
Lecture 26: Domain Specific Architectures
Chapter 07, CAQA 6th Edition

CSCE 513 Computer Architecture

Department of Computer Science and Engineering
Yonghong Yan

yanyh@cse.sc.edu
https://passlab.github.io/CSCE513



2

Copyright and Acknowledgements
§ Copyright © 2019, Elsevier Inc. All rights Reserved

– Textbook slides
§ Machine Learning for Science” in 2018 and A 

Superfacility Model for Science” in 2017 By Kathy Yelic
– https://people.eecs.berkeley.edu/~yelick/talks.html



3

CSE 564 Class Contents
§ Introduction to Computer Architecture (CA)
§ Quantitative Analysis, Trend and Performance of CA

– Chapter 1
§ Instruction Set Principles and Examples

– Appendix A
§ Pipelining and Implementation, RISC-V ISA and Implementation

– Appendix C, RISC-V (riscv.org) and UCB RISC-V impl
§ Memory System (Technology, Cache Organization and Optimization, Virtual 

Memory)
– Appendix B and Chapter 2
– Midterm covered till Memory Tech and Cache Organization

§ Instruction Level Parallelism (Dynamic Scheduling, Branch Prediction, Hardware 
Speculation, Superscalar, VLIW and SMT)
– Chapter 3

§ Data Level Parallelism (Vector, SIMD, and GPU)
– Chapter 4

§ Thread Level Parallelism
– Chapter 5

§ Domain-Specific Architecture
– Chapter 7



4

IBM
BG/L

ASCI White
Pacific

EDSAC 1
UNIVAC 1

IBM 7090

CDC 6600

IBM 360/195CDC 7600

Cray 1

Cray X-MP
Cray 2

TMC CM-2

TMC CM-5 Cray T3D

ASCI Red

1950 1960 1970 1980 1990 2000 2010

1 KFlop/s

1 MFlop/s

1 GFlop/s

1 TFlop/s

1 PFlop/s

Scalar

Super Scalar

Parallel

Vector

1941  1 (Floating Point operations / second, Flop/s)

1945  100 

1949  1,000 (1 KiloFlop/s, KFlop/s) 

1951  10,000  

1961  100,000 

1964  1,000,000 (1 MegaFlop/s, MFlop/s) 

1968  10,000,000 

1975  100,000,000 

1987  1,000,000,000 (1 GigaFlop/s, GFlop/s) 

1992  10,000,000,000 

1993  100,000,000,000 

1997  1,000,000,000,000 (1 TeraFlop/s, TFlop/s) 

2000  10,000,000,000,000 

2005   131,000,000,000,000 (131 Tflop/s)

Superscalar/Vector/Parallel

(103)

(106)

(109)

(1012)

(1015)

2X Transistors/Chip 
Every 1.5 Years 

The Moore’s Law Trend

2020

GPUs



5

Recent Manycore GPU processors

�
�

An�Overview�of�the�GK110�Kepler�Architecture�
Kepler�GK110�was�built�first�and�foremost�for�Tesla,�and�its�goal�was�to�be�the�highest�performing�
parallel�computing�microprocessor�in�the�world.�GK110�not�only�greatly�exceeds�the�raw�compute�
horsepower�delivered�by�Fermi,�but�it�does�so�efficiently,�consuming�significantly�less�power�and�
generating�much�less�heat�output.��

A�full�Kepler�GK110�implementation�includes�15�SMX�units�and�six�64�bit�memory�controllers.��Different�
products�will�use�different�configurations�of�GK110.��For�example,�some�products�may�deploy�13�or�14�
SMXs.��

Key�features�of�the�architecture�that�will�be�discussed�below�in�more�depth�include:�

� The�new�SMX�processor�architecture�
� An�enhanced�memory�subsystem,�offering�additional�caching�capabilities,�more�bandwidth�at�

each�level�of�the�hierarchy,�and�a�fully�redesigned�and�substantially�faster�DRAM�I/O�
implementation.�

� Hardware�support�throughout�the�design�to�enable�new�programming�model�capabilities�

�

Kepler�GK110�Full�chip�block�diagram�

�
�

Streaming�Multiprocessor�(SMX)�Architecture�

Kepler�GK110)s�new�SMX�introduces�several�architectural�innovations�that�make�it�not�only�the�most�
powerful�multiprocessor�we)ve�built,�but�also�the�most�programmable�and�power�efficient.��

