
Lecture	22:	Data	Level	Parallelism
-- Graphical	Processing	Unit	(GPU)	and	Loop-

Level	Parallelism

CSCE	513	Computer	Architecture

Department	of	Computer	Science	and	Engineering
Yonghong Yan

yanyh@cse.sc.edu
https://passlab.github.io/CSCE513

1

Topics	for	Data	Level	Parallelism	(DLP)

• Parallelism	(centered	around	…)
– Instruction	Level	Parallelism
– Data	Level	Parallelism
– Thread	Level	Parallelism

• DLP	Introduction	and	Vector	Architecture
– 4.1,	4.2

• SIMD	Instruction	Set	Extensions	for	Multimedia	
– 4.3

• Graphical	Processing	Units	(GPU)
– 4.4

• GPU	and	Loop-Level	Parallelism	and	Others
– 4.4,	4.5

Computer	Graphics

GPU:	Graphics	Processing	Unit

3

Graphics	Processing	Unit	(GPU)

4

Image:	http://www.ntu.edu.sg/home/ehchua/programming/opengl/CG_BasicsTheory.html

Recent	GPU	Architecture

• Unified	Scalar	Shader Architecture

• Highly	Data	Parallel	Stream	Processing	

5
An	Introduction	to	Modern	GPU	Architecture,	Ashu Rege,	NVIDIA	Director	of	Developer	Technology
ftp://download.nvidia.com/developer/cuda/seminar/TDCI_Arch.pdf

Image:	http://www.ntu.edu.sg/home/ehchua/programming/opengl/CG_BasicsTheory.html

Unified	Shader Architecture

6

FIGURE A.2.5 Basic unified GPU architecture. Example GPU with 112 streaming processor (SP) cores organized in 14
streaming multiprocessors (SMs); the cores are highly multithreaded. It has the basic Tesla architecture of an NVIDIA
GeForce 8800. The processors connect with four 64-bit-wide DRAM partitions via an interconnection network. Each SM has
eight SP cores, two special function units (SFUs), instruction and constant caches, a multithreaded instruction unit, and a
shared memory. Copyright © 2009 Elsevier, Inc. All rights reserved.

GPU	Today

• It	is	a	processor	optimized	for	2D/3D	graphics,	video,	
visual	computing,	and	display.

• It	is	highly	parallel,	highly	multithreaded	multiprocessor	
optimized	for	visual	computing.

• It	provide	real-time	visual	interaction	with	computed	
objects	via	graphics	images,	and	video.

• It	serves	as	both	a	programmable	graphics	processor	and	a	
scalable	parallel	computing	platform.
– Heterogeneous	systems:	combine	a	GPU	with	a	CPU

• It	is	called	as	Many-core

7

Latest	NVIDIA	Volta	GV100	GPU

• Released	May	2017
– Total	84	Stream	Multiprocessors	(SM)

• Cores
– 5120	FP32	cores

• Can	do	FP16	also
– 2560	FP64	cores
– 640	Tensor	cores

• Memory
– 16G	HBM2
– L2:	6144	KB
– Shared	memory:	96KB	*	80	(SM)
– Register	File:	20,480	KB	(Huge)

8
https://devblogs.nvidia.com/parallelforall/inside-volta/

SM	of	Volta	GPU

9

• Released	May	2017
– Total	84	SM

• Cores
– 5120	FP32	cores

• Can	do	FP16	also
– 2560	FP64	cores
– 640	Tensor	cores

• Memory
– 16G	HBM2
– L2:	6144	KB
– Shared	memory:	96KB	*	80	(SM)
– Register	File:	20,480	KB	(Huge)

SM	of	Volta	GPU

10

• Released	May	2017
– Total	84	SM

• Cores
– 5120	FP32	cores

• Can	do	FP16	also
– 2560	FP64	cores
– 640	Tensor	cores

• Memory
– 16G	HBM2
– L2:	6144	KB
– Shared	memory:	96KB	*	80	(SM)
– Register	File:	20,480	KB	(Huge)

GPU	Performance	Gains	Over	CPU

11

http://docs.nvidia.com/cuda/cuda-c-programming-guide

GPU	Performance	Gains	Over	CPU

12

Programming	for	NVIDIA	GPUs	

13

http://docs.nvidia.com/cuda/cuda-c-
programming-guide/

CUDA(Compute	Unified	Device	Architecture)

Both	an	architecture and	programming	model
• Architecture	and	execution	model

– Introduced	in	NVIDIA	in	2007
– Get	highest	possible	execution	performance	requires	

understanding	of	hardware	architecture
• Programming	model

– Small	set	of	extensions	to	C
– Enables	GPUs	to	execute	programs	written	in	C
– Within	C	programs,	call	SIMT	“kernel”	routines	that	are	

executed	on	GPU.

