
Lecture 25: Thread Level Parallelism
-- Synchronization and Memory

Consistency

CSCE 513 Computer Architecture

Department of Computer Science and Engineering
Yonghong Yan

yanyh@cse.sc.edu
https://passlab.github.io/CSCE513

2

Topics for Thread Level Parallelism (TLP)
§ Parallelism (centered around …)

– Instruction Level Parallelism
– Data Level Parallelism
– Thread Level Parallelism

§ TLP Introduction
– 5.1

§ SMP and Snooping Cache Coherence Protocol
– 5.2

§ Distributed Shared-Memory and Directory-Based
Coherence
– 5.4

§ Synchronization Basics and Memory Consistency
Model
– 5.5, 5.6

3

Data Racing in a Multithread Program

Consider:
/* each thread to update shared variable best_cost */

if (my_cost < best_cost)
best_cost = my_cost;

– two threads,
– the initial value of best_cost is 100,
– the values of my_cost are 50 and 75 for threads t1 and t2

best_cost = my_cost;

§ The value of best_cost could be 50 or 75!
§ The value 75 does not correspond to any serialization of the

two threads.

3

T1 T2
if (my_cost (50) <
best_cost)

best_cost = my_cost;

if (my_cost (75) < best_cost)

best_cost = my_cost;

4

Critical Section and Mutual Exclusion
§ Critical section = a segment that must be

executed by only one thread at any time

§ Mutex locks protect critical sections in
Pthreads
– locked and unlocked
– At any point of time, only one thread can acquire a mutex lock

§ Using mutex locks
– request lock before executing critical section
– enter critical section when lock granted
– release lock when leaving critical section

if (my_cost < best_cost)

best_cost = my_cost;

4

5

Mutual Exclusion using Pthread Mutex
int pthread_mutex_lock (pthread_mutex_t *mutex_lock);
int pthread_mutex_unlock (pthread_mutex_t *mutex_lock);
int pthread_mutex_init (pthread_mutex_t *mutex_lock,

const pthread_mutexattr_t *lock_attr);

pthread_mutex_t cost_lock;

int main() {
...

pthread_mutex_init(&cost_lock, NULL);
pthread_create(&thhandle1, NULL, find_best, …);

pthread_create(&thhandle2, NULL, find_best, …);
}

void *find_best(void *list_ptr) {
...

pthread_mutex_lock(&cost_lock); // enter CS
if (my_cost < best_cost)

best_cost = my_cost;
pthread_mutex_unlock(&cost_lock); // leave CS

}

Critical Section

pthread_mutex_lock blocks the calling
thread if another thread holds the lock

When pthread_mutex_lock call returns

1. Mutex is locked, enter CS

2. Any other locking attempt (call to
thread_mutex_lock) will cause the
blocking of the calling thread

When pthread_mutex_unlock returns

1. Mutex is unlocked, leave CS

2. One thread who blocks on
thread_mutex_lock call will acquire
the lock and enter CS

6

Components of a Synchronization Event
§ Method for acquiring and making it exclusive

– Acquire right to the synch
» enter critical section, go past event

– Make sure no others enter CS

§ Waiting algorithm
– Wait for synch to become available when it isn’t
– busy-waiting, blocking, or hybrid

§ Release method
– Enable other processors to acquire right to the synch

§ Waiting algorithm is independent of type of
synchronization
– makes no sense to put in hardware

7

Strawman Lock Implementation

lock: ld R1, mem[cost_lock] /* copy cost_lock to register */
cmp R1, #0 /* compare with 0 */
bnz lock /* if not 0, try again */
st mem[cost_lock], #1 /* store 1 to mark it exclusive */
ret /* return control to caller */

unlock:st mem[cost_lock], #0 /* write 0 to cost_lock */
ret /* return control to caller */

Busy-Wait

Why doesn’t the acquire method work?
For example: when two threads (cores) try
to acquire the lock, they both execute the

ld instruction when the mem[cost_lock] = 0

8

Atomic Instructions
Exchange data between register and memory atomatically
§ Specifies a location, register, & atomic operation

