
Lecture 23: Thread Level Parallelism
-- Introduction, SMP and Snooping Cache

Coherence Protocol

CSCE 513 Computer Architecture

Department of Computer Science and
Engineering

Yonghong Yan
yanyh@cse.sc.edu

https://passlab.github.io/CSCE513

2

Topics for Thread Level Parallelism (TLP)
§ Parallelism (centered around …)

– Instruction Level Parallelism
– Data Level Parallelism
– Thread Level Parallelism

§ TLP Introduction
– 5.1

§ SMP and Snooping Cache Coherence Protocol
– 5.2, 5.3

§ Distributed Shared-Memory and Directory-Based
Coherence
– 5.4

§ Synchronization Basics and Memory Consistency
Model
– 5.5, 5.6

§ Others

3

Moore’s Law
• Long-term trend on the density of transistor per integrated

circuit
• Number of transistors/in2 double every ~18-24 month

4

What do we do with that many
transistors?

§ Optimizing the execution of a single instruction
stream through
– Pipelining

» Overlap the execution of multiple instructions
» Example: all RISC architectures; Intel x86 underneath the

hood
– Out-of-order execution:

» Allow instructions to overtake each other in accordance
with code dependencies (RAW, WAW, WAR)

» Example: all commercial processors (Intel, AMD, IBM,
Oracle)

– Branch prediction and speculative execution:
» Reduce the number of stall cycles due to unresolved

branches
» Example: (nearly) all commercial processors

5

What do we do with that many
transistors? (II)

– Multi-issue processors:
» Allow multiple instructions to start execution per clock

cycle
» Superscalar (Intel x86, AMD, …) vs. VLIW architectures

– VLIW/EPIC architectures:
» Allow compilers to indicate independent instructions per

issue packet
» Example: Intel Itanium

– SIMD units:
» Allow for the efficient expression and execution of vector

operations
» Example: Vector, SSE - SSE4, AVX instructions

Everything we have learned so far

6

Limitations of optimizing a single
instruction stream

§ Problem: within a single instruction stream we do not find
enough independent instructions to execute
simultaneously due to
– data dependencies
– limitations of speculative execution across multiple branches
– difficulties to detect memory dependencies among

instruction (alias analysis)
§ Consequence: significant number of functional units are

idling at any given time
§ Question: Can we maybe execute instructions from

another instructions stream
– Another thread?
– Another process?

7

Thread-level parallelism
§ Problems for executing instructions from multiple

threads at the same time
– The instructions in each thread might use the same register

names
– Each thread has its own program counter

§ Virtual memory management allows for the execution
of multiple threads and sharing of the main memory

§ When to switch between different threads:
– Fine grain multithreading: switches between every instruction
– Course grain multithreading: switches only on costly stalls

(e.g. level 2 cache misses)

8

Power, Frequency and ILP
§ Moore’s Law to processor speed (frequency)

Note: Even Moore’s Law
is ending around 2021:

http://spectrum.ieee.org/semi
conductors/devices/transistor
s-could-stop-shrinking-in-
2021

https://www.technologyreview
.com/s/601441/moores-law-is-
dead-now-what/

http://www.forbes.com/sites/ti
mworstall/2016/07/26/economi
cs-is-important-the-end-of-
moores-law

CPU frequency increase was
flattened around 2000-2005

Two main reasons:
1. Limited ILP and
2. Power consumption and

heat dissipation

9

History – Past (2000) and Today

10

Flynn’s Taxonomy

https://en.wikipedia.org/wiki/Flynn%27s_taxonomy

✔
✔

✔

11

Examples of MIMD Machines
§ Symmetric Shared-Memory

Multiprocessor (SMP)
– Multiple processors in box with

shared memory communication
– Current Multicore chips like this
– Every processor runs copy of OS

§ Distributed/Non-uniform Shared-
Memory Multiprocessor
– Multiple processors

» Each with local memory
» general scalable network

– Extremely light “OS” on node
provides simple services

» Scheduling/synchronization
– Network-accessible host for I/O

§ Cluster
– Many independent machine

connected with general network
– Communication through messages

P P P P

Bus

Memory

P/M P/M P/M P/M

P/M P/M P/M P/M

P/M P/M P/M P/M

P/M P/M P/M P/M

Host

Network

12

Symmetric (Shared-Memory)
Multiprocessors (SMP)

§ Small numbers of cores
– Typically eight or fewer, and

no more than 32 in most cases
§ Share a single centralized

memory that all processors
have equal access to,
– Hence the term symmetric.