�

SMX:�192�single�precision�CUDA�cores,�64�double�precision�units,�32�special�function�units�(SFU),�and�32�load/store�units�
(LD/ST).�

�
�

Kepler�Memory�Subsystem�/�L1,�L2,�ECC�

Kepler&s�memory�hierarchy�is�organized�similarly�to�Fermi.�The�Kepler�architecture�supports�a�unified�
memory�request�path�for�loads�and�stores,�with�an�L1�cache�per�SMX�multiprocessor.�Kepler�GK110�also�
enables�compiler�directed�use�of�an�additional�new�cache�for�read�only�data,�as�described�below.�

�

�

64�KB�Configurable�Shared�Memory�and�L1�Cache�

In�the�Kepler�GK110�architecture,�as�in�the�previous�generation�Fermi�architecture,�each�SMX�has�64�KB�
of�on�chip�memory�that�can�be�configured�as�48�KB�of�Shared�memory�with�16�KB�of�L1�cache,�or�as�16�
KB�of�shared�memory�with�48�KB�of�L1�cache.�Kepler�now�allows�for�additional�flexibility�in�configuring�
the�allocation�of�shared�memory�and�L1�cache�by�permitting�a�32KB�/�32KB�split�between�shared�
memory�and�L1�cache.�To�support�the�increased�throughput�of�each�SMX�unit,�the�shared�memory�
bandwidth�for�64b�and�larger�load�operations�is�also�doubled�compared�to�the�Fermi�SM,�to�256B�per�
core�clock.�

48KB�Read�Only�Data�Cache�

In�addition�to�the�L1�cache,�Kepler�introduces�a�48KB�cache�for�data�that�is�known�to�be�read�only�for�
the�duration�of�the�function.�In�the�Fermi�generation,�this�cache�was�accessible�only�by�the�Texture�unit.�
Expert�programmers�often�found�it�advantageous�to�load�data�through�this�path�explicitly�by�mapping�
their�data�as�textures,�but�this�approach�had�many�limitations.��

§ Massively Parallelism, e.g. ~5k cores



6

Introduction
Moore’s Law enabled:
§ Deep memory hierarchy, e.g. 3- or even 4-level caches
§ Wide SIMD units, e.g. 512 bit SIMD register
§ Deep pipelines, e.g. 10-20 stages
§ Branch prediction, e.g. close to > 90% accurate rate
§ Out-of-order execution to achieve data-flow and remove 

WAR/WAR hazards
§ Speculative prefetching
§ Multithreading
§ Multiprocessing

§ Objective:
– Extract performance from software that is oblivious to 

architecture



7

Introduction
§ Need factor of 100 improvements in number of 

operations per instruction

– Requires domain specific architectures
– For ASICs, NRE cannot be amoratized over large volumes
– FPGAs are less efficient than ASICs

§ Video: https://www.acm.org/hennessy-patterson-turing-lecture
§ Short summary: https://www.hpcwire.com/2018/04/17/hennessy-patterson-a-new-golden-age-

for-computer-architecture



8

Machine Learning Domain
On Images and Videos Language Understanding

Robotics
Reasoning 



9

Artificial Intelligence, Machine Learning and Deep 
Learning

Artificial Intelligence

Machine 
Learning

Deep 
Learning

Statistics and 
mathematics, including 
optimization and linear 

algebra

Big Data 
Processing

Sophisticated 
Algorithms

High 
Performance 

Machines



10

Example: Deep Neural Networks
§ Inpired by neuron of 

the brain
§ Computes non-linear 

“activiation” function 
of the weighted sum of 
input values

§ Neurons arranged in 
layers

https://en.wikipedia.org/wiki/Nervous_system



11

Example: Deep Neural Networks
§ Inpired by neuron of 

the brain
§ Computes non-linear 

“activiation” function 
of the weighted sum of 
input values

§ Neurons arranged in 
layers



12

Example:  Deep Neural Networks
§ Most practioners will choose an existing design

– Topology and Data type
§ Training (learning):

– Calculate weights using backpropagation algorithm
– Supervised learning:  stocastic gradient descent

§ Inferrence:  use neural network for classification



13

§ Parameters:
– Dim[i]:  number of neurons
– Dim[i-1]:  dimension of input vector
– Number of weights:  Dim[i-1] x Dim[i]
– Operations:  2 x Dim[i-1] x Dim[i]
– Operations/weight:  2