– Value in location read into a register
– Another value (function of value read or not) stored into location

§ Many variants
– Varying degrees of flexibility in second part

§ Simple example: test&set
– Value in location read into a specified register
– Constant 1 stored into location
– Successful if value loaded into register is 0
– Other constants could be used instead of 1 and 0

§ How to implement test&set in distributed cache coherent
machine?
– Wait until have write privileges, then perform operation without

allowing any intervening operations (either locally or remotely)

9

Choices of Hardware Primitives for
Synchronizations -- 1

§ Test&Set
test&set (&address) {
result = M[address];
M[address] = 1;
return result;

}
§ Swap

swap (&address, register) { /* x86 */
temp = M[address];
M[address] = register;
register = temp;

}

10

Choices of Hardware Primitives for
Synchronizations -- 2

§ Compare and Swap (CAS)
compare&swap (&address, reg1, reg2) {
if (reg1 == M[address]) {

M[address] = reg2;
return success;

} else {
return failure;

}
}

§ Load-linked/reserved/locked and Store-conditional
load-linked&store conditional(&address) {

loop:
ll r1, M[address];
movi r2, 1; … /* Can do arbitrary ops */
sc r2, M[address];
beqz r2, loop;

}

https://gcc.gnu.org/onlinedocs/gcc-4.1.0/gcc/Atomic-Builtins.html

11

Improved Hardware Primitives: LL-SC
§ Goals:

– Test with reads
– Failed read-modify-write attempts don’t generate invalidations
– Nice if single primitive can implement range of r-m-w

operations
§ Load-Locked (or -linked), Store-Conditional

– LL reads variable into register
– Follow with arbitrary instructions to manipulate its value
– SC tries to store back to location
– succeed if and only if no other write to the variable since this

processor’s LL
» indicated by condition codes;

§ If SC succeeds, all three steps happened “atomically”
§ If fails, doesn’t write or generate invalidations

– must retry to acquire

12

Simple Lock with LL-SC
lock: ll R1, mem[cost_lock] /* LL location to reg1 */

sc mem[cost_lock], R2 /* SC reg2 into mem */
beqz R2, lock /* if failed, start again */
ret

unlock: st mem[cost_lock], #0 /* write 0 to location */
ret

§ Can do more fancy atomic ops by changing what’s
between LL & SC
– But keep it small so SC likely to succeed
– Don’t include instructions that would need to be undone (e.g.

stores)
§ SC can fail (without putting transaction on bus) if:

– Detects intervening write even before trying to get bus
– Tries to get bus but another processor’s SC gets bus first

§ LL, SC are not lock, unlock respectively
– Only guarantee no conflicting write to lock variable between

them
– But can use directly to implement simple operations on shared

variables

13

Test&Set Lock Microbenchmark: SGI Chal.
lock: t&s R1, mem[cost_location]

bnz lock /* if not 0, try again */
ret /* return control to caller */

unlock: st mem[cost_location], #0 /* write 0 to location */

ret /* return control to caller */

▲

▲

▲

▲

▲

▲

▲

▲

▲

▲

▲

▲

▲
▲

▲

▲

●
●

●
●

●
●

●

●

●
●

●

●

●
●

●

●

■
■ ■ ■

■

■

■

■

■

■
■

■

■
■

■

■

◆

◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆

Number of processors

Ti
m

e
(µ

s)

11 13 15
0

2

4

6

8

10

12

14

16

18

20
▲ Test&set, c = 0
● Test&set, exponential backoff, c = 3.64
■ Test&set, exponential backoff, c = 0
◆ Ideal

9753

lock;
delay(c);
unlock;

