 20 Gbps network in 6 x 8 torus
– Each of the 48 servers in half the rack has a Catapult board
– Limited to 25 watts
– 32 MiB Flash memory
– Two banks of DDR3-1600 (11 GB/s) and 8 GiB DRAM
– FPGA (unconfigured) has 3962 18-bit ALUs and 5 MiB of on-chip 

memory
– Programmed in Verilog RTL
– Shell is 23% of the FPGA
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Microsoft Catapult:  CNN
§ CNN accelerator, mapped across multiple FPGAs
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Microsoft Catapult: CNN
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Microsoft Catapult: Search Ranking
n Feature extraction (1 FPGA)

n Extracts 4500 features for every document-query pair, e.g. frequency in which the 
query appears in the page

n Systolic array of FSMs
n Free-form expressions (2 FPGAs)

n Calculates feature combinations
n Machine-learned Scoring (1 FPGA for compression, 3 FPGAs calculate 

score)
n Uses results of previous two stages to calculate floating-point score

n One FPGA allocated as a hot-spare
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Microsoft Catapult: Search Ranking

n Free-form expression evaluation
n 60 core processor
n Pipelined cores
n Each core supports four threads that can hide each other’s latency
n Threads are statically prioritized according to thread latency
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Microsoft Catapult: Search Ranking

n Version 2 of Catapult
n Placed the FPGA between the 

CPU and NIC
n Increased network from 10 

Gb/s to 40 Gb/s
n Also performs network 

acceleration
n Shell now consumes 44% of 

the FPGA
n Now FPGA performs only 

feature extraction
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Catapult and the Guidelines

n Use dedicated memories
n 5 MiB dedicated memory

n Invest resources in arithmetic units and 
dedicated memories
n 3926 ALUs

n Use the easiest form of parallelism that matches 
the domain
n 2D SIMD for CNN, MISD parallelism for search scoring

n Reduce the data size and type needed for the 
domain
n Uses mixture of 8-bit integers and 64-bit floating-point

n Use a domain-specific programming language
n Uses Verilog RTL; Microsoft did not follow this guideline
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Intel Crest

n DNN training
n 16-bit fixed point
n Operates on blocks of 32x32 matrices
n SRAM + HBM2
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Pixel Visual Core

n Pixel Visual Core
n Image Processing Unit
n Performs stencil operations
n Decended from Image Signal processor
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Pixel Visual Core

n Software written in Halide, a DSL
n Compiled to virtual ISA
n vISA is lowered to physical ISA using application-

specific parameters
n pISA is VLSI

n Optimized for energy
n Power Budget is 6 to 8 W for bursts of 10-20 seconds, 

dropping to tens of milliwatts when not in use
n 8-bit DRAM access equivalent energy as 12,500 8-bit 

integer operations or 7 to 100 8-bit SRAM accesses
n IEEE 754 operations require 22X to 150X of the cost of 

8-bit integer operations
n Optimized for 2D access

n 2D SIMD unit
n On-chip SRAM structured using a square geometry
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Pixel Visual Core
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Pixel Visual Core
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Pixel Visual Core
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Visual Core and the Guidelines

n Use dedicated memories
n 128 + 64 MiB dedicated memory per core

n Invest resources in arithmetic units and 
dedicated memories
n 16x16 2D array of processing elements per core and 2D 

shifting network per core
n Use the easiest form of parallelism that matches 

the domain
n 2D SIMD and VLIW

n Reduce the data size and type needed for the 
domain
n Uses mixture of 8-bit and 16-bit integers

n Use a domain-specific programming language
n Halide for image processing and TensorFlow for CNNs
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Fallacies and Pitfalls

n It costs $100 million to design a custom 
chip

n Performance counters added as an 
afterthought

n Architects are tackling the right DNN 
tasks

n For DNN hardware, inferences per second 
(IPS) is a fair summary performance 
metric

n Being ignorant of architecture history 
when designing an DSA