14

CUDA	Thread

• Parallelism	in	Vector/SIMD	is	the	combination	of	lanes	(#	
PUs)	and	vector	length

• CUDA	thread	is	a	unified	term	that	abstract	the	parallelism	
for	both	programmers	and	GPU	execution	model
– Programmer:	A	CUDA	thread	performs	operations	for	one	data	

element	(think	of	this	way	as	of	now)
• There	could	be	thousands	or	millions	of	threads

– A	CUDA	thread	represents	a	hardware	FU
• GPU	calls	it	a	core	(much	simpler	than	a	conventional	CPU	
core)

• Hardware-level	parallelism	is	more	explicit

15

CUDA	Thread	Hierarchy:

• Allows	flexibility	and	
efficiency	in	
processing	1D,	2-D,	
and	3-D	data	on	GPU.	

• Linked	to	internal	
organization

• Threads	in	one	block	
execute	together.

16

Can be 1, 2 or 3
dimensions

DAXPY

// DAXPY in CUDA
__global__
void daxpy(int n, double a, double *x, double *y) {

int i = blockIdx.x*blockDim.x + threadIdx.x;
if (i < n) y[i] = a*x[i] + y[i];

}

// Invoke DAXPY with 256 threads per Thread Block
int nblocks = (n + 255) / 256;
daxpy<<<nblocks, 256>>>(n, 2.0, x, y);

17

Creating	a	number	of	threads	which	is	(or	slightly	greater)	the	number	of	
elements	to	be	processed,	and	each	thread	launch	the	same	daxpy function.

Each	thread	finds	it	element	to	compute	and	do	the	work.

DAXPY	with	Device	Code
__global__ void daxpy(…)

• CUDA	C/C++	keyword	__global__ indicates	a	function	
that:
– Runs	on	the	device
– Is	called	from	host	code

• nvcc compiler separates	source	code	into	host	and	
device	components
– Device	functions	(e.g.	axpy())	processed	by	NVIDIA	compiler
– Host	functions	(e.g.	main())	processed	by	standard	host	

compiler
• gcc,	cl.exe

18

DAXPY	with	Device	COde

axpy<<<num_blocks,num_threads>>>();

• Triple	angle	brackets	mark	a	call	
from	host code	to	device code
– Also	called	a	“kernel	launch”
– <<<	...	>>>	parameters	are	for	thread	

dimensionality	
• That’s	all	that	is	required	to	
execute	a	function	on	the	GPU!

19

GPU	Computing	– Offloading	Computation

• The	GPU	is	connected	to	the	CPU	by	a	reasonable	fast	bus	
(8	GB/s	is	typical	today):	PCIe

• Terminology
– Host:	The	CPU	and	its	memory	(host	memory)
– Device:	The	GPU	and	its	memory	(device	memory)

20

Simple	Processing	Flow

1. Copy	input	data	from	CPU	memory	to	
GPU	memory

PCI	Bus

21

Simple	Processing	Flow

1. Copy	input	data	from	CPU	memory	to	
GPU	memory

2. Load	GPU	program	and	execute,
caching	data	on	chip	for	performance

PCI	Bus

22

Simple	Processing	Flow

1. Copy	input	data	from	CPU	memory	to	
GPU	memory

2. Load	GPU	program	and	execute,
caching	data	on	chip	for	performance

3. Copy	results	from	GPU	memory	to	
CPU	memory

PCI	Bus

23

Offloading	Computation
// DAXPY in CUDA
__global__
void daxpy(int n, double a, double *x, double *y) {

int i = blockIdx.x*blockDim.x + threadIdx.x;
if (i < n) y[i] = a*x[i] + y[i];

}

int main(void) {
int n = 1024;
double a;
double *x, *y; /* host copy of x and y */
double *x_d; *y_d; /* device copy of x and y */
int size = n * sizeof(double)
// Alloc space for host copies and setup values
x = (double *)malloc(size); fill_doubles(x, n);
y = (double *)malloc(size); fill_doubles(y, n);

