Lecture 26: Domain Specific Architectures
Chapter 07, CAQA 6t Edition

CSCE 513 Computer Architecture

Department of Computer Science and Engineering
Yonghong Yan
vanyh@cse.sc.edu
https://passlab.qithub.io/CSCE513

Copyright and Acknowledgements
= Copyright © 2019, Elsevier Inc. All rights Reserved

— Textbook slides

= Machine Learning for Science” in 2018 and A
Superfacility Model for Science” in 2017 By Kathy Yelic

— https:/Ipeople.eecs.berkeley.edu/~yelick/talks.html

CSE 564 Class Contents

Introduction to Computer Architecture (CA)

Quantitative Analysis, Trend and Performance of CA
— Chapter 1

Instruction Set Principles and Examples
— Appendix A

Pipelining and Implementation, RISC-V ISA and Implementation
— Appendix C, RISC-V (riscv.org) and UCB RISC-V impl

Memory System (Technology, Cache Organization and Optimization, Virtual
Memory)

— Appendix B and Chapter 2
— Midterm covered till Memory Tech and Cache Organization

Instruction Level Parallelism (Dynamic Scheduling, Branch Prediction, Hardware
Speculation, Superscalar, VLIW and SMT)

— Chapter 3

Data Level Parallelism (Vector, SIMD, and GPU)
— Chapter 4

Thread Level Parallelism
— Chapter 5

Domain-Specific Architecture
— Chapter 7

The Moore’s Law Trend

perscalar/Vector/Parallel GPUs

1 PFlopis
(10'%)
|
ASCI| White
1 TFlopls Pacific

(10%) 2X Transistors/Chip
T Every 1.5 Years

Vector

1 GFlopls (

(10°) Super Scalar

ray 1 J
1941 1 (Floating Point operations / second, Flop/s)
CDC 76 1945 100]
|BM 360/1 5 1949 1,000 (1 KiloFlop/s, KFlop/s)
1 MFlop/s % 1951 10,000

(106) 1961 100,000
1964 1,000,000 (1 MegaFlop/s, MFlop/s)
1968 10,000,000

IBM 7 090 1975 100,000,000
1987 1,000,000,000 (1 GigaFlop/s, GFlop/s)

1992 10,000,000,000 —
1993 100,000,000,000
1 KFlopl/s 1997 1,000,000,000,000 (1 TeraFlop/s, TFlop/s)

(103) }/UN|VAC 1 2000 10,000,000,000,000
2005 131,000,000,000,000 (131 Top/s)
¢ EDSAC 1

f T I I I I |
1950 1960 1970 1980 1990 2000 2010 42020

Recent Manycore GPU processors

= Massively Parallelism, e.g. ~5k cores

SMX

Kepler Memory Hierarchy

PCI Express 3.0 Host Interface
e = I Warp Scheduler Warp Scheduler Warp Scheduler Warp Scheduler

- Dispatch | Dispatch Dispatch | Dispatch Dispatch | Dispatch Dispatch | Dispatch
+ + + - e + e T

e File (65,536 x 32-bit)
2 2 e

SR EEET B Thread
cor o R G v cor BRI >
o R -~ y
5% R -
ol \
oo = - Shared L1 Read-Only
f = - Memory Cache Data Cache
o -~ ’

Cora Core ot

Jslionuo0D Kiowaw
JejjoueD Kiowe

Jalionuod Aiowan
Jejj0:3u0) Asouion

Core Core st [s7U

J8l10U0D Alowe
J8)103u0D Alowel

Smx: CUDA cores, 2 d 32 load/store units
(Lo/sT).