§ All existing multicores are
SMPs.

§ Also called uniform memory
access (UMA)
multiprocessors
– all processors have a uniform

latency

13

Bus-Based Symmetric Shared Memory
§ Still an important architecture – even on chip (until very recently)

– Building blocks for larger systems; arriving to desktop
§ Attractive as throughput servers and for parallel programs

– Fine-grain resource sharing
– Uniform access via loads/stores
– Automatic data movement and coherent replication in caches
– Cheap and powerful extension

§ Normal uniprocessor mechanisms to access data
– Key is extension of memory hierarchy to support multiple processors

I/O devicesMem

P1

$ $

Pn

Bus

14

Centralized shared memory system (I)
§ Multi-core processors

– Typically connected over a cache,
– Previous SMP systems were typically connected over the

main memory

§ Intel X7350 quad-core (Tigerton)
– Private L1 cache: 32 KB instruction, 32 KB data
– Shared L2 cache: 4 MB unified cache

Core

L1

Core

L1
shared L2

Core

L1

Core

L1
shared L2

1066 MHz FSB

15

Centralized shared memory systems (II)
§ Intel X7350 quad-core (Tigerton) multi-processor

configuration

C
0

C
1

L2

C
8

C
9

L2

C
2

C
3

L2

C
10

C
11

L2

C
4

C
5

L2

C
12

C
13

L2

C
6

C
7

L2

C
14

C
15

L2

Socket 0 Socket 1 Socket 2 Socket 3

Memory Controller
Hub (MCH)

Memory Memory Memory Memory

8 GB/s8 GB/s8 GB/s8 GB/s

16

Distributed Shared-Memory
Multiprocessor

§ Large processor count
– 64 to 1000s

§ Distributed memory
– Remote vs local memory
– Long vs short latency
– High vs low latency

§ Interconnection network
– Bandwidth, topology, etc

§ Nonuniform memory
access (NUMA)

§ Each processor may
has local I/O

17

Distributed Shared-Memory
Multiprocessor (NUMA)

§ Reduces the memory bottleneck compared to SMPs
§ More difficult to program efficiently

– E.g. first touch policy: data item will be located in the memory
of the processor which uses a data item first

§ To reduce effects of non-uniform memory access,
caches are often used
– ccNUMA: cache-coherent non-uniform memory access

architectures
§ Largest example as of today: SGI Origin with 512

processors

18

Shared-Memory Multiprocessor
§ SMP and DSM are all shared memory multiprocessors

– UMA or NUMA
§ Multicore are SMP shared memory
§ Most multi-CPU machines are DSM

– NUMA

§ Shared Address Space (Virtual Address Space)
– Not always shared memory

19

Performance Metrics
§ Speedup: how much faster does a problem run on p

processors compared to 1 processor?

– Optimal: S(p) = p (linear speedup)

§ Parallel Efficiency: Speedup normalized by the
number of processors

– Optimal: E(p) = 1.0

)(
)1()(
pT

TpS
total

total=

p
pSpE)()(=

20

Amdahl’s Law
§ Most applications have a (small) sequential fraction,

which limits the speedup

f: fraction of the code which can only be executed
sequentially

§ Assumes the problem size is constant
– In most applications, the sequential part is independent of the

problem size
– The part which can be executed in parallel depends.

p
ffT

p
ff

TpS
total

total

-
+

=
-

+
= 1

1

)1()1(

)1()(

TotalTotalparallelsequentialtotal TffTTTT)1(-+=+=

21

Challenges of Parallel Processing
§ 1. Limited parallelism available in programs

– Amdahl’s Law

§ 0.25% can be
sequential

22

Cache in Shared Memory System (UMA or
NUMA)

P1

Switch

Main memory

Pn

(Interleaved)

(Interleaved)