14

Cost of Atomic and Hardware Locks
§ Expensive, e.g. X86 lock could causes multiple 100

cycles

§ Hardware atomic increment/decrement could cost
multiple 10 cycles

§ Because it may involve locking the memory bus so no
others can use

15

Mini-Instruction Set debate
§ atomic read-modify-write instructions

– IBM 370: included atomic compare&swap for
multiprogramming

– x86: any instruction can be prefixed with a lock modifier
– High-level language advocates want hardware locks/barriers

» but it’s goes against the “RISC” flow,and has other problems
– SPARC: atomic register-memory ops (swap, compare&swap)
– MIPS, IBM Power: no atomic operations but pair of

instructions
» load-locked, store-conditional
» later used by PowerPC and DEC Alpha too

– 68000: CCS: Compare and compare and swap
» No-one does this any more

§ Rich set of tradeoffs

16

Busy-wait Lock
§ Also called spin lock

– Keep trying to acquire lock until read
– Very low latency/processor overhead!
– Very high system overhead!

» Causing stress on network while spinning
» Processor is not doing anything else useful

lockit: DADDUI R2, R0, #1
EXCH R2, 0(R1) ;atomic exchange
BNEZ R2, lockit ;already locked?

Spinning on memory read

17

Busy-wait Lock Leveraging Cache
Coherence

§ Also called spin lock
– Keep trying to acquire lock until read
– Very low latency/processor overhead!
– Very high system overhead!

lockit: LD R2, 0(R1) ;load of lock
BNEZ R2, lockit ;not available-spin
DADDUI R2, R0, #1 ;load locked value
EXCH R2, 0(R1) ;swap
BNEZ R2, lockit ;branch if lock wasn’t 0

Spinning on cache read until cache miss
(because of invalidation)

18

Busy-wait Lock Leveraging Cache
Coherence

19

Busy-wait vs Blocking Lock
§ Busy-wait: I.e. spin lock

– Keep trying to acquire lock until read
– Very low latency/processor overhead!
– Very high system overhead!

» Causing stress on network while spinning
» Processor is not doing anything else useful

§ Blocking:
– If can’t acquire lock, deschedule process (I.e. unload state)
– Higher latency/processor overhead (1000s of cycles?)

» Takes time to unload/restart task
» Notification mechanism needed

– Low system overheadd
» No stress on network
» Processor does something useful

§ Hybrid:
– Spin for a while, then block
– 2-competitive: spin until have waited blocking time

20

Blocking Lock
§ while (!finished()) cpu_pause();

– Pause CPU so not consuming cycles/energy, but still
occupying the CPU

– ISA support
§ while (!finished()) sched_yield();

– Yield the CPU from the kernel, i.e. give up the slice in time-
sharing

– API/Kernel support
§ mutex_wait() and mutex_wake()

– Completely surrender the CPU for doing other work
– API/Kernel support via pthread_cond_t and pthread_mutex_t

» Pthread Condition variable and mutex

21

Lock-Free Synchronization
§ What happens if process grabs lock, then goes to

sleep???
– Page fault
– Processor scheduling
– Etc

§ Lock-free synchronization:
– Operations do not require mutual exclusion of multiple insts

§ Nonblocking:
– Some process will complete in a finite amount of time even if

other processors halt
§ Wait-Free (Herlihy):

– Every (nonfaulting) process will complete in a finite amount of
time

§ Systems based on LL&SC can implement these

22

Synchronization Summary
§ Rich interaction of hardware-software tradeoffs
§ Must evaluate hardware primitives and software algorithms

together
– primitives determine which algorithms perform well

§ Evaluation methodology is challenging
– Use of delays, microbenchmarks
– Should use both microbenchmarks and real workloads

§ Simple software algorithms with common hardware primitives
do well on bus

– Will see more sophisticated techniques for distributed machines
– Hardware support still subject of debate

§ Theoretical research argues for swap or compare&swap, not
fetch&op

– Algorithms that ensure constant-time access, but complex

23

Class Lectures End Here!

24

Memory Consistency Model
§ One of the most confusing topics (if not the most) in

computer system, parallel programming and parallel
computer architecture

25

Setup for Mem. Consistency
§ Coherence Þ Writes to a location become visible to

all in the same order
– But when does a write become visible?
– Immediately or visible when needed?