«cru GPU
4 CORES 240 CORES

Introduction

Moore’s Law enabled:

Deep memory hierarchy, e.g. 3- or even 4-level caches
Wide SIMD units, e.g. 512 bit SIMD register

Deep pipelines, e.g. 10-20 stages

Branch prediction, e.g. close to > 90% accurate rate

Out-of-order execution to achieve data-flow and remove
WAR/WAR hazards

NI o
H H TN 130 | i i i 3
Speculative prefetching PR I S S
Multithreading [_Ris | |
: : 4 i N2
Multiprocessing i L N2l
) I NNV
10 — 1
. . 2000 2002 2004 2006 2008 2010 2012 2014 2016
Objective:

— Extract performance from software that is oblivious to
architecture 6

Introduction

= Need factor of 100 improvements in number of
operations per instruction

- Requires domain specific architectures

— For ASICs, NRE cannot be amoratized over large volumes
— FPGAs are less efﬂment than ASICs

Hennessy & Patterson: A New Golden Age

for Computer Architecture
By Staff

April 17,2018

On Monday June 4, 2018, 2017 A.M. Turing Award Winners
John L. Hennessy and David A. Patterson will deliver the Turing
Lecture at the 45" International Symposium on Computer
Architecture (ISCA) in Los Angeles.

= Video: https://www.acm.org/nennessy-patterson-turing-iecture

= Short summary: https://www.hpcwire.com/2018/04/17/hennessy-patterson-a-new-golden-age-
for-computer-architecture

Machine Learning Domain

On Images and Videos Language Understanding
: . —I

Artificial Intelligence, Machine Learning and Deep
Learning

Big Data

Artificial Intelligence Processing

Sophisticated
Algorithms

Deep
Learning

Statistics and
mathematics, including
optimization and linear
algebra

Example: Deep Neural Networks

* |npired by neuron of
the brain

= Computes non-linear
“activiation” function
of the weighted sum of
input values

* Neurons arranged in
layers

g % Newon ——

A ' -\ Q\\S z) .

https://en.wikipedia.org/wiki/Nervous_system

Example: Deep Neural Networks

= |npired by neuron of —1
P y gt —— Newon ——

the brain —

= Computes non-linear
“activiation” function
of the weighted sum of
input values

* Neurons arranged in
layers

Name DNN layers Weights Operations/Weight
MLPO 5 20M 200
MLP1 4 5M 168
LSTMO 58 52M 64
LSTM1 56 34M 96
CNNO 16 8M 2888
CNNI1 89 100M 1750

Figure 7.5 Six DNN applications that represent 95% of DNN workloads for inference

at Google in 2016, which we use in Section 7.9. The columns are the DNN name, the

number of layers in the DNN, the number of weights, and operations per weight (oper- 1
ational intensitv). Fiaure 7.41 on paae 595 aoes into more detail on these DNNs.

Example: Deep Neural Networks

= Most practioners will choose an existing design
— Topology and Data type

* Training (learning):

— Calculate weights using backpropagation algorithm

— Supervised learning: stocastic gradient descent

(Sports-1M)

Size of
benchmark’s DNN Training
Type of data Problem area training set architecture Hardware time

text [1] Word prediction 100 billion words 2-layer skip 1 NVIDIA Titan X | 6.2 hours
(word2vec) (Wikipedia) gram GPU

audio [2] Speech recognition 2000 hours (Fisher 11-layer RNN | 1 NVIDIA K1200 3.5 days
Corpus) GPU

images [3] Image 1 million images 22-layer CNN 1 NVIDIA K20 3 weeks
classification (ImageNet) GPU

video [4] activity recognition 1 million videos 8-layer CNN 10 NVIDIA GPUs 1 month

Figure 7.6 Training set sizes and training time for several DNNs (landola, 2016).

Inferrence: use neural network for classification

12

Multi-Layer Perceptrons

Parameters:
— Dim[i]: number of neurons

— Dim[i-1]: dimension of input vector

— Number of weights: Dim[i-

— Operations: 2 x Dim[i-1] x Dim[i]

— Operations/weight: 2
Layerli-1]

Dim[i-1]
Input

@ Vector matrix multiply
@ Nonlinear function :

1] x Dim[i]

Layer][i]
|\-)
Dim([i]
VMX »@—> Output
Dim[i]
E‘ Weights
o

13

Convolutional Neural Network

= Computer vision

= Each layer raises the level of abstraction
— First layer recognizes horizontal and vertical lines
— Second layer recognizes corners
— Third layer recognizes shapes
— Fourth layer recognizes features, such as ears of a dog
— Higher layers recognizes different breeds of dogs

Input image Output feature map
(4 x 0)

X
Center element of the kernel is placed over the g % 8;

source pixel. The source pixel is then replaced (0 x 0)
with a weighted sum of itself and nearby pixels.

