
1

Things
§ Uploaded assignment #5 and final exam used in 2016

– Will update study topic page later today
§ No audio in the video of last lectureà re-record

§ Bonus Questions
– Extra and optional questions for total and max 15 points to your final

percentage grade
– Due date:

» 12/07 Friday Assignment #5
» 12/12 Wednesday Final Exam
» 12/16 Sunday Bonus Questions. Strict cutoff, no any extension

§ Today and Monday
– Finish chapter 5, TLP
– Possibly Introducing Chapter 7

§ Next Wednesday
– More on Chapter 7
– Recap and review

2

Pictures Used During the Lecture

Lecture 24: Thread Level Parallelism
-- Distributed Shared Memory and

Directory-based Coherence Protocol

CSCE 513 Computer Architecture

Department of Computer Science and Engineering
Yonghong Yan

yanyh@cse.sc.edu
https://passlab.github.io/CSCE513

4

Topics for Thread Level Parallelism (TLP)
§ Parallelism (centered around …)

– Instruction Level Parallelism
– Data Level Parallelism
– Thread Level Parallelism

§ TLP Introduction
– 5.1

§ SMP and Snooping Cache Coherence Protocol
– 5.2

§ Distributed Shared-Memory and Directory-Based
Coherence
– 5.4

§ Synchronization Basics and Memory Consistency
Model
– 5.5, 5.6

§ Others

5

Example Cache Coherence Problem

Things to note:
Processors see different values for u after event 3
With write back caches, value written back to memory depends on
happenstance of which cache flushes or writes back value and when

Processes accessing main memory may see very stale value
Unacceptable to programs, and frequent!

I/O devices

Memory

P1

$ $ $

P2 P3

5

u = ?
4

u = ?

u:5
1

u :5

2

u :5

3

u= 7

int count = 5;
int * u= &count;
….
a1 = *u;

a3 = *u;
*u = 7;

b1 = *u
a2 = *u

T1 (P1) T2 (P2) T3 (P3)

6

Cache Coherence Protocols
§ Snooping Protocols

– Send all requests for data to all processors, the address
– Processors snoop a bus to see if they have a copy and

respond accordingly
– Requires broadcast, since caching information is at

processors
– Works well with bus (natural broadcast medium)
– Dominates for centralized shared memory machines

§ Directory-Based Protocols
– Keep track of what is being shared in centralized location
– Distributed memory => distributed directory for scalability

(avoids bottlenecks)
– Send point-to-point requests to processors via network
– Scales better than Snooping
– Commonly used for distributed shared memory machines

7

Distributed Shared Memory Systems

8

Distributed Directory MPs

9

Directory for Distributed Shared Memory
Systems

§ Typically Distributed Shared Memory Systems
– E.g. SGI UV 3000 up to 256 CPU sockets
– Local or remote memory access via memory controller

§ Directory per block that tracks state of every block in every cache
– Which caches have a copy of block, dirty vs. clean, ...

§ Info per memory block vs. per cache block?
– PLUS: In memory => simpler protocol (centralized/one location)
– MINUS: In memory => directory is ƒ(memory size) vs. ƒ(cache

size)
§ Implement in shared L3 cache

– Keep bit vector of size = # cores for each block in L3
– Not scalable beyond shared L3

§ Prevent directory as bottleneck?
– Distribute directory entries with memory, each keeping track of

which processors have copies of their blocks

10

Directory-based Cache Coherence
Protocol

§ Similar to Snoopy Protocol: Three states of each block
– Shared: ≥ 1 processors have data, memory up-to-date
– Uncached (no processor has it; not valid in any cache)
– Exclusive: 1 processor (owner) has data; memory out-of-date

§ In addition to cache state, must track which processors have
data when in the shared state (usually bit vector, 1 if processor
has copy)
– The ownership is also tracked

§ Assumptions:
– Writes to non-exclusive data => write miss
– Processor blocks until access completes
– Assume messages received and acted upon in order sent

11

Directory Protocol
§ No bus and don’t want to broadcast:

– interconnect no longer single arbitration point
– all messages have explicit responses

§ Terms: typically 3 processors involved
– Local node where a request originates
– Home node where the memory location of an address resides
– Remote node has a copy of a cache block, whether exclusive

or shared
§ Handling two operations

– Write to shared block
– Read/write miss

§ Example messages on next slide:
P = processor number, A = address

12

State Transition Diagram for an Individual
Cache Block in a Directory Based System

§ States identical to snoopy case; transactions very
similar.