Multi-Layer Perceptrons



14

§ Computer vision
§ Each layer raises the level of abstraction

– First layer recognizes horizontal and vertical lines
– Second layer recognizes corners
– Third layer recognizes shapes
– Fourth layer recognizes features, such as ears of a dog
– Higher layers recognizes different breeds of dogs

Convolutional Neural Network



15

§ Parameters:
– DimFM[i-1]: Dimension of the (square) input 

Feature Map
– DimFM[i]: Dimension of the (square) output 

Feature Map
– DimSten[i]: Dimension of the (square) stencil
– NumFM[i-1]: Number of input Feature Maps
– NumFM[i]: Number of output Feature Maps
– Number of neurons: NumFM[i] x DimFM[i]2

– Number of weights per output Feature Map: 
NumFM[i-1] x DimSten[i]2

– Total number of weights per layer: NumFM[i] 
x Number of weights per output Feature Map

– Number of operations per output Feature 
Map: 2 x DimFM[i]2 x Number of weights per 
output Feature Map

– Total number of operations per layer: 
NumFM[i] x Number of operations per output 
Feature Map = 2 x DimFM[i]2 x NumFM[i] x 
Number of weights per output Feature Map = 
2 x DimFM[i]2 x Total number of weights per 
layer

– Operations/Weight: 2 x DimFM[i]2

Convolutional Neural Network



16

§ Batches:
– Reuse weights once fetched from memory across multiple inputs
– Increases operational intensity

§ Quantization
– Use 8- or 16-bit fixed point

§ Summary:
– Need the following kernels:

» Matrix-vector multiply
» Matrix-matrix multiply
» Stencil
» ReLU
» Sigmoid
» Hyperbolic tangeant

Convolutional Neural Network



17

§ Speech recognition and language translation
§ Long short-term memory (LSTM) network

Recurrent Neural Network



18

Recurrent Neural Network
n Parameters:

n Number of weights per 
cell: 3 x (3 x Dim x 
Dim)+(2 x Dim x Dim) + (1 
x Dim x Dim) = 12 x Dim2

n Number of operations for 
the 5 vector-matrix 
multiplies per cell: 2 x 
Number of weights per 
cell = 24 x Dim2

n Number of operations for 
the 3 element-wise 
multiplies and 1 addition 
(vectors are all the size of 
the output): 4 x Dim

n Total number of 
operations per cell (5 
vector-matrix multiplies 
and the 4 element-wise 
operations): 24 x Dim2 + 4 
x Dim

n Operations/Weight: ~2



19

Dense	
Matrix	
Vector

(BLAS2)

Sparse	-
Sparse	
Matrix	
Product

(SpGEMM)

Sparse	Matrix	
Times	

Multiple	
Dense	Vectors

(SpMM)

Sparse	
Matrix-
Dense	
Vector	
(SpMV)

Sparse	
Matrix-
Sparse	
Vector	

(SpMSpV)

Increasing	arithmetic	intensity

Graphical	
Model	

Structure	
Learning	(e.g.,	
CONCORD)

Clustering	
(e.g.,	MCL,	
Spectral	

Clustering)

Logistic	
Regression,	
Support	
Vector	

Machines

Dimensionality	
Reduction	
(e.g.,	NMF,	

CX/CUR,	PCA)

Machine Learning Mapping to Linear Algebra

Deep	Learning	
(Convolutiona
l	Neural	Nets)

Sparse	-
Dense	
Matrix	
Product

(SpDM3)

Dense	
Matrix	
Matrix	
(BLAS3)

Aydin Buluc



20

Summary
§ Need high-efficient (performance and power) 

implementation for dense matrix operations
– Matrix-vector, matrix-matrix multiplication, and stencil 

§ Other non-linear functions
– ReLU, Sigmoid, tanh, etc



21

Guidelines for Domain Specific 
Architectures (DSAs)

1. Use dedicated memories to minimize distances of data 
movement
– Hardware-controlled multi-level cache è domain-specific software 

controlled scratch-pad
2. Invest resources into more arithmetic units or bigger 

memories
– Core optimization (OoO, speculation, threading, etc) è more 

domain-specific FU/memory 
3. Use the easiest form of parallelism that matches the domain