(0x1)
(0x1)
(0x0)
(0x1)
+ (-4x2)

VMX nif — +o

ele]pl?
Q\¢]pVp

/\of@/o o d oo
/)

d1®

@ Vector matrix multiply Weights

Convolution kernel
(emboss)

New pixel value (destination pixel)

Nonlinear function

Convolutional Neural Network

Layerl[i-1] Layerli]
(input feature maps) (output feature maps)

NUmFMi-1] ¢,
NumFM([i]

@ Vector matrix multlply
@ Nonlinear function :

NumFM[i-1]

Figure 7.9 CNN general step showing input feature maps of Layer[i—1] on the left,
the output feature maps of Layer|i] on the right, and a three-dimensional stencil over
input feature maps to produce a single output feature map. Each output feature map
has its own unique set of weights, and the vector-matrix multiply happens for every one.
The dotted lines show future output feature maps in this figure. As this figure illustrates,
the dimensions and number of the input and output feature maps are often different. As
with MLPs, ReLU is a popular nonlinear function for CNNs.

Parameters:

DimFM][i-1]: Dimension of the (square) input
Feature Map

DimFM][i]: Dimension of the (square) output
Feature Map

DimSten([i]: Dimension of the (square) stencil
NumFM[i-1]: Number of input Feature Maps
NumFM][i]: Number of output Feature Maps
Number of neurons: NumFM[i] x DimFM][i]?

Number of weights per output Feature Map:
NumFM][i-1] x DimSten[i]?

Total number of weights per layer: NumFM([i]
x Number of weights per output Feature Map

Number of operations per output Feature
Map: 2 x DimFM[i]2 x Number of weights per
output Feature Map

Total number of operations per layer:
NumFM[i] x Number of operations per output
Feature Map = 2 x DimFM][i]?2 x NumFM][i] x
Number of weights per output Feature Map =
2 x DimFM[i]?2 x Total number of weights per
layer

Operations/Weight: 2 x DimFM][i]?

15

Convolutional Neural Network

= Batches:
— Reuse weights once fetched from memory across multiple inputs
— Increases operational intensity

= Quantization
— Use 8- or 16-bit fixed point

= Summary:

— Need the following kernels:
» Matrix-vector multiply
» Matrix-matrix multiply
» Stencil
» RelLU
» Sigmoid
» Hyperbolic tangeant

16

Speech recognition and language translation

Recurrent Neural Network

Long short-term memory (LSTM) network

Time

-

“‘now” —{ LSTMO0 —— LSTM1
| v Yy
“is” —{ LSTMO0 — LSTM1
Al Yy
“the” —{ LSTMO0 — LSTM1
| v Yy
“time” —=| LSTM0 — LSTM1
| v Yy
<end_input> — LSTMO0 — LSTM1
| v Yy
“momento” — LSTMO0 —— LSTM1
Yy Yy
“el” —= LSTMO —{ LSTM1
Yy Yy
“es” —={ LSTMO —{ LSTM1
| v Yy
“ahora” — LSTMO0 — LSTM1

1

1

[

LSTMn

Yy

LSTMn

Yy

LSTMn

Yy

LSTMn

\

LSTMn

— “momento”

Yy

LSTMn

“eI”

Yy

LSTMn

&

— €S

»

Yyv

LSTMn

— “ahora”

Yy

LSTMn

— <end_output>

1

17

Input

Recurrent Neural Network

| LTMemoryin | |STMemoryin |

Output gate
weights

Forget gate
weights

Input gate
weights

Input
weights

¢

Y

Short term
weights

\

/

LTMemoryout | | STMemoryout

Parameters:

Number of weights per
cell: 3 x (3 x Dim x
Dim)+(2 x Dim x Dim) + (1
x Dim x Dim) = 12 x Dim?2
Number of operations for
the 5 vector-matrix
multiplies per cell: 2 x
Number of weights per
cell = 24 x Dim?2

Number of operations for
the 3 element-wise
multiplies and 1 addition
(vectors are all the size of
the output): 4 x Dim

Total number of
operations per cell (5
vector-matrix multiplies
and the 4 element-wise
operations): 24 x Dim2 + 4
x Dim

Operations/Weight: ~2

18

Machine Learning Mapping to Linear Algebra

Logistic Graphical
. Dimensionality Clustering .
Regression, . Model Deep Learning
Reduction (e.g., MCL, .
Support Structure (Convolutiona
(e.g., NMF, Spectral .
Vector CX/CUR, PCA) Clustering) Learning (e.g., | Neural Nets)
Machines ' 8 CONCORD)

<\

Sparse Sparse Sparse Matrix Sparse - Dense Sparse -

- - Times Sparse . Dense Dense
Matrix- Matrix- P Matrix Matrix

i i Matrix
Sparse Dense Multiple Matrix Vector Matriy
Vector Vector Dense Vectors Product Product
(BLASZ) (BLAS3)
SpDM3

(SpMSpV) (SpMV) SpMM SpGEMM
[

Increasing arithmetic intensity

Aydin Buluc

19

Summary

* Need high-efficient (performance and power)
implementation for dense matrix operations

— Matrix-vector, matrix-matrix multiplication, and stencil

B _

bl.Z b1.3

9

* = = 1— il

a“|aum O—E

Input Matrix Result A ala——»O
vector a, . la,

= Other non-linear functions
— RelLU, Sigmoid, tanh, etc

20

Guidelines for Domain Specific

Architectures (DSAS)

1. Use dedicated memories to minimize distances of data
movement

— Hardware-controlled multi-level cache = domain-specific software
controlled scratch-pad

2. Invest resources into more arithmetic units or bigger
memories

— Core optimization (000, speculation, threading, etc) = more
domain-specific FU/memory

3. Use the easiest form of parallelism that matches the domain
— MIMD = SIMD or VLIW that matches domain

4. Reduce data size and type to the simplest needed for the
domain

— General-purpose 32/64 integer/float & domain-specific 8/16 int/float
5. Use a domain-specific programming language
— General-purpose C/C++/Fortran = Domain-specific language
» Halide for vision processing, TensorFlow for DNN

21

Guidelines for DSAs

Guideline TPU Catapult Crest Pixel Visual Core

Design target Data center ASIC Data center FPGA Data center ASIC PMD ASIC/SOC IP

1. Dedicated 24 MiB Unified Buffer, Varies N.A. Per core: 128 KiB line
memories 4 MiB Accumulators buffer, 64 KiB P.E.

memory

2. Larger 65,536 Multiply- Varies N.A. Per core: 256 Multiply-
arithmetic unit accumulators accumulators (512 ALUs)

3. Easy Single-threaded, SIMD, SIMD, MISD N.A. MPMD, SIMD, VLIW
parallelism in-order

4. Smaller data 8-Bit, 16-bit integer 8-Bit, 16-bit integer 21-bit Fl. Pt. 8-bit, 16-bit, 32-bit integer
size 32-bit Fl. Pt.

5. Domain- TensorFlow Verilog TensorFlow Halide/TensorFlow

specific lang.

Figure 7.3 The four DSAs in this chapter and how closely they followed the five guidelines. Pixel Visual Core typ-
ically has 2—16 cores. The first implementation of Pixel Visual Core does not support 8-bit arithmetic.