§ How do we establish orders between a write and a
read by different processors?

– use event synchronization

§ Typically use more than one location!

26

Example

§ Under cache coherence, if write is immediately
available
– Not possible for both L1 and L2 to be true

§ For cache-coherent systems, if write invalidates are
delayed and processor allows to continue under delay
– It is possible for both L1 and L2 to be true

P1 P2

$ $

Memory

27

Another Example of Ordering?
§ What’s the intuition?

– Whatever it is, we need an ordering model for clear semantics
» across different locations as well
» so programmers can reason about what results are possible

§ Expect memory to respect order between accesses to
different locations issued by a given process
– to preserve orders among accesses to same location by

different processes
§ Coherence is not enough!

– pertains only to single location

P1 P2
/*Assume initial values of A and B are 0 */
(1a) A = 1; (2a) print B;

(1b) B = 2; (2b) print A;

28

Memory Consistency Model
§ Specifies constraints on the order in which memory

operations (from any process) can appear to execute
with respect to one another
– What orders are preserved?
– Given a load, constrains the possible values returned by it

§ Implications for both programmer and system
designer
– Programmer uses to reason about correctness and possible

results
– System designer can use to constrain how much accesses

can be reordered by compiler or hardware
§ Contract between programmer and system

29

Sequential Consistency
§ Memory operations from a proc become visible

(to itself and others) in program order
§ There exists a total order, consistent with this partial

order - i.e., an interleaving
– the position at which a write occurs in the hypothetical total

order should be the same with respect to all processors
§ Said another way:

– For any possible individual run of a program on multiple
processors

– Should be able to come up with a serial interleaving of all
operations that respects

» Program Order
» Read-after-write orderings (locally and through network)
» Also Write-after-read, write-after-write

30

Sequential Consistency
§ Total order achieved by interleaving accesses from

different processes
– Maintains program order, and memory operations, from all

processes, appear to [issue, execute, complete] atomically
w.r.t. others

– as if there were no caches, and a single memory
§ “A multiprocessor is sequentially consistent if the result of any

execution is the same as if the operations of all the processors
were executed in some sequential order, and the operations of
each individual processor appear in this sequence in the order
specified by its program.”
[Lamport, 1979]

Processors
issuing memory
references as
per program order

P1 P2 Pn

Memory

The “switch” is randomly
set after each memory
reference

31

SC Example
§ What matters is order in which operations appear to execute, not

the chronological order of events
§ Possible outcomes for (A,B): (0,0), (1,0), (1,2)
§ What about (0,2) ?

– program order Þ 1a->1b and 2a->2b
– A = 0 implies 2b->1a, which implies 2a->1b
– B = 2 implies 1b->2a, which leads to a contradiction (cycle!)

§ Since there is a cycleÞno sequential order that is consistent!

P1 P2

/*Assume initial values of A and B are0*/
(1a) A = 1; (2a) print B;

(1b) B = 2; (2b) print A;A=0
B=2

32

Implementing SC
§ Two kinds of requirements

– Program order
» memory operations issued by a process must appear to execute

(become visible to others and itself) in program order
– Atomicity

» in the overall hypothetical total order, one memory operation
should appear to complete with respect to all processes before
the next one is issued

» guarantees that total order is consistent across processes
– tricky part is making writes atomic

§ How can compilers violate SC?
– Architectural enhancements?