First-level $

P1

$

Interconnection network

$

Pn

Mem Mem

P1

$

Interconnection network

$

Pn

Mem MemShared Cache

UMA

Scale

NUMA

23

Caches and Cache Coherence
§ Caches play key role in all cases

– Reduce average data access time
– Reduce bandwidth demands placed on shared interconnect

§ Private processor caches create a problem
– Copies of a variable can be present in multiple caches
– A write by one processor may not become visible to others

» They’ll keep accessing stale value in their caches

Þ Cache coherence problem

§ What do we do about it?
– Organize the mem hierarchy to make it go away
– Detect and take actions to eliminate the problem

24

Example Cache Coherence Problem

Things to note:
Processors see different values for u after event 3
With write back caches, value written back to memory depends on
happenstance of which cache flushes or writes back value and when

Processes accessing main memory may see very stale value
Unacceptable to programs, and frequent!

I/O devices

Memory

P1

$ $ $

P2 P3

5

u = ?
4

u = ?

u:5
1

u :5

2

u :5

3

u= 7

int count = 5;
int * u= &count;
….
a1 = *u;

a3 = *u;
*u = 7;

b1 = *u
a2 = *u

T1 (P1) T2 (P2) T3 (P3)

25

Cache Coherence
§ Typical solution:

– Caches keep track on whether a data item is shared between
multiple processes

– Upon modification of a shared data item, ‘notification’ of other
caches has to occur

– Other caches will have to reload the shared data item on the
next access into their cache

§ Cache coherence is only an issue in case multiple
tasks access the same item and one is to write
– Multiple threads
– Multiple processes have a joint shared memory segment
– Process is being migrated from one CPU to another

26

Cache Coherence Protocols
§ Snooping Protocols

– Send all requests for data to all processors, the address
– Processors snoop a bus to see if they have a copy and

respond accordingly
– Requires broadcast, since caching information is at

processors
– Works well with bus (natural broadcast medium)
– Dominates for centralized shared memory machines

§ Directory-Based Protocols
– Keep track of what is being shared in centralized location
– Distributed memory => distributed directory for scalability

(avoids bottlenecks)
– Send point-to-point requests to processors via network
– Scales better than Snooping
– Commonly used for distributed shared memory machines

27

Snoopy Cache-Coherence Protocols

§ Works because bus is a broadcast medium & Caches
know what they have

§ Cache Controller “snoops” all transactions on the
shared bus
– relevant transaction if for a block it contains
– take action to ensure coherence

» invalidate, update, or supply value
– depends on state of the block and the protocol

State

Address

Data

I/O devicesMem

P1

$

Bus snoop

$

Pn

Cache-memory
transaction

Broadcast msg:

28

Basic Snoopy Protocols
§ Write Invalidate Protocol:

– Multiple readers, single writer
– Write to shared data: an invalidate is sent to all caches which

snoop and invalidate any copies
– Read Miss:

» Write-through: memory is always up-to-date
» Write-back: snoop in caches to find most recent copy

§ Write Update Protocol (typically write through):
– Write to shared data: broadcast on bus, processors snoop,

and update any copies
– Read miss: memory is always up-to-date

§ Write serialization: bus serializes requests!
– Bus is single point of arbitration

29

Write Invalidate Protocol
§ Basic Bus-Based Protocol

– Each processor has cache, state
– All transactions over bus snooped

§ Writes invalidate all other caches
– can have multiple simultaneous readers

of block, but write invalidates them
§ Two states per block in each cache

– as in uniprocessor
– state of a block is a p-vector of states
– Hardware state bits associated with

blocks that are in the cache
– other blocks can be seen as being in

invalid (not-present) state in that cache I

V
BusWr / -

PrRd/ --

PrWr / BusWr

PrWr / BusWr

PrRd / BusRd

State Tag Data

I/O devicesMem

P1

$ $

Pn

Bus

State Tag Data

30

Example: Write Invalidate

I/O devices

Memory

P1

$ $ $

P2 P3

5

u = ?
4

u = ?