22

Tensor Processing Unit

= Google’s DNN ASIC (Application-specific Integrated
Circuit)
— Designed for inference phase
— TensorFlow programming interface

— First TPU in 2015, Second 2017, Third in May 2018
» Design-verification-build-deployment in 15 months for the first one

* Heart:
— 256 x 256 8-bit matrix multiply-add unit
— Large software-managed scratchpad

= Coprocessor on the PCle bus

23

14
GiB/s

14
GiB/s

PCle Gen3 x16
interface

——

] off-chip 110
|:| Data buffer
[] Computation
D Control

Tensor Processing Unit

Host interface

DDR3 DRAM chips

@ 30 GiB/s

1)

UJ
S

)
(——

11

T

167 GiB/s

1 [iB
¢ 4 Gib/s DDR3-2133 | 0 CBR Weight FIFO
interfaces (weight fetcher)
. >| Control _L 30 GiB/s
4 s N/ N[
10 Unified 167 Matrix multiph
GiB/s buffer Systolic |GiB/s T
< > (local data | 4K per cycl
activation setup
storage)
~ / Accumulators

Activation

Normalize / Pool

et

! ‘ Control \

24

TPU Details

TPU was designed to be a coprocessor on the PCle 1/O bus
— Plugged into existing servers and simplify hardware design and debugging,

Host server sends instructions over the PCle bus directly to the
TPU I-buffer for it to execute

— TPU is closer in s%irit to an FPU (floating-point unit) coprocessor than it is to
a GPU, which fetches instructions from its memory.

The internal blocks are typically connected together by 256-byte-
wide (2048-bits) paths.

Matrix Multiply Unit contains 256x256 ALUs that can perform 8-bit
multiply-and-adds on signed or unsigned integers.

— The 16-bit products are collected in the 4 MiB of 32-bit Accumulators below
the matrix unit.

— It reads and writes 256 values per clock cycle and can perform either a
matrix multiply or a convolution. The nonlinear functions are calculated by
the Activation hardware.

The weights are staged through an on-chip Weight FIFO that reads
from an off-chip 8 GiIB DRAM called Weight Memory (for inference,
weights are read-only;

The intermediate results are held in the 24 MiB on-chi,o Unified
Buffer, which can serve as inputs to the Matrix Multiply Unit.

A programmable DMA controller transfers data to or from CPU Host
memory and the Unified Buffer.

25

S) DDR3 DRAM chips .

JL, s0Giss

TPU ISA

PCle Gen3 x16

TPU is CISC tradition, CPI are typically 10-20 ..

No program counter, no branch instructions
About a dozen instructions, five key ones:

(S

(|||
gg39

(S

Read_Host_Memory
— Reads data from the CPU memory into the unified buffer

Read_Weights

— Reads we_itghts from the Weight Memory into the Weight FIFO as input to the
Matrix Uni

Conts

MatrixMatrixMultiply/Convolve

— Perform a MM multiply, a MV mult]icply, an element-wise MM, an element-wise
MV, or a convolution from the Unified Buffer into the accumulators

— Takes a variable-sized B*256 input, multiplies it by a 256x256 constant input,
and produces a B*256 output, taking B pipelined cycles to complete

Activate

— Computes activation function, those nonlinear function of the artificial
neuron, with options for ReLU, Sigmoid, tanh, and so on.

— Its inputs are the Accumulators, and its output is the Unified Buffer.

Write_ Host_Memory

— Writes data from unified buffer into host memory
26

TPU Microarchitecture — Systolic Array

Activation Memory

Weight Memory

y

v

v

.. @37 @14 MAC MAC MAC
Plwy [war |20 7| WM
¢ ‘ Activations, ‘
21 @ [MAC MAC MAC
lwip [T wap [T T waz
. -u .
. : g E .
: . 3| .
o4
| MAC MAC MAC
—> i ! Woy ceee —p WaN
Q
(@]
+—
L
g Y11 Y21 VN1
S |V Y22 YNz
S o o o
< | YiB Y28 YNB

MAC Unit

a8

Data l
| |
| |
|

|
|
|
e

ke

— Done

X2
X1
W11 W12
w21 w22
(A)

X2
X1
‘V% W12
w21 w22
(8)