33

Sequential Consistency
§ Bus imposes total order on xactions for all locations
§ Between xactions, procs perform reads/writes

(locally) in program order
§ So any execution defines a natural partial order

– Mj subsequent to Mi if
» (i) Mj follows Mi in program order on same processor,
» (ii) Mj generates bus xaction that follows the memory operation

for Mi

§ In segment between two bus transactions, any
interleaving of local program orders leads to
consistent total order

§ Within segment writes observed by proc P serialized
as:
– Writes from other processors by the previous bus xaction P

issued
– Writes from P by program order
– Insight: only one cache may have value in “M” state at a

time…

34

Sufficient conditions
§ Sufficient Conditions

– issued in program order
– after write issues, the issuing process waits for the write to

complete before issuing next memory operation
– after read is issues, the issuing process waits for the read to

complete and for the write whose value is being returned to
complete (globally) before issuing its next operation

§ Write completion
– can detect when write appears on bus (flush) appears

§ Write atomicity:
– if a read returns the value of a write, that write has become

visible to all others already
» Either: it is being read by the processor that wrote it and no

other processor has a copy (thus any read by any other
processor will get new value via a flush

» Or: it has already been flushed back to memory and all
processors will have the value

35

More on Synchronizations

36

Enhancements to Simple Lock
§ Reduce frequency of issuing test&sets while waiting

– Test&set lock with backoff
– Don’t back off too much or will be backed off when lock

becomes free
– Exponential backoff works quite well empirically: ith time =

k*ci

§ Busy-wait with read operations rather than test&set
– Test-and-test&set lock
– Keep testing with ordinary load

» cached lock variable will be invalidated when release occurs
– When value changes (to 0), try to obtain lock with test&set

» only one attemptor will succeed; others will fail and start testing
again

37

Ticket Lock
§ Only one r-m-w per acquire
§ Two counters per lock (next_ticket, now_serving)

– Acquire: fetch&inc next_ticket;
wait for now_serving == next_ticket

» atomic op when arrive at lock, not when it’s free (so less
contention)

– Release: increment now-serving
§ Performance

– low latency for low-contention - if fetch&inc cacheable
– O(p) read misses at release, since all spin on same variable
– FIFO order

» like simple LL-SC lock, but no inval when SC succeeds, and fair
– Backoff?

§ Wouldn’t it be nice to poll different locations ...

38

Array-based Queuing Locks
§ Waiting processes poll on different locations in an

array of size p
– Acquire

» fetch&inc to obtain address on which to spin (next array
element)

» ensure that these addresses are in different cache lines or
memories

– Release
» set next location in array, thus waking up process spinning on it

– O(1) traffic per acquire with coherent caches
– FIFO ordering, as in ticket lock, but, O(p) space per lock
– Not so great for non-cache-coherent machines with

distributed memory
» array location I spin on not necessarily in my local memory

§ Example: MCS lock (Mellor-Crummey and Scott)

39

Point to Point Event Synchronization
§ Software methods:

– Interrupts
– Busy-waiting: use ordinary variables as flags
– Blocking: use semaphores

§ Full hardware support: full-empty bit with each word in
memory
– Set when word is “full” with newly produced data (i.e. when

written)
– Unset when word is “empty” due to being consumed (i.e. when

read)
– Natural for word-level producer-consumer synchronization

» producer: write if empty, set to full; consumer: read if full; set to
empty

– Hardware preserves atomicity of bit manipulation with read or
write

– Problem: flexibility
» multiple consumers, or multiple writes before consumer reads?
» needs language support to specify when to use
» composite data structures?

40

Barriers
§ Software algorithms implemented using locks, flags,

counters
§ Hardware barriers

– Wired-AND line separate from address/data bus
» Set input high when arrive, wait for output to be high to leave

– In practice, multiple wires to allow reuse
– Useful when barriers are global and very frequent
– Difficult to support arbitrary subset of processors

» even harder with multiple processes per processor
– Difficult to dynamically change number and identity of

participants
» e.g. latter due to process migration

– Not common today on bus-based machines

41

struct bar_type {int counter; struct lock_type lock;
int flag = 0;} bar_name;

BARRIER (bar_name, p) {

LOCK(bar_name.lock);

if (bar_name.counter == 0)

bar_name.flag = 0; /* reset flag if first to reach*/

mycount = bar_name.counter++; /* mycount is private */

UNLOCK(bar_name.lock);

if (mycount == p) { /* last to arrive */

bar_name.counter = 0; /* reset for next barrier */

bar_name.flag = 1; /* release waiters */

}

else while (bar_name.flag == 0) {}; /* busy wait for release */

}

A Simple Centralized Barrier
§ Shared counter maintains number of processes that

have arrived
– increment when arrive (lock), check until reaches numprocs
– Problem?