u:5
1

u :5

2

u :5

3

u= 7

u= 7

u :7

31

Write-Update (Broadcast)
§ Update all the cached copies of a data item when that

item is written.
– Even a processor may not need the updated copy in the

future
§ Consumes considerably more bandwidth
§ Recent multiprocessors have opted to implement a

write invalidate protocol

I/O devices

Memory

P1

$ $ $

P2 P3

5

u = ?
4

u = ?

u:5
1

u :5

2

u :5

3

u= 7

u= 7

u=7

32

Implementation of Cache Coherence
Protocol -- 1

§ When data are coherent, the cache block is shared
– “Memory” could be the last level shared cache, e.g. shared L3

1. When there is a write by CPU 0, Invalidate the shared copies in
the cache of other processors/cores

– Copy in CPU 0’s cache is exclusive/unshared,
– CPU 0 is the owner of the block
– For write-through cache, data is also written to the memory

» Memory has the latest
– For write-back cache: data in memory is obsoleted
– For snooping protocol, invalidate signals are broadcasted by CPU 0

» CPU 0 broadcasts; and CPU 1 snoops, compares and invalidates

Memory

CPU 0

Cache

CPU 1

Cache
Written by CPU 0

Invalidated by CPU 0

33

Implementation of Cache Coherence
Protocol -- 2

§ CPU 0 owned the block (exclusive or unshared)
2. When there is a read/write by CPU 1 or others à Miss since
already invalidated

– For write-through cache: read from memory
– For write-back cache: supply from CPU 0 and abort memory access
– For snooping: CPU 1 broadcasts mem request because of a miss;

CPU 0 snoops, compares and provides cache block (aborts the
memory request)

Memory

CPU 0

Cache

CPU 1

Cache
Owned by CPU 0

Read/write miss

34

An Example Snoopy Protocol
§ Invalidation protocol, write-back cache
§ Each block of memory is in one state:

– Clean in all caches and up-to-date in memory (Shared)
– OR Dirty in exactly one cache (Exclusive)
– OR Not in any caches

§ Each cache block is in one state (track these):
– Shared : block can be read
– OR Exclusive : cache has only copy, its writeable, and dirty
– OR Invalid : block contains no data

§ Read misses: cause all caches to snoop bus
§ Writes to clean line are treated as misses

35

Shared Memory Multiprocessor

Use snoopy mechanism to keep all processors’ view
of memory coherent

CPU1

CPU2

CPU3

Snoopy
Cache

DMA

Physical
Memory

Memory
Bus

Snoopy
Cache

Snoopy
Cache DISKS

36

Cache Line for Snooping
§ Cache tags for implementing snooping

– Compares the addresses on the bus with the tags of the
cache line

§ Valid bit for being invalidated
§ State bit for shared/exclusive

§ We will use write-back cache
– Lower bandwidth requirement
than write-through cache
– Dirty bit for write-back
– Write-buffer complicates things

37

Snoopy-Cache State Machine-I
§ State machine

for CPU requests
for each
cache block Invalid

Shared
(read/only)

Exclusive
(read/write)

CPU Read

CPU Write

Place read miss on bus

Place Write
Miss on bus

CPU Write miss
Place Write Miss on Bus

CPU Read miss
Place read miss
on bus

CPU Write Miss
Write back cache block
Place write miss on bus

CPU read hit
CPU write hit

CPU read hit

38

Snoopy-Cache State Machine-II
§ State machine

for bus requests
for each
cache block Invalid Shared

(read/only)

Exclusive
(read/write)

Write Back
Block; (abort
memory access)

Write miss
for this block Read miss

for this block

Write miss
for this block

Write Back
Block; (abort
memory access)

Invalidate for this block

Read miss

39

Snoopy-Cache State Machine-III
§ State machine

for CPU requests
for each
cache block and
for bus requests
for each
cache block

Place read miss
on bus

Invalid
Shared

(read/only)

Exclusive
(read/write)

CPU Read

CPU Write

CPU Read hit

Place Write
Miss on bus
CPU read miss
Write back block,
Place read miss
on bus CPU Write

Place Write Miss on Bus

CPU Read miss
Place read miss
on bus

CPU Write Miss
Write back cache block
Place write miss on bus

CPU read hit
CPU write hit

Write miss
for this block

Write Back
Block; (abort
memory
access)

Write miss
for this block

Read miss
for this block

Write Back
Block; (abort
memory access)