// Alloc space for device copies
cudaMalloc((void **)&d_x, size);
cudaMalloc((void **)&d_y, size);

// Copy to device
cudaMemcpy(d_x, x, size, cudaMemcpyHostToDevice);
cudaMemcpy(d_y, y, size, cudaMemcpyHostToDevice);

// Invoke DAXPY with 256 threads per Block
int nblocks = (n+ 255) / 256;
daxpy<<<nblocks, 256>>>(n, 2.0, x_d, y_d);

// Copy result back to host
cudaMemcpy(y, d_y, size, cudaMemcpyDeviceToHost);

// Cleanup
free(x); free(y);
cudaFree(d_x); cudaFree(d_y);
return 0;

}

serial	code

parallel	exe	on	GPU

serial	code

CUDA	kernel

24

CUDA	Programming	Model	for	NVIDIA	GPUs

• The	CUDA	API	is	split	into:
– The	CUDA	Management	API
– The	CUDA	Kernel	API

• The	CUDA	Management	API	is	for	a	variety	of	operations
– GPU	memory	allocation,	data	transfer,	execution,	resource	

creation
– Mostly	regular	C	function	and	calls

• The	CUDA	Kernel	API	is	used	to	define	the	computation	to	
be	performed	by	the	GPU
– C	extensions

25

CUDA	Kernel,	i.e.	Thread	Functions

• A CUDA	kernel:
– Defines	the	operations	to	be	performed	by	a	single	thread	on	

the	GPU
– Just	as	a	C/C++	function	defines	work	to	be	done	on	the	CPU
– Syntactically,	a	kernel	looks	like	C/C++	with	some	extensions

__global__ void kernel(...) {
...

}

– Every	CUDA	thread	executes	the	same	kernel	logic	(SIMT)
– Initially,	the	only	difference	between	threads	are	their	thread	

coordinates

26

Programming	View:	How	are	CUDA	threads	
organized?

• CUDA thread	hierarchy
– Thread	Block	=	SIMT	Groups	that	run	

concurrently	on	an	SM
• Can	barrier	sync	and	have	shared	access	to	the	
SM	shared	memory

– Grid	=	All	Thread	Blocks	created	by	the	same	
kernel	launch
• Shared	access	to	GPU	global	memory

• Launching	a	kernel	is	simple	and	similar	to	a	function	call.
– kernel	name	and	arguments
– #	of	thread	blocks/grid	and	#	of	threads/block	to	create:
kernel<<<nblocks,
threads_per_block>>>(arg1, arg2, ...);

27

How	are	CUDA	threads	organized?

• Threads	can	be	configured	in	one-,	two-,	or	three-
dimensional	layouts

– One-dimensional	blocks	and	grids:
int nblocks = 4;
int threads_per_block = 8;
kernel<<<nblocks, threads_per_block>>>(...);

28

Block 0 Block 1 Block 2 Block 3

How	are	CUDA	threads	organized?

• Threads	can	be	configured	in	one-,	two-,	or	three-
dimensional	layouts

– Two-dimensional	blocks	and	grids:
dim3 nblocks(2,2)
dim3 threads_per_block(4,2);
kernel<<<nblocks, threads_per_block>>>(...);

29

How	are	CUDA	threads	organized?

• Threads	can	be	configured	in	one-,	two-,	or	three-
dimensional	layouts

– Two-dimensional	grid	and	one-dimensional	blocks:
dim3 nblocks(2,2);
int threads_per_block = 8;
kernel<<<nblocks, threads_per_block>>>(...);

30

How	are	CUDA	threads	organized?

• The	number	of	blocks	and	threads	per	block	is	exposed	
through	intrinsic	thread	coordinate	variables:
– Dimensions
– IDs

Variable Meaning
gridDim.x, gridDim.y,

gridDim.z
Number	of	blocks	in	a	kernel	
launch.

blockIdx.x, blockIdx.y,
blockIdx.z

Unique	ID	of	the	block	that	
contains	the	current	thread.

blockDim.x, blockDim.y,
blockDim.z

Number	of	threads	in	each	block.

threadIdx.x, threadIdx.y,
threadIdx.z

Unique	ID	of	the	current	thread	
within	its	block.

31

How	are	CUDA	threads	organized?

to	calculate	a	globally	unique	ID	for	a	thread	inside	a	one-
dimensional	grid	and	one-dimensional	block:
kernel<<<4, 8>>>(...);

__global__ void kernel(...) {

int tid = blockIdx.x * blockDim.x + threadIdx.x;

...