§ Transitions caused by read misses, write misses,
invalidates, data fetch requests

§ Generates read miss & write miss msg to home
directory.

§ Write misses that were broadcast on the bus for
snooping => explicit invalidate & data fetch requests.

§ Note: on a write, a cache block is bigger, so need to
read the full cache block

13

Example Directory Protocol
§ Message sent to directory causes two actions:

– Update the directory
– More messages to satisfy request

§ Block is in Uncached state: the copy in memory is the current value;
only possible requests for that block are:
– Read miss: requesting processor is sent data from memory & is

made only sharing node; state of block made Shared.
– Write miss: requesting processor is sent the value & becomes the

Sharing node. The block is made Exclusive to indicate that the only
valid copy is cached. Sharers indicates the identity of the owner.

§ Block is Shared => the memory value is up-to-date:
– Read miss: requesting processor is sent back the data from memory

& requesting processor is added to the sharing set.
– Write miss: requesting processor is sent the value. All processors in

the set Sharers are sent invalidate messages, & Sharers is set to
identity of requesting processor. The state of the block is made
Exclusive.

14

Example Directory Protocol
§ Block is Exclusive: current value of the block is held in the cache of the

processor identified by the set Sharers (the owner) => three possible
directory requests:
– Read miss: owner processor sent data fetch message, causing state

of block in owner’s cache to transition to Shared and causes owner
to send data to directory, where it is written to memory & sent back
to requesting processor.
Identity of requesting processor is added to set Sharers, which still
contains the identity of the processor that was the owner (since it
still has a readable copy). State is shared.

– Data write-back: owner processor is replacing the block and hence
must write it back, making memory copy up-to-date
(the home directory essentially becomes the owner), the block is
now Uncached, and the Sharer set is empty.

– Write miss: block has a new owner. A message is sent to old owner
causing the cache to send the value of the block to the directory
from which it is sent to the requesting processor, which becomes
the new owner. Sharers is set to identity of new owner, and state of
block is made Exclusive.

15

CPU -Cache State Machine
§ State machine

for CPU requests
for each
memory block

§ Invalid state
if in
memory

Fetch/Invalidate
send Data Write Back message

to home directory

Invalidate

Invalid
Shared

(read/only)

Exclusive
(read/writ)

CPU Read

CPU Read hit

Send Read Miss
message

CPU Write:
Send Write Miss
msg to h.d.

CPU Write:Send
Write Miss message
to home directory

CPU read hit
CPU write hit

Fetch: send Data Write Back
message to home directory

CPU write miss:
send Data Write Back message
and Write Miss to home
directory

CPU read miss: send Data
Write Back message and
read miss to home directory

16

State Transition Diagram for the Directory
§ Same states & structure as the transition diagram for

an individual cache
§ 2 actions: update of directory state & send msgs to

satisfy requests
§ Tracks all copies of memory block.
§ Also indicates an action that updates the sharing set,

Sharers, as well as sending a message.

17

Directory State Machine
§ State machine

for Directory requests for each
memory block

§ Uncached state
if in memory

Write Miss:
Sharers = {P};
send Fetch/Invalidate;
send Data Value Reply
msg to remote cache

Data Write Back:
Sharers = {}

(Write back block)

Uncached
Shared

(read only)

Exclusive
(read/writ)

Read miss:
Sharers = {P}
send Data Value
Reply

Write Miss:
send Invalidate
to Sharers;
then Sharers = {P};
send Data Value
Reply msg

Write Miss:
Sharers = {P};
send Data
Value Reply
msg

Read miss:
Sharers += {P};
send Fetch;
send Data Value Reply
msg to remote cache
(Write back block)

18

Directory Protocol Messages

19

Example

P1 P2 Bus Directory Memory
step StateAddr ValueStateAddrValueActionProc. Addr Value Addr State{Procs}Value