X2
@ W12
w21 w22
(©

X2
&*
w21 w22

(D)

X3

W13

w23

X3

W13

w23

X3

W13

w23

X3

W13

w23

X3

W11 @ w13
@ W22 w23

(E)
X3
w11 13
@w& w23
(F)
w11

W12
w21 @ W23

(G)

W11 W12 @

w21 @23

(H)

W11 W12 W13

w21 w22 @

U]

W11 W12 W13

w21 w22 @

)

Y1 = WygXq F WepXo + WygXy

Y1 = WigXq + WepXp + Wy3Xy

Y1 = WpgXq + WepXp + Wy3Xy

Y2 = Wa1Xq + WppXp + WosXs

TPU Implementation

= TPU chip fabricated using the 28-nm process, 700 MHz

— Less than half size of an Intel Haswell CPU, which is 662 mm?2.

clock.
Local Unified Buffer for Matri itio| :
CEUELSLE G
(96Kx256x8b = 24 Mig) || (2°0X2508 i)
29% of chip ?
D Host Accumulators D
2 Interf. 2% | | (4Kx256x32b = 4 MiB) 6% E
M e M
port Activation pipeline 6% port
ddr3 ddr3
3% PCle 3%
Interface 3% Misc. /10 1%

Figure 7.16 TPU printed circuit board. It can be inserted into the slot for an SATA disk
in a server, but the card uses the PCle bus.

Figure 7.15 Floor plan of TPU die. The shading follows Figure 7.14. The light data
buffers are 37%, the light computation units are 30%, the medium I/O is 10%, and
the dark control is just 2% of the die. Control is much larger (and much more difficult
to design) in a CPU or GPU. The unused white space is a consequence of the emphasis
on time to tape-out for the TPU.

28

Improving the TPU

= First, increasing memory bandwidth (memory) has the biggest impact:
— improves 3 on average when memory bandwidth increases 4 , because it reduces the time

waiting for weight memory.

= Second, clock rate has little benefit on average with or without more
accumulators.

= Third, the average gerformance slightly degrades when the matrix unit expands

from 256x256 to 51

accumulators.
— The issue is analogous to internal fragmentation of large pages, only worse because it’s in

3.5
3.0
2.5
2.0
1.5
1.0

0.5

Performance relative to original
MPU

0.0

two dimensions.

X

/

2

00 05 10 15 20 25 3.0

Scale relative to original MPU

35 4.0

x512 for all applications, whether or not having more

—k— memory
— clock+
clock
-
—&— matrix+
matrix
™
14 GiB: b s0Gms 30 GiB/
1B8/s 1B/S -
> — [
|:{>[Control] @ 30 GiB/s
E 11
a8 10 [Matii ltp
14 §f¢; 14 g GiBls s R
GiB/s §_5 GiB/s E acti i
:
ﬁ Activation
d || B
D oft-chip 10 Iﬁ
[[] Data buffer
] Computatio < 1|
[control

The TPU and the Guidelines

Use dedicated memories
— 24 MiB dedicated buffer, 4 MiB accumulator buffers

Invest resources in arithmetic units and dedicated
memories

— 60% of the memory and 250X the arithmetic units of a server-class CPU

Use the easiest form of parallelism that matches the
domain

— Exploits 2D SIMD parallelism using systolic array

Reduce the data size and type needed for the domain
— Primarily uses 8-bit integers

Use a domain-specific programming language
— Uses TensorFlow

31

Class Lecture Stops Here

= Other Important topics of this chapter
— Microsoft Catapult, FPGA-based DSA solution
— Intel Crest, more details needed
— Google Pixel Visual Core: DSA for stencil, very interesting

— Heterogeneity and Open Instruction Set (RISC-V)

» Checkout RISC-V Summit, 12/03 — 12/06 2018,
https://tmt.knect365.com/risc-v-summit/