}

32

Block 0 Block 1 Block 2 Block 3

blockIdx.x = 2;
blockDim.x = 8;
threadIdx.x = 2;

0		1		2		3		4		5		6		7

8

How	are	CUDA	threads	organized?

• Thread	coordinates	offer	a	way	to	differentiate	threads	
and	identify	thread-specific	input	data	or	code	paths.
– Co-relate	data	and	computation,	a	mapping

__global__ void kernel(int *arr) {

int tid = blockIdx.x * blockDim.x + threadIdx.x;

if (tid < 32) {

arr[tid] = f(arr[tid]);

} else {

arr[tid] = g(arr[tid]);

}

33

code	path	for	threads	with	tid <	32

code	path	for	threads	with	tid >=	32

Thread	Divergence:	useless	code	path	is	executed,	but	then	
disabled	in	SIMT	execution	model	(EXE-commit,	more	later

How	is	GPU	memory	managed?

• CUDA	Memory	Management	API
– Allocation	of	GPU	memory
– Transfer	of	data	from	the	host	to	GPU	memory
– Free-ing GPU	memory
– Foo(int A[][N])	{	}

Host	Function CUDA	Analogue

malloc cudaMalloc

memcpy cudaMemcpy

free cudaFree

34

How	is	GPU	memory	managed?

cudaError_t cudaMalloc(void **devPtr,
size_t size);

– Allocate	size bytes	of	GPU	memory	and	store	their	address	
at	*devPtr

cudaError_t cudaFree(void *devPtr);
– Release	the	device	memory	allocation	stored	at	devPtr
– Must	be	an	allocation	that	was	created	using	cudaMalloc

35

How	is	GPU	memory	managed?

cudaError_t cudaMemcpy(
void *dst, const void *src, size_t count,
enum cudaMemcpyKind kind);
– Transfers	count	bytes	from	the	memory	pointed	to	by	src to	

dst
– kind can	be:

• cudaMemcpyHostToHost,
• cudaMemcpyHostToDevice,
• cudaMemcpyDeviceToHost,
• cudaMemcpyDeviceToDevice

– The	locations	of	dst and	src must	match	kind,	e.g.	if	kind is	
cudaMemcpyHostToDevice then	src must	be	a	host	array	and	
dst must	be	a	device	array

36

How	is	GPU	memory	managed?

void *d_arr, *h_arr;
h_addr = … ; /* init host memory and data */
// Allocate memory on GPU and its address is in d_arr
cudaMalloc((void **)&d_arr, nbytes);

// Transfer data from host to device
cudaMemcpy(d_arr, h_arr, nbytes,

cudaMemcpyHostToDevice);

// Transfer data from a device to a host
cudaMemcpy(h_arr, d_arr, nbytes,

cudaMemcpyDeviceToHost);

// Free the allocated memory
cudaFree(d_arr);

37

CUDA	Program	Flow

• At	its	most	basic,	the	flow	of	a	CUDA	program	is	as	
follows:
1. Allocate	GPU	memory
2. Populate	GPU	memory	with	inputs	from	the	host
3. Execute	a	GPU	kernel	on	those	inputs
4. Transfer	outputs	from	the	GPU	back	to	the	host
5. Free	GPU	memory

38

Offloading	Computation
// DAXPY in CUDA
__global__
void daxpy(int n, double a, double *x, double *y) {

int i = blockIdx.x*blockDim.x + threadIdx.x;
if (i < n) y[i] = a*x[i] + y[i];

}

int main(void) {
int n = 1024;
double a;
double *x, *y; /* host copy of x and y */
double *x_d; *y_d; /* device copy of x and y */
int size = n * sizeof(double)
// Alloc space for host copies and setup values
x = (double *)malloc(size); fill_doubles(x, n);
y = (double *)malloc(size); fill_doubles(y, n);

// Alloc space for device copies
cudaMalloc((void **)&d_x, size);
cudaMalloc((void **)&d_y, size);

// Copy to device
cudaMemcpy(d_x, x, size, cudaMemcpyHostToDevice);
cudaMemcpy(d_y, y, size, cudaMemcpyHostToDevice);

// Invoke DAXPY with 256 threads per Block
int nblocks = (n+ 255) / 256;
daxpy<<<nblocks, 256>>>(n, 2.0, x_d, y_d);