40

State Table of Snoopy Protocol

41

Example

P1 P2 Bus Memory
step State Addr Value State Addr Value Action Proc. Addr Value Addr Value

P1: Write 10 to A1
P1: Read A1
P2: Read A1

P2: Write 20 to A1
P2: Write 40 to A2

Assumes initial cache state

is invalid and A1 and A2 map
to same cache block,

but A1 != A2

Processor 1 Processor 2 Bus Memory

Remote

Write
Write Back

Remote Write

Invalid Shared

Exclusive

CPU Read hit

Read
miss on bus

Write
miss on bus CPU Write

Place Write
Miss on Bus

CPU read hit

CPU write hit

Remote Read
Write Back

CPU Write Miss

Write Back

CPU Read Miss

42

Example: Step 1

P1 P2 Bus Memory
step State Addr Value State Addr Value Action Proc. Addr Value Addr Value

P1: Write 10 to A1 Excl. A1 10 WrMs P1 A1
P1: Read A1
P2: Read A1

P2: Write 20 to A1
P2: Write 40 to A2

Assumes initial cache state

is invalid and A1 and A2 map
to same cache block,

but A1 != A2.

Active arrow =

Remote

Write
Write Back

Remote Write

Invalid Shared

Exclusive

CPU Read hit

Read
miss on bus

Write
miss on bus CPU Write

Place Write
Miss on Bus

CPU read hit

CPU write hit

Remote Read
Write Back

CPU Write Miss

Write Back

CPU Read Miss

43

P1 P2 Bus Memory
step State Addr Value State Addr Value Action Proc. Addr Value Addr Value

P1: Write 10 to A1 Excl. A1 10 WrMs P1 A1
P1: Read A1 Excl. A1 10
P2: Read A1

P2: Write 20 to A1
P2: Write 40 to A2

Example: Step 2

Assumes initial cache state

is invalid and A1 and A2 map
to same cache block,

but A1 != A2
Remote

Write
Write Back

Remote Write

Invalid Shared

Exclusive

CPU Read hit

Read
miss on bus

Write
miss on bus CPU Write

Place Write
Miss on Bus

CPU read hit

CPU write hit

Remote Read
Write Back

CPU Write Miss

Write Back

CPU Read Miss

44

Example: Step 3

P1 P2 Bus Memory
step State Addr Value State Addr Value Action Proc. Addr Value Addr Value

P1: Write 10 to A1 Excl. A1 10 WrMs P1 A1
P1: Read A1 Excl. A1 10
P2: Read A1 Shar. A1 RdMs P2 A1

Shar. A1 10 WrBk P1 A1 10 10
Shar. A1 10 RdDa P2 A1 10 10

P2: Write 20 to A1 10
P2: Write 40 to A2 10

10

Assumes initial cache state

is invalid and A1 and A2 map
to same cache block,

but A1 != A2.
Remote

Write
Write Back

Remote Write

Invalid Shared

Exclusive

CPU Read hit

Read
miss on bus

Write
miss on bus CPU Write

Place Write
Miss on Bus

CPU read hit

CPU write hit

Remote Read
Write Back

A1
A1

CPU Write Miss

Write Back

CPU Read Miss

45

Example: Step 4
P1 P2 Bus Memory

step State Addr Value State Addr Value Action Proc. Addr Value Addr Value
P1: Write 10 to A1 Excl. A1 10 WrMs P1 A1

P1: Read A1 Excl. A1 10
P2: Read A1 Shar. A1 RdMs P2 A1

Shar. A1 10 WrBk P1 A1 10 10
Shar. A1 10 RdDa P2 A1 10 10

P2: Write 20 to A1 Inv. Excl. A1 20 WrMs P2 A1 10
P2: Write 40 to A2 10

10

Assumes initial cache state

is invalid and A1 and A2 map
to same cache block,

but A1 != A2
Remote

Write
Write Back

Remote Write

Invalid Shared

Exclusive

CPU Read hit

Read
miss on bus

Write
miss on bus CPU Write

Place Write
Miss on Bus

CPU read hit

CPU write hit

Remote Read
Write Back

A1
A1
A1

CPU Write Miss

Write Back

CPU Read Miss

46

Remote

Write
Write Back

Remote Write

Invalid Shared

Exclusive

CPU Read hit

Read
miss on bus

Write
miss on bus CPU Write

Place Write
Miss on Bus

CPU read hit

CPU write hit

Remote Read
Write Back

Example: Step 5
P1 P2 Bus Memory

step State Addr Value State Addr Value Action Proc. Addr Value Addr Value
P1: Write 10 to A1 Excl. A1 10 WrMs P1 A1