— CPU vs GPUs vs DNN accelerators
» Performance comparison and Roofline Model

32

Microsoft Catapult

* Needed to be general purpose and power efficient

— Uses FPGA PCle board with dedicated 20 Gbps network in 6 x 8 torus
— Each of the 48 servers in half the rack has a Catapult board
— Limited to 25 watts

— 32 MiB Flash memory 4GB DDR3-1333 4 GB DDR3-1333
ECC SO-DIMM ECC SO-DIMM
— Two banks of DDR3-1600 (11 GB/s) £72 172
. Shell
— FPGA (unconfigured) has 3962 18-b ~| DDR3 Core 0 | DDR3 Core 1
memory Iy
— Programmed in Verilog RTL ®SU)| | o
JTAG
— Shell is 23% of the FPGA wet ¢/ [N LEDs
cPu 7 Core
I Temp
DM_A VSenSO(S
Engine ‘ 1’c
- Inter-FPGA Router reconfig
| | | [SEU
North South East West
SLil SLin SLin SLil
A L)

2 Zi' 21 21’

33

Microsoft Catapult: CNN

= CNN accelerator, mapped across multiple FPGAs

Output volume
z
/ i '\\\
Top
controller Data re-distribution ; X
Output Output Output Output
Layer feature feature y feature feature
config. Loyer _~""| map map map map
controller |/ nput nput nput nput
! kernel kernel kernel | kernel |
weight [4 | weight | 4 weight | 4 | weight ||
. Addressl 0 1 M-2 M-1
1 generation Scan chain
Input
~~ 4 volume PE PE PE = PE
z! <" | Segment 0
Input volume /|- Broad-cast
/ X Input
volume PE PE PE =~ PE
Segment 1
Input
~ volume PE PE PE =~ PE
Segment N-2
y ! ' ' l
Input
Y volume PE PE PE |—| PE
Segment N-1

Microsoft Catapult: CNN

PCle DRAM
Register .
interface Umi Dram
Fetcher
l Umi ﬂI]
command
. Single Layer
Multi layer ot 1BW, | 18w, H BW, b +e+ | W,
Umi command ontrol [
control)
Kernel weights
Buffer array
}d# .o.) FUgo M| FUgo | FUgo = *** = FU,
Y T T T
1 }aél-o. j FUyg b PO, H FU b oee o FU, | @
o
}& 18D,) FUsg P FUsy M FUsa b oo~ FU, c
. - S S — |5
* L4 - . - * - B
* ® . . - . . <
* L y 1 Y v
=D e ey e E N P S O
Input double 17
Bufferarray .~ | i |
_f---=--—-—-__ -~ Address, | OBy | OB, M OB; |- ++* ~| OB,
17T Output buffer
Armay
Bias data load
#by | +b, M b, P e+ = +b,
ias buffer
Armay
/.- - _/' - /2- b oeer = _/"
Max pool command | Max pool ‘Activation
control Function array
Control MPE, M MPE, M MPE, - ++* =~ MPE,
I Max pooling .| ___!
array
Shallow --t—-t.__%___%_

Microsoft Catapult: Search Ranking

= Feature extraction (1 FPGA)
= Extracts 4500 features for every document-query pair, e.g. frequency in which the
query appears in the page
= Systolic array of FSMs
= Free-form expressions (2 FPGAs)
= Calculates feature combinations
= Machine-learned Scoring (1 FPGA for compression, 3 FPGAs calculate
score)
= Uses results of previous two stages to calculate floating-point score

= One FPGA allocated as a hot-spare

Hit vector
——=| preprocessing
FSM

network

o i

L G il il i
e @ -
:

Feature extraction FSMs

36

Microsoft Catapult: Search Ranking

= Free-form expression evaluation

= 60 core processor

= Pipelined cores
= Each core supports four threads that can hide each other’s latency

= Threads are statically prioritized according to thread latency

95th percentile latency versus throughput

Throughput (normalized)

0 0.5 1 1.5 2
Latency (normalized to 95th percentile target)