P1: Write 10 to A1

P1: Read A1
P2: Read A1

P2: Write 40 to A2

P2: Write 20 to A1

A1 and A2 map to the same cache block

Processor 1 Processor 2 Interconnect MemoryDirectory

20

Example

P1 P2 Bus Directory Memory
step StateAddr ValueStateAddrValueActionProc. Addr Value Addr State{Procs}Value

P1: Write 10 to A1 WrMs P1 A1 A1 Ex {P1}
Excl. A1 10 DaRp P1 A1 0

P1: Read A1
P2: Read A1

P2: Write 40 to A2

P2: Write 20 to A1

A1 and A2 map to the same cache block

Processor 1 Processor 2 Interconnect MemoryDirectory

21

Example

P1 P2 Bus Directory Memory
step StateAddr ValueStateAddrValueActionProc. Addr Value Addr State{Procs}Value

P1: Write 10 to A1 WrMs P1 A1 A1 Ex {P1}
Excl. A1 10 DaRp P1 A1 0

P1: Read A1 Excl. A1 10
P2: Read A1

P2: Write 40 to A2

P2: Write 20 to A1

A1 and A2 map to the same cache block

Processor 1 Processor 2 Interconnect MemoryDirectory

22

Example

P2: Write 20 to A1

A1 and A2 map to the same cache block

P1 P2 Bus Directory Memory
step StateAddr ValueStateAddrValueActionProc. Addr Value Addr State{Procs}Value

P1: Write 10 to A1 WrMs P1 A1 A1 Ex {P1}
Excl. A1 10 DaRp P1 A1 0

P1: Read A1 Excl. A1 10
P2: Read A1 Shar. A1 RdMs P2 A1

Shar. A1 10 Ftch P1 A1 10 10
Shar. A1 10 DaRp P2 A1 10 A1 Shar. {P1,P2} 10

10
10

P2: Write 40 to A2 10

Processor 1 Processor 2 Interconnect MemoryDirectory

Write Back

23

Example

P2: Write 20 to A1

A1 and A2 map to the same cache block

P1 P2 Bus Directory Memory
step StateAddr ValueStateAddrValueActionProc. Addr Value Addr State{Procs}Value

P1: Write 10 to A1 WrMs P1 A1 A1 Ex {P1}
Excl. A1 10 DaRp P1 A1 0

P1: Read A1 Excl. A1 10
P2: Read A1 Shar. A1 RdMs P2 A1

Shar. A1 10 Ftch P1 A1 10 10
Shar. A1 10 DaRp P2 A1 10 A1 Shar. {P1,P2} 10
Excl. A1 20 WrMs P2 A1 10

Inv. Inval. P1 A1 A1 Excl. {P2} 10
P2: Write 40 to A2 10

Processor 1 Processor 2 Interconnect MemoryDirectory

24

Example

P2: Write 20 to A1

A1 and A2 map to the same cache block

P1 P2 Bus Directory Memory
step StateAddr ValueStateAddrValueActionProc. Addr Value Addr State{Procs}Value

P1: Write 10 to A1 WrMs P1 A1 A1 Ex {P1}
Excl. A1 10 DaRp P1 A1 0

P1: Read A1 Excl. A1 10
P2: Read A1 Shar. A1 RdMs P2 A1

Shar. A1 10 Ftch P1 A1 10 10
Shar. A1 10 DaRp P2 A1 10 A1 Shar. {P1,P2} 10
Excl. A1 20 WrMs P2 A1 10

Inv. Inval. P1 A1 A1 Excl. {P2} 10
P2: Write 40 to A2 WrMs P2 A2 A2 Excl. {P2} 0

WrBk P2 A1 20 A1 Unca. {} 20
Excl. A2 40 DaRp P2 A2 0 A2 Excl. {P2} 0

Processor 1 Processor 2 Interconnect MemoryDirectory

A1

25

Implementing a Directory
§ We assume operations atomic, but they are not;

reality is much harder; must avoid deadlock when run
out of buffers in network

§ Optimizations:
– read miss or write miss in Exclusive: send data directly to

requestor from owner vs. 1st to memory and then from
memory to requestor