P1: Read A1 Excl. A1 10
P2: Read A1 Shar. A1 RdMs P2 A1

Shar. A1 10 WrBk P1 A1 10 10
Shar. A1 10 RdDa P2 A1 10 10

P2: Write 20 to A1 Inv. Excl. A1 20 WrMs P2 A1 10
P2: Write 40 to A2 WrMs P2 A2 10

Excl. A2 40 WrBk P2 A1 20 20

A1

A1

Assumes initial cache state

is invalid and A1 and A2 map
to same cache block,

but A1 != A2

A1
A1
A1

CPU Write Miss

Write Back

CPU Read Miss

47

Categories of cache misses
§ Up to now:

– Compulsory Misses: first access to a block cannot be in the
cache (cold start misses)

– Capacity Misses: cache cannot contain all blocks required for
the execution

– Conflict Misses: cache block has to be discarded because of
block replacement strategy

§ In multi-processor systems:
– Coherence Misses: cache block has to be discarded because

another processor modified the content
» true sharing miss: another processor modified the

content of the request element
» false sharing miss: another processor invalidated the

block, although the actual item of interest is unchanged.

48

False Sharing

§ A cache line contains more than one word

§ Cache-coherence is done at the line-level and not
word-level

§ Suppose M1 writes wordi and M2 writes wordk and
– both words have the same line address.

§ What can happen?

state line addr data0 data1 ... dataN

49

Avoid False Sharing in Programming
§ False sharing

– When at least one thread write to
a cache line while others access it

» Thread 0: = A[1] (read)
» Thread 1: A[0] = … (write)

§ Solution: use array padding

int a[16]; // can fill in a full 64-byte cache line

#pragma omp parallel for num_threads (16)
schedule(static,1)

for(int i=0; i<16; i++) a[i] +=i;

int a[16][16];

#pragma omp parallel for num_threads (16) schedule(static,1)

for(int i=0; i<16; i++) a[i][0] +=i;

Getting OpenMP Up To Speed



RvdP/V1 Tutorial IWOMP 2010 – CCS Un. of Tsukuba, June 14, 2010

False Sharing

CPUs Caches Memory

A store into a shared cache line invalidates the other
copies of that line:

The system is not able to
distinguish between changes

within one individual line

A

T
0

T
1

50

Class Lectures End Here!

51

Performance
§ Coherence influences cache miss rate

–Coherence misses
» True sharing misses

• Write to shared block (transmission of invalidation)
• Read an invalidated block

» False sharing misses
• Read an unmodified word in an invalidated block

52

Example: True v. False Sharing v. Hit?

Time P1 P2 True,	False,	Hit?	Why?
1 Write	x1

2 Read	x2

3 Write	x1

4 Write	x2

5 Read	x2

• Assume	x1	and	x2	in	same	cache	line.	
P1	and	P2	both	read	x1	and	x2	before.

True	miss;	invalidate	x1	in	P2
False	miss;	x1	irrelevant	to	P2
False	miss;	x2	irrelevant	to	P1
False	miss;	invalidate	x2	in	P1

True	miss;	invalidate	x2	in	P1

53

Performance Study: Commercial Workload

54

Performance Study: Commercial Workload

55

Performance Study: Commercial Workload

56

Performance Study: Commercial Workload

57

Snooping Cache Variations

§ Owner can update via bus invalidate operation
§ Owner must write back when replaced in cache

– If read sourced from memory, then Private Clean
– if read sourced from other cache, then Shared
– Can write in cache if held private clean or dirty