– MIMD è SIMD or VLIW that matches domain
4. Reduce data size and type to the simplest needed for the 

domain
– General-purpose 32/64 integer/float è domain-specific 8/16 int/float

5. Use a domain-specific programming language
– General-purpose C/C++/Fortran è Domain-specific language

» Halide for vision processing, TensorFlow for DNN



22

Guidelines for DSAs



23

Tensor Processing Unit
§ Google’s DNN ASIC (Application-specific Integrated 

Circuit)
– Designed for inference phase
– TensorFlow programming interface
– First TPU in 2015, Second 2017, Third in May 2018

» Design-verification-build-deployment in 15 months for the first one

§ Heart:
– 256 x 256 8-bit matrix multiply-add unit
– Large software-managed scratchpad

§ Coprocessor on the PCIe bus



24

Tensor Processing Unit



25

TPU Details
§ TPU was designed to be a coprocessor on the PCIe I/O bus

– Plugged into existing servers and simplify hardware design and debugging,
§ Host server sends instructions over the PCIe bus directly to the 

TPU I-buffer for it to execute
– TPU is closer in spirit to an FPU (floating-point unit) coprocessor than it is to 

a GPU, which fetches instructions from its memory. 
§ The internal blocks are typically connected together by 256-byte-

wide (2048-bits) paths. 
§ Matrix Multiply Unit contains 256x256 ALUs that can perform 8-bit 

multiply-and-adds on signed or unsigned integers. 
– The 16-bit products are collected in the 4 MiB of 32-bit Accumulators below 

the matrix unit. 
– It reads and writes 256 values per clock cycle and can perform either a 

matrix multiply or a convolution. The nonlinear functions are calculated by 
the Activation hardware. 

§ The weights are staged through an on-chip Weight FIFO that reads 
from an off-chip 8 GiB DRAM called Weight Memory (for inference, 
weights are read-only; 

§ The intermediate results are held in the 24 MiB on-chip Unified 
Buffer, which can serve as inputs to the Matrix Multiply Unit. 

§ A programmable DMA controller transfers data to or from CPU Host 
memory and the Unified Buffer. 



26

TPU ISA
§ TPU is CISC tradition, CPI are typically 10-20
§ No program counter, no branch instructions
§ About a dozen instructions, five key ones: 

§ Read_Host_Memory
– Reads data from the CPU memory into the unified buffer

§ Read_Weights
– Reads weights from the Weight Memory into the Weight FIFO as input to the 

Matrix Unit

§ MatrixMatrixMultiply/Convolve
– Perform a MM multiply, a MV multiply, an element-wise MM, an element-wise 

MV, or a convolution from the Unified Buffer into the accumulators
– Takes a variable-sized B*256 input, multiplies it by a 256x256 constant input, 

and produces a B*256 output, taking B pipelined cycles to complete
§ Activate

– Computes activation function, those nonlinear function of the artificial 
neuron, with options for ReLU, Sigmoid, tanh, and so on. 

– Its inputs are the Accumulators, and its output is the Unified Buffer. 

§ Write_Host_Memory
– Writes data from unified buffer into host memory



27

TPU Microarchitecture – Systolic Array



28

TPU Implementation
§ TPU chip fabricated using the 28-nm process, 700 MHz 

clock. 
– Less than half size of an Intel Haswell CPU, which is 662 mm2. 



30

Improving the TPU
§ First, increasing memory bandwidth (memory) has the biggest impact: 

– improves 3 on average when memory bandwidth increases 4 , because it reduces the time 
waiting for weight memory. 

§ Second, clock rate has little benefit on average with or without more 
accumulators. 

§ Third, the average performance slightly degrades when the matrix unit expands 
from 256x256 to 512x512 for all applications, whether or not having more 
accumulators. 
– The issue is analogous to internal fragmentation of large pages, only worse because it’s in 

two dimensions. 



31

§ Use dedicated memories
– 24 MiB dedicated buffer, 4 MiB accumulator buffers

§ Invest resources in arithmetic units and dedicated 
memories
– 60% of the memory and 250X the arithmetic units of a server-class CPU

§ Use the easiest form of parallelism that matches the 
domain
– Exploits 2D SIMD parallelism using systolic array 

§ Reduce the data size and type needed for the domain
– Primarily uses 8-bit integers

§ Use a domain-specific programming language
– Uses TensorFlow

The TPU and the Guidelines



32

Class Lecture Stops Here

§ Other Important topics of this chapter
– Microsoft Catapult, FPGA-based DSA solution
– Intel Crest, more details needed
– Google Pixel Visual Core: DSA for stencil, very interesting