37

Microsoft Catapult: Search Ranking

= Version 2 of Catapult

2-socket server blade

Placed the FPGA between the
CPU and NIC

Increased network from 10
Gb/s to 40 Gb/s

Also performs network Gogy 8
acceleration

Shell now consumes 44% of
the FPGA

Now FPGA performs only
feature extraction

Accelkerator card

S
I C5tE | OSTF prrerys

TOR

38

Catapult and the Guidelines

Use dedicated memories

= 5 MiB dedicated memory

Invest resources in arithmetic units and
dedicated memories

= 3926 ALUs

Use the easiest form of parallelism that matches
the domain
= 2D SIMD for CNN, MISD parallelism for search scoring

Reduce the data size and type needed for the

domain
= Uses mixture of 8-bit integers and 64-bit floating-point

Use a domain-specific programming language
= Uses Verilog RTL; Microsoft did not follow this guideline

39

Intel Crest

DNN training

16-bit fixed point

Operates on blocks of 32x32 matrices
SRAM + HBM2

Interposer
- - - - - | - - -}
Q Q Q Q ICC Q o Q o
Processing Processing Processing
8GB HBM2 HBM | Mem Cluster Cluster Cluster Mem | HBM 8GB HBM2
PHY | Ctrir Ctrir | PHY
Processing Processing Processing
Cluster Cluster Cluster
SPI, IC2, MGMT
GPIO CPU
Processing Processing Processing
Cluster Cluster Cluster
HBM | Mem Mem | HBM
PHY | Ctrir Processing Processing Processing Ctrir | PHY
8GB HBM2 8GB HBM2
Cluster Cluster Cluster
PCle Controller & DMA - -
PCI Express x16 8|2 ce Qe

40

Pixel Visual Core

s Pixel Visual Core

= Image Processing Unit
= Performs stencil operations
= Decended from Image Signal processor

Lens

N

AF

]

//

Sensor
(CCD or CMOS)
Image Output
= image
J - ISP (Display)
‘ Img &
Stats |
AE| AWB A~ DRAM
cPU \'

41

Pixel Visual Core

n Software written in Halide, a DSL
= Compiled to virtual ISA

= VISA is lowered to physical ISA using application-
specific parameters

= pISA is VLSI

= Optimized for energy

= Power Budget is 6 to 8 W for bursts of 10-20 seconds,
dropping to tens of milliwatts when not in use

= 8-bit DRAM access equivalent energy as 12,500 8-bit
integer operations or 7 to 100 8-bit SRAM accesses

= |IEEE 754 operations require 22X to 150X of the cost of
8-bit integer operations
s Optimized for 2D access
= 2D SIMD unit
= On-chip SRAM structured using a square geometry

42

Pixel Visual Core

Mem

Mem

i]

i i

43

Pixel Visual Core

5x 5 stencil

%%oo %o%%,
QQMMMQQM%J
waééée@ -
DOOOOOD SN
[CICICIOICIOION 3 32
DO OO
X 400 O CLCLOIOIOR 3K 2
® “@@wégw O S8
@D DIDIDODDD SO
B SX S an X S K S IK K I
ﬂ%@@VTﬁ R AR
~TUTTUTT VRVAVEVAY,

44

Pixel Visual Core

Lens 2D stencil
processor

2D stencil
processor

2D stencil
processor

45

Visual Core and the Guidelines

Use dedicated memories

= 128 + 64 MiB dedicated memory per core
Invest resources in arithmetic units and
dedicated memories

= 16x16 2D array of processing elements per core and 2D
shifting network per core

Use the easiest form of parallelism that matches
the domain

= 2D SIMD and VLIW

Reduce the data size and type needed for the
domain

= Uses mixture of 8-bit and 16-bit integers

Use a domain-specific programming language

= Halide for image processing and TensorFlow for CNNs

46

Fallacies and Pitfalls

It costs $100 million to design a custom
chip

Performance counters added as an
afterthought

Architects are tackling the right DNN
tasks

For DNN hardware, inferences per second
(IPS) is a fair summary performance
metric

Being ignorant of architecture history
when designing an DSA

47