Berkeley
Protocol

Owned Exclusive

Owned Shared

Shared

Invalid

Basic
Protocol

Exclusive

Shared

Invalid

Illinois
Protocol

Private Dirty

Private Clean

Shared

Invalid

MESI
Protocol

Modfied (private,!=Memory)
Exclusive (private,=Memory)

Shared (shared,=Memory)
Invalid

58

Implementing Snooping Caches
§ Multiple processors must be on bus, access to both

addresses and data
§ Add a few new commands to perform coherency,

in addition to read and write
§ Processors continuously snoop on address bus

– If address matches tag, either invalidate or update
§ Since every bus transaction checks cache tags,

could interfere with CPU cache access:
– solution 1: duplicate set of tags for L1 caches just to allow

checks in parallel with CPU
– solution 2: L2 cache already duplicate,

provided L2 obeys inclusion with L1 cache
» block size, associativity of L2 affects L1

59

Implementing Snooping Caches
§ Bus serializes writes, getting bus ensures no one else

can perform memory operation
§ On a miss in a write back cache, may have the

desired copy of the cache block and its dirty, so must
reply
– Add extra state bit to cache to determine shared or not
– Add 4th state (MESI)

60

Complications
§ The simple cache protocol is correct, it omits a

number of complications that make the
implementation much trickier.

§ Operations are atomic
– For example, the protocol described assumes that write

misses can be detected, acquire the bus, and receive a
response as a single atomic action. In reality this is not true.

– In fact, even a read miss might not be atomic; after detecting
a miss in the L2 of a multi-core, the core must arbitrate for
access to the bus connecting to the shared L3.

§ Nonatomic actions introduce the possibility that the
protocol can deadlock

§ With multicore processors, the coherence among the
processor cores is all implemented on chip, using
either a snooping or simple central directory proto-
col.

61

Extensions to Snoopy: MESI
§ MESI: adds the state Exclusive to the basic MSI

– Exclusive: indicate when a cache block is resident only in a single
cache but is clean.

– If a block is in the E state, it can be written without generating any
invalidates

» optimizes the case where a block is read by a single cache before being
written by that same cache.

– When a read miss to a block in the E state occurs, the block must be
changed to the S state to maintain coherence.

– The advantage: a subsequent write to a block in the exclusive state
by the same core need not acquire bus access or generate an
invalidate, since the block is known to be exclusively in this local
cache; the processor merely changes the state to modified.

– This state is easily added by using the bit that encodes the coherent
state as an exclusive state and using the dirty bit to indicate that a
bock is modified.

– The popular MESI protocol (Modified, Exclusive, Shared, and
Invalid), is used in Intel i7 as a variant called MESIF, which adds a
state (Forward) to designate which sharing processor should
respond to a request. It is designed to enhance performance in
distributed memory organizations.

62

MESI (4-state) Invalidation Protocol
§ Four States:

– “M”: “Modified”
– “E”: “Exclusive”
– “S”: “Shared”
– “I”: “Invalid”

§ Add exclusive state
– distinguish exclusive (writable) and owned (written)
– Main memory is up to date, so cache not necessarily owner
– can be written locally

§ States
– invalid
– exclusive or exclusive-clean (only this cache has copy, but not modified)
– shared (two or more caches may have copies)
– modified (dirty)

§ I -> E on PrRd if no cache has copy
=> How can you tell?

63

Hardware Support for MESI
§ All cache controllers snoop on BusRd
§ Assert ‘shared’ if present (S? E? M?)
§ Issuer chooses between S and E

– how does it know when all have voted?

I/O devices

Memory

u:5

P0 P1 P4

shared signal

- wired-OR

64

MESI State Transition Diagram
§ BusRd(S) means shared

line asserted on BusRd
transaction

§ Flush’: if cache-to-cache
xfers
– only one cache flushes data

§ Replacement:
– S®I can happen without

telling other caches
– E®I, M®I

§ MOESI protocol: Owned
state: exclusive but
memory not valid

PrWr/—

BusRd/Flush

PrRd/

BusRdX/Flush

PrWr/BusRdX

PrWr/—

PrRd/—

PrRd/—
BusRd/Flush’¢

E

M

I

S

PrRd

BusRd(S)

BusRdX/Flush’¢

BusRdX/Flush

BusRd/
Flush

PrWr/BusRdX

PrRd/
BusRd (S)