42

A Working Centralized Barrier
§ Consecutively entering the same barrier doesn’t work

– Must prevent process from entering until all have left previous
instance

– Could use another counter, but increases latency and
contention

§ Sense reversal: wait for flag to take different value
consecutive times
– Toggle this value only when all processes reach

BARRIER (bar_name, p) {

local_sense = !(local_sense); /* toggle private sense variable */

LOCK(bar_name.lock);

mycount = bar_name.counter++; /* mycount is private */

if (bar_name.counter == p)

UNLOCK(bar_name.lock);

bar_name.flag = local_sense; /* release waiters*/

else

{ UNLOCK(bar_name.lock);

while (bar_name.flag != local_sense) {}; }

}

43

Centralized Barrier Performance
§ Latency

– Centralized has critical path length at least proportional to p
§ Traffic

– About 3p bus transactions
§ Storage Cost

– Very low: centralized counter and flag
§ Fairness

– Same processor should not always be last to exit barrier
– No such bias in centralized

§ Key problems for centralized barrier are latency and
traffic
– Especially with distributed memory, traffic goes to same node

44

Improved Barrier Algorithms for a Bus
– Separate arrival and exit trees, and use sense reversal
– Valuable in distributed network: communicate along different

paths
– On bus, all traffic goes on same bus, and no less total traffic
– Higher latency (log p steps of work, and O(p) serialized bus

xactions)
– Advantage on bus is use of ordinary reads/writes instead of

locks Software combining tree
•Only k processors access the same location, where k is

degree of tree

Flat Tree structured

Contention Little contention

45

Barrier Performance on SGI Challenge
– Centralized does quite well

» Will discuss fancier barrier algorithms for distributed machines
– Helpful hardware support: piggybacking of reads misses on

bus
» Also for spinning on highly contended locks

Number of processors

Ti
m

e
(µ

s)

●

●

●

●

●

●
●

●

◆

◆
◆

◆

◆
◆

◆

◆

▲

▲

▲

▲
▲ ▲ ▲

▲

■

■

■
■

■
■ ■

■

12345678
0

5

10

15

20

25

30

35
● Centralized
◆ Combining tree
▲ Tournament
■ Dissemination

46

Using of Compare&Swap for queues
§ compare&swap (&address, reg1, reg2) { /* 68000 */

if (reg1 == M[address]) {
M[address] = reg2;
return success;

} else {
return failure;

}
}

Here is an atomic add to linked-list function:
addToQueue(&object) {

do { // repeat until no conflict

ld r1, M[root] // Get ptr to current head
st r1, M[object] // Save link in new object

} until (compare&swap(&root,r1,object));
} root next next

next
New

Object

47

Transactional Memory
§ Transaction-based model of memory

– Interface:
start transaction();
read/write data
commit transaction():

– If conflicts detected, commit will abort and must be retried
– What is a conflict?

» If values you read are written by others before commit

§ Hardware support for transactions
– Typically uses cache coherence protocol to help process

48

Brief discussion of Transactional Memory
§ LogTM: Log-based

Transactional Memory
– Kevin Moore, Jayaram Bobba,

Michelle Moravan, Mark Hill &
David Wood

– Use of Cache Coherence protocol
to detect transaction conflicts

§ Transactional Interface:
– begin_transaction(): Request

that subsequent statements for a
transaction

– commit_transaction(): Ends
successful transaction begun by
matching
begin_transaction().
Discards any transaction state
saved for potential abort

– abort_transaction():
Transfers control to a previously
register conflict handler which
should undo and discard work
since last begin_transaction()