// Copy result back to host
cudaMemcpy(y, d_y, size, cudaMemcpyDeviceToHost);

// Cleanup
free(x); free(y);
cudaFree(d_x); cudaFree(d_y);
return 0;

}

serial	code

parallel	exe	on	GPU

serial	code

CUDA	kernel

39

GPU	Multi-Threading	(SIMD)

• NVIDIA	calls	it	Single-Instruction,	Multiple-Thread	(SIMT)
– Many	threads	execute	the	same	instructions	in	lock-step

• A	warp	(32	threads)
• Each	thread	≈	vector	lane;	32	lanes	lock	step

– Implicit	synchronization	after	every	instruction	(think	vector	
parallelism)

SIMT

40

GPU	Multi-Threading

• In	SIMT,	all	threads	share	instructions	but	operate	on	their	
own	private	registers,	allowing	threads	to	store	thread-
local	state

SIMT

41

GPU	Multi-Threading

• GPUs	execute	many	groups	of	SIMT	threads	in	parallel
– Each	executes	instructions	independent	of	the	others

SIMT Group (Warp) 0

SIMT Group (Warp) 1

42

Warp	Switching

SMs	can	support	more	concurrent	SIMT	groups	than	core	
count	would	suggest	à Coarse	grained	multiwarpping
(the	term	I	coined)

– Similar	to	coarse-grained	multi-threading

• Each	thread	persistently	stores	its	own	state	in	a	
private	register	set
– Enable	very	efficient	context	switching	between	warps

• SIMT	warps	block	if	not	actively	computing
– Swapped	out	for	other,	no	worrying	about	losing	state

• Keeping	blocked	SIMT	groups	scheduled	on	an	SM	
would	waste	cores

43

Execution	Model	to	Hardware

• This	leads	to	a	nested	thread	hierarchy	on	GPUs

SIMT
Group

SIMT Groups that
concurrently run on the

same SM

SIMT Groups that
execute together on the

same GPU

44

NVIDIA	PTX	(Parallel	Thread	Execution)	ISA

• Compiler	target	(Not	hardware	ISA)
– Similar	to	X86	ISA,	and	use	virtual	register
– Both	translate	to	internal	form	(micro-ops	in	x86)

• X86’s	translation	happens	in	hardware	at	runtime
• NVIDIA	GPU	PTX	is	translated	by	software	at	load	time

• Basic	format	(d	is	destination,	a,	b	and	c	are	operands)
opcode.type d, a, b, c;

45

Basic	PTX	Operations	(ALU,	MEM,	and	Control)

46

NVIDIA	PTX	GPU	ISA	Example

DAXPY	

shl.s32 R8,	blockIdx,	9 ;	Thread	Block	ID	*	Block	size	
(512	or	29)

add.s32 R8,	R8,	threadIdx ;	R8	=	i =	my	CUDA	thread	ID
ld.global.f64 RD0,	[X+R8] ;	RD0	=	X[i]
ld.global.f64 RD2,	[Y+R8] ;	RD2	=	Y[i]
mul.f64	R0D,	RD0,	RD4 ;	Product	in	RD0	=	RD0	*	RD4	

(scalar	a)
add.f64	R0D,	RD0,	RD2 ;	Sum	in	RD0	=	RD0	+	RD2	(Y[i])
st.global.f64	[Y+R8],	RD0 ;	Y[i]	=	sum	(X[i]*a	+	Y[i])

47

__global__
void daxpy(int n, double a, double *x, double *y) {

int i = blockIdx.x*blockDim.x + threadIdx.x;
if (i < n) y[i] = a*x[i] + y[i];

}

Conditional	Branching	in	GPU

• Like	vector,	GPU	branch	hardware	uses	internal	masks
• Also	uses

– Branch	synchronization	stack
• Entries	consist	of	masks	for	each	core
• I.e.	which	threads	commit	their	results	(all	threads	execute)

– Instruction	markers	to	manage	when	a	branch	diverges	into	multiple	
execution	paths
• Push	on	divergent	branch

– …and	when	paths	converge
• Act	as	barriers
• Pops	stack

• Per-thread-lane	1-bit	predicate	register,	specified	by	
programmer

48

Conditional	Branching	in	GPU

if (a > b) {

max = a;

} else {

max = b;

}

a = 4
b = 3

a = 3
b = 4

D
isabled

D
is
ab

le
d

• Instruction	lock-step	
execution	by	multi-threads

• SIMT	threads	can	be	
“disabled”	when	they	need	
to	execute	instructions	
different	from	others	in	their	
group
– Mask	and	commit