65

MESI: An Enhanced MSI protocol
increased performance for private data

M E

S I

M: Modified Exclusive
E: Exclusive but unmodified
S: Shared
I: Invalid

Each cache line has a tag

Address tag
state
bits

Write miss

Other processor
intent to write

Read miss,
shared

Other processor
intent to write

P1 write

Read by any
processor

Other processor reads
P1 writes back

P1 read
P1 write
or read

Cache state in
processor P1

P1 intent
to write

Read miss,
not sharedOther

processor
reads

Other processor
intent to write, P1
writes back

66

Dragon Write-back Update Protocol
§ 4 states

– Exclusive-clean or exclusive (E): I and memory have it
– Shared clean (Sc): I, others, and maybe memory, but I’m not owner
– Shared modified (Sm): I and others but not memory, and I’m the owner

» Sm and Sc can coexist in different caches, with only one Sm
– Modified or dirty (D): I and, noone else

§ No invalid state
– If in cache, cannot be invalid
– If not present in cache, view as being in not-present or invalid state

§ New processor events: PrRdMiss, PrWrMiss
– Introduced to specify actions when block not present in cache

§ New bus transaction: BusUpd
– Broadcasts single word written on bus; updates other relevant caches

67

Dragon State Transition Diagram

E Sc

Sm M

PrWr/—
PrRd/—

PrRd/—

PrRd/—

PrRdMiss/BusRd(S)PrRdMiss/BusRd(S)

PrWr/—

PrWrMiss/(BusRd(S); BusUpd) PrWrMiss/BusRd(S)

PrWr/BusUpd(S)

PrWr/BusUpd(S)

BusRd/—

BusRd/Flush

PrRd/— BusUpd/Update

BusUpd/Update

BusRd/Flush

PrWr/BusUpd(S)

PrWr/BusUpd(S)

68

Extensions to Snoopy: MOESI
§ Add the state Owned to the MESI protocol

– indicate that the associated block is owned by that cache and out-of-
date in memory.

§ In MSI and MESI protocols, when there is an attempt to share a
block in the Modified state, the state is changed to Shared (in
both the original and newly sharing cache), and the block must
be written back to memory. In a MOESI protocol, the block can
be changed from the Modified to Owned state in the original
cache without writing it to memory. Other caches, which are
newly sharing the block, keep the block in the Shared state; the
O state, which only the original cache holds, indicates that the
main memory copy is out of date and that the designated cache
is the owner. The owner of the block must supply it on a miss,
since memory is not up to date and must write the block back to
memory if it is replaced. The AMD Opteron uses the MOESI
protocol.

69

Optimized Snoop with Level-2 Caches

Snooper Snooper Snooper Snooper

• Processors	often	have	two-level	caches
• small	L1,	large	L2	(on	chip)

• Inclusion	property:	entries	in	L1	must	be	in	L2
invalidation	in	L2	Þ invalidation	in	L1

• Snooping	on	L2	does	not	affect	CPU-L1	bandwidth

What	problem	could	occur?

CPU

L1	$

L2	$

CPU

L1	$

L2	$

CPU

L1	$

L2	$

CPU

L1	$

L2	$

70

Intervention

When	a	read-miss	for	A occurs	in	cache-2,	
a	read	request	for	A is	placed	on	the	bus

• Cache-1	needs	to	supply	&	change	its	state	to	shared
• The	memory	may	respond to	the	request	also!

Does	memory	know	it	has	stale	data?
Cache-1	needs	to	intervene	through	memory	
controller	to	supply	correct	data	to	cache-2

cache-1A 200

CPU-Memory	bus

CPU-1 CPU-2

cache-2

memory	(stale	data)A 100

71

Coherence Protocols: Extensions
§ Shared memory bus and

snooping bandwidth is
bottleneck for scaling
symmetric
multiprocessors
– Duplicating tags
– Place directory in

outermost cache
– Use crossbars or point-to-

point networks with
banked memory

72

Coherence Protocols
§ AMD Opteron:

– Memory directly connected to each multicore chip in NUMA-
like organization

– Implement coherence protocol using point-to-point links
– Use explicit acknowledgements to order operations