– Heterogeneity and Open Instruction Set (RISC-V)
» Checkout RISC-V Summit, 12/03 – 12/06 2018,  

https://tmt.knect365.com/risc-v-summit/
– CPU vs GPUs vs DNN accelerators

» Performance comparison and Roofline Model



33

Microsoft Catapult
§ Needed to be general purpose and power efficient

– Uses FPGA PCIe board with dedicated 20 Gbps network in 6 x 8 torus
– Each of the 48 servers in half the rack has a Catapult board
– Limited to 25 watts
– 32 MiB Flash memory
– Two banks of DDR3-1600 (11 GB/s) and 8 GiB DRAM
– FPGA (unconfigured) has 3962 18-bit ALUs and 5 MiB of on-chip 

memory
– Programmed in Verilog RTL
– Shell is 23% of the FPGA



34

Microsoft Catapult:  CNN
§ CNN accelerator, mapped across multiple FPGAs



35

Microsoft Catapult: CNN



36

Microsoft Catapult: Search Ranking
n Feature extraction (1 FPGA)

n Extracts 4500 features for every document-query pair, e.g. frequency in which the 
query appears in the page

n Systolic array of FSMs
n Free-form expressions (2 FPGAs)

n Calculates feature combinations
n Machine-learned Scoring (1 FPGA for compression, 3 FPGAs calculate 

score)
n Uses results of previous two stages to calculate floating-point score

n One FPGA allocated as a hot-spare



37

Microsoft Catapult: Search Ranking

n Free-form expression evaluation
n 60 core processor
n Pipelined cores
n Each core supports four threads that can hide each other’s latency
n Threads are statically prioritized according to thread latency



38

Microsoft Catapult: Search Ranking

n Version 2 of Catapult
n Placed the FPGA between the 

CPU and NIC
n Increased network from 10 

Gb/s to 40 Gb/s
n Also performs network 

acceleration
n Shell now consumes 44% of 

the FPGA
n Now FPGA performs only 

feature extraction



39

Catapult and the Guidelines

n Use dedicated memories
n 5 MiB dedicated memory

n Invest resources in arithmetic units and 
dedicated memories
n 3926 ALUs

n Use the easiest form of parallelism that matches 
the domain
n 2D SIMD for CNN, MISD parallelism for search scoring

n Reduce the data size and type needed for the 
domain
n Uses mixture of 8-bit integers and 64-bit floating-point

n Use a domain-specific programming language
n Uses Verilog RTL; Microsoft did not follow this guideline



40

Intel Crest

n DNN training
n 16-bit fixed point
n Operates on blocks of 32x32 matrices
n SRAM + HBM2



41

Pixel Visual Core

n Pixel Visual Core
n Image Processing Unit
n Performs stencil operations
n Decended from Image Signal processor



42

Pixel Visual Core

n Software written in Halide, a DSL
n Compiled to virtual ISA
n vISA is lowered to physical ISA using application-

specific parameters
n pISA is VLSI

n Optimized for energy
n Power Budget is 6 to 8 W for bursts of 10-20 seconds, 

dropping to tens of milliwatts when not in use
n 8-bit DRAM access equivalent energy as 12,500 8-bit 

integer operations or 7 to 100 8-bit SRAM accesses
n IEEE 754 operations require 22X to 150X of the cost of 

8-bit integer operations
n Optimized for 2D access

n 2D SIMD unit
n On-chip SRAM structured using a square geometry



43

Pixel Visual Core



44

Pixel Visual Core



45

Pixel Visual Core



46

Visual Core and the Guidelines

n Use dedicated memories
n 128 + 64 MiB dedicated memory per core

n Invest resources in arithmetic units and 
dedicated memories
n 16x16 2D array of processing elements per core and 2D 

shifting network per core
n Use the easiest form of parallelism that matches 

the domain
n 2D SIMD and VLIW

n Reduce the data size and type needed for the 
domain
n Uses mixture of 8-bit and 16-bit integers

n Use a domain-specific programming language
n Halide for image processing and TensorFlow for CNNs



47

Fallacies and Pitfalls

n It costs $100 million to design a custom 
chip

n Performance counters added as an 
afterthought

n Architects are tackling the right DNN 
tasks

n For DNN hardware, inferences per second 
(IPS) is a fair summary performance 
metric

n Being ignorant of architecture history 
when designing an DSA