• Branch	divergence
– Hurt	performance	and	

efficiency

49

PTX	Example
if	(X[i]	!=	0)
X[i]	=	X[i]	– Y[i];

else	X[i]	=	Z[i];

ld.global.f64RD0,	[X+R8] ;	RD0	=	X[i]
setp.neq.s32 P1,	RD0,	#0 ;	P1	is	predicate	register	1
@!P1,	bra ELSE1,	*Push ;	Push	old	mask,	set	new	mask	bits

;	if	P1	false,	go	to	ELSE1
ld.global.f64RD2,	[Y+R8] ;	RD2	=	Y[i]
sub.f64 RD0,	RD0,	RD2 ;	Difference	in	RD0
st.global.f64[X+R8],	RD0 ;	X[i]	=	RD0
@P1,	bra ENDIF1,	*Comp ;	complement	mask	bits

;	if	P1	true,	go	to	ENDIF1
ELSE1: ld.global.f64	RD0,	[Z+R8] ;	RD0	=	Z[i]

st.global.f64	[X+R8],	RD0 ;	X[i]	=	RD0
ENDIF1:	 <next	instruction>,	*Pop ;	pop	to	restore	old	mask

50

NVIDIA	GPU	Memory	Structures

• Each	core	has	private	section	of	
off-chip	DRAM
– “Private	memory”
– Contains	stack	frame,	spilling	

registers,	and	private	variables
• Each	SM	processor	also	has	
local	memory
– Shared	by	cores/threads	within	a	

SM/block
• Memory	shared	by	SM	
processors	is	GPU	Memory
– Host	can	read	and	write	GPU	

memory GLOBAL	MEMORY
(ON	DEVICE)

SM
SP SP SP SP

SP SP SP SP

SP SP SP SP

SP SP SP SP

SHARED	
MEMORY	

51

GPU	Memory	for	CUDA	Programming

52

Local	variables,	etc

Explicitly	managed	
using	shared

cudaMalloc

Shared	Memory	Allocation

• Shared	memory	can	be	allocated	statically	or	dynamically

• Statically	Allocated	Shared	Memory
– Size	is	fixed	at	compile-time
– Can	declare	many	statically	allocated	shared	memory	

variables
– Can	be	declared	globally	or	inside	a	device	function
– Can	be	multi-dimensional	arrays

__shared__ int s_arr[256][256];

53

Shared	Memory	Allocation

• Dynamically	Allocated	Shared	Memory
– Size	in	bytes	is	set	at	kernel	launch	with	a	third	kernel	launch	

configurable
– Can	only	have	one	dynamically	allocated	shared	memory	

array	per	kernel
– Must	be	one-dimensional	arrays

__global__ void kernel(...) {
extern __shared__ int s_arr[];
...

}

kernel<<<nblocks, threads_per_block,
shared_memory_bytes>>>(...);

54

GPU	Memory

• More	complicated
• Different	usage	scope
• Different	size,	and	performance

– Latency	and	bandwidth
– Read-only	or	R/W	cache

55

SIMT Thread Groups on a GPU

SIMT Thread Groups on an SM

SIMT Thread Group

Registers Local Memory

On-Chip Shared Memory

Global Memory

Constant Memory

Texture Memory

GPU	and	Manycore Architecture

We	only	INTRODUCE	the	programming	interface	and	
architecture

For	more	info:	
– http://docs.nvidia.com/cuda/
– Professional	CUDA	C	Programming,	John	Cheng	Max	

Grossman	Ty	McKercher September	8,	2014,	John	Wiley	&	
Sons

Other	Related	info
– AMD	GPU	and	OpenCL
– Programming	with	Accelerator	using	pragma

• OpenMP	and	OpenACC

56

Loop-Level	Parallelism

• Focuses	on	determining	whether	data	accesses	in	later	
iterations	are	dependent	on	data	values	produced	in	earlier	
iterations
– Loop-carried	dependence

• Example	1:
for	(i=999;	i>=0;	i=i-1)

x[i]	=	x[i]	+	s;

• No	loop-carried	dependence

57

Loop-Level	Parallelism

• Example	2:
for	(i=0;	i<100;	i=i+1)	{

S1:	A[i+1]	=	A[i]	+	C[i];	 /*	S1	*/
S2:	B[i+1]	=	B[i]	+	A[i+1];	 /*	S2	*/
}

• S1	and	S2	use	values	computed	by	S1	and	S2	in	previous
iteration:	loop-carried dependencyà serial execution
– A[i]	à A[i+1],	B[i]	à B[i+1]

• S2	uses	value	computed	by	S1	in	same	iterationà not
loop	carried
– A[i+1]	à A[i+1]

58

Loop-Level	Parallelism

• Example	3:
for	(i=0;	i<100;	i=i+1)	{
A[i]	=	A[i]	+	B[i];	 /*	S1	*/
B[i+1]	=	C[i]	+	D[i];	 /*	S2	*/

}
S1	uses	value	computed	by	S2	in	previous	iteration	but	dependence	is	not	
circular	so	loop	is	parallel
• Transform	to:

A[0]	=	A[0]	+	B[0];
for	(i=0;	i<99;	i=i+1)	{
B[i+1]	=	C[i]	+	D[i];
A[i+1]	=	A[i+1]	+	B[i+1];

}
B[100]	=	C[99]	+	D[99];

59

Loop-Level	Parallelism

• Example	4:
for	(i=0;i<100;i=i+1)		{
A[i]	=	B[i]	+	C[i];									 /*	S1	*/
D[i]	=	A[i]	*	E[i]; /*	S2	*/
}

• Example	5:
for	(i=1;i<100;i=i+1)		{
Y[i]	=	Y[i-1]	+	Y[i];
}

No	need	to	store	A[i]	in	S1	
and	then	load	A[i]	in	S2

Recurrence:	for	exploring	pipelining	

parallelism	between	iterations

60

Finding	dependencies

• Assume	indices	are	affine:
– a x	i +	b	(i is	loop	index	and	a	and	b	are	constants)

• Assume:
– Store	to	a x	i +	b,	then
– Load	from	c x	i +	d
– i runs	from	m to	n
– Dependence	exists	if:

• Given	j,	k such	that	m ≤	j ≤	n,	m ≤	k ≤	n
• Store	to	a x	j +	b,	load	from	a x	k +	d,	and	a x	j +	b =	c x	k +	d

61

Finding	dependencies

• Generally	cannot	determine	at	compile	time
• Test	for	absence	of	a	dependence:

– GCD	test:
• If	a	dependency	exists,	GCD(c,a)	must	evenly	divide	(d-b)

• Example:
for	(i=0;	i<100;	i=i+1)	{

X[2*i+3]	=	X[2*i]	*	5.0;
}

a=2,	b=3,	c=2,	and	d=0,	then GCD(a,c)=2,	and	d−b=−3.	Since
2	does not divide −3,	no	dependence is	possible.	

62

Finding	dependencies

• Example	2:
for	(i=0;	i<100;	i=i+1)	{

Y[i]	=	X[i]	/	c;	 /*	S1	*/
X[i]	=	X[i]	+	c;	 /*	S2	*/
Z[i]	=	Y[i]	+	c;	 /*	S3	*/
Y[i]	=	c	- Y[i];	 /*	S4	*/

}
• True	dependencies:	

– S1	to	S3	and	S1	to	S4	because	of	Y[i],	not	loop	carried
• Antidependence:

– S1	to	S2	based	on	X[i]	and	S3	to	S4	for	Y[i]
• Output	dependence:

– S1	to	S4	based	on	Y[i]

63

Reductions

• Reduction	Operation:
for	(i=9999;	i>=0;	i=i-1)
sum	=	sum	+	x[i]	*	y[i];

• Transform	to…
for	(i=9999;	i>=0;	i=i-1)
sum	[i]	=	x[i]	*	y[i];

for	(i=9999;	i>=0;	i=i-1)
finalsum =	finalsum +	sum[i];

• Do	on	p	processors:
for	(i=999;	i>=0;	i=i-1)
finalsum[p]	=	finalsum[p]	+	sum[i+1000*p];

• Note:		assumes	associativity!

64

Dependency	Analysis

• Mostly	done	by	compiler	before	vectorization
– Can	be	conservative	if	compiler	is	not	100%	sure

• For	programmer:
– Write	code	that	can	be	easily	analyzed	by	compiler	for	

vectorization
– Use	explicit	parallel	model	such	as	OpenMP	or	CUDA

65

https://computing.llnl.gov/tutorials/openMP/

Wrap-Ups	(Vector,	SIMD	and	GPU)

• Data-level	parallelism

66

