
Lecture 21: Data Level Parallelism
-- SIMD ISA Extensions for Multimedia and 

Roofline Performance Model

CSCE 513 Computer Architecture

Department of Computer Science and 
Engineering

Yonghong Yan
yanyh@cse.sc.edu

https://passlab.github.io/CSCE513



2

Topics for Data Level Parallelism (DLP)
§ Parallelism (centered around … )

– Instruction Level Parallelism
– Data Level Parallelism
– Thread Level Parallelism

§ DLP Introduction and Vector Architecture
– 4.1, 4.2

§ SIMD Instruction Set Extensions for 
Multimedia 
– 4.3

§ Graphical Processing Units (GPU)
– 4.4

§ GPU and Loop-Level Parallelism and Others
– 4.4, 4.5



3

SIMD Instruction Set extension 
for Multimedia

Textbook: CAQA 4.3



4

What is Multimedia
§ Multimedia is a combination of 

text, graphic, sound, 
animation, and video that is 
delivered interactively to the 
user by electronic or digitally 
manipulated means.

https://en.wikipedia.org/wiki/Multimedia

Videos contains frame (images)



5

Image Format and Processing
§ Pixels

– Images are matrix of pixels

§ Binary images
– Each pixel is either 0 or 1



6

Image Format and Processing
§ Pixels

– Images are matrix of pixels

§ Grayscale images
– Each pixel value normally range from 0 (black) to 255 (white)
– 8 bits per pixel



7

Image Format and Processing
§ Pixels

– Images are matrix of pixels
§ Color images

– Each pixel has three/four values (4 bits or 8 bits each) each 
representing a color scale



8

Image Processing
§ Mathematical operations by using any form of signal 

processing
– Changing pixel values by matrix operations



9

Image Processing: The major of the filter 
matrix

§ http://lodev.org/cgtutor/filtering.html
§ https://en.wikipedia.org/wiki/Kernel_(im

age_processing)



10

Image Data Format and Processing for 
SIMD Architecture

§ Data element
– 4, 8, 16 bits (small)

§ Same operations applied to every element 
(pixel)
–Perfect for data-level parallelism

Can fit multiple pixels in a regular scalar 
register
–E.g. for 8 bit pixel, a 64-bit register can take 

8 of them



11

Multimedia Extensions (aka SIMD 
extensions) to Scalar ISA

§ Very short vectors added to existing ISAs for microprocessors
§ Use existing 64-bit registers split into 2x32b or 4x16b or 8x8b

– Lincoln Labs TX-2 from 1957 had 36b datapath split into 2x18b or 4x9b
– Newer designs have wider registers

» 128b for PowerPC Altivec, Intel SSE2/3/4
» 256b for Intel AVX 

§ Single instruction operates on all elements within register

16b 16b 16b 16b

32b 32b

64b

8b 8b 8b 8b 8b 8b 8b 8b

16b 16b 16b 16b

16b 16b 16b 16b

16b 16b 16b 16b

+ + + +4x16b	adds



12

A Scalar FU to A Multi-Lane SIMD Unit
§ Adder

– Partitioning the 
carry chains



13

MMX SIMD Extensions to X86
§ MMX instructions added in 1996 

– Repurposed the 64-bit floating-point registers to perform 8 8-
bit operations or 4 16-bit operations simultaneously. 

– MMX reused the floating-point data transfer instructions to 
access memory. 

– Parallel MAX and MIN operations, a wide variety of masking 
and conditional instructions, DSP operations, etc.

§ Claim: overall speedup 1.5 to 2X for 2D/3D graphics, 
audio, video, speech, comm., ...
– use in drivers or added to library routines; no compiler

+



14

MMX Instructions
§ Move 32b, 64b
§ Add, Subtract in parallel: 8 8b, 4 16b, 2 32b

– opt. signed/unsigned saturate (set to max) if overflow
§ Shifts (sll,srl, sra), And, And Not, Or, Xor 

in parallel: 8 8b, 4 16b, 2 32b
§ Multiply, Multiply-Add in parallel: 4 16b
§ Compare = , > in parallel: 8 8b, 4 16b, 2 32b

– sets field to 0s (false) or 1s (true); removes branches
§ Pack/Unpack

– Convert 32b<–> 16b, 16b <–> 8b
– Pack saturates (set to max) if number is too large



15

SSE/SSE2/SSE3 SIMD Extensions to X86
§ Streaming SIMD Extensions (SSE) successor in 1999

– Added separate 128-bit registers that were 128 bits wide
» 16 8-bit operations, 8 16-bit operations, or 4 32-bit operations. 
» Also perform parallel single-precision FP arithmetic. 

– Separate data transfer instructions. 
– double-precision SIMD floating-point data types via SSE2 in 

2001, SSE3 in 2004, and SSE4 in 2007. 
» increased the peak FP performance of the x86 computers. 

– Each generation also added ad hoc instructions to accelerate 
specific multimedia functions. 



16

AVX SIMD Extensions for X86
§ Advanced Vector Extensions (AVX), added in 2010
§ Doubles the width of the registers to 256 bits 

– double the number of operations on all narrower data types. 
Figure 4.9 shows AVX instructions useful for double-
precision floating-point computations.

§ AVX includes preparations to extend to 512 or 1024 
bits bits in future generations of the architecture. 



17

DAXPY

§ 256-bit SIMD exts to 
RISC-V èRVP
– 4 double FP

§ RV64G: 258 insts
§ SIMD RVP: 67 

insts
– 8 Loop iterations
– 4× reduction

§ RV64V: 8 instrs
– 30× reduction

double a, X[], Y[]; // 8-byte per element
for (i=0; i<32; i++)
Y[i] = a* X[i] + Y[i];



18

Multimedia Extensions versus Vectors
§ Limited instruction set:

– no vector length control
– no strided load/store or scatter/gather
– unit-stride loads must be aligned to 64/128-bit boundary

§ Limited vector register length:
– requires superscalar dispatch to keep multiply/add/load units 

busy
– loop unrolling to hide latencies increases register pressure

§ Trend towards fuller vector support in 
microprocessors
– Better support for misaligned memory accesses
– Support of double-precision (64-bit floating-point)
– New Intel AVX spec (announced April 2008), 256b vector 

registers (expandable up to 1024b) 

18



19

Programming Multimedia SIMD Architectures 

§ The easiest way to use these instructions has been 
through libraries or by writing in assembly language.
– The ad hoc nature of the SIMD multimedia extensions, 

§ Recent extensions have become more regular 
– Compilers are starting to produce SIMD instructions 

automatically. 
» Addvanced compilers today can generate SIMD FP instructions 

to deliver much higher performance for scientific codes. 
» Memory alignment is still an important factor for performance



20

Why are Multimedia SIMD Extensions so 
Popular

§ Cost little to add to the standard arithmetic unit and 
they were easy to implement. 

§ Require little extra state compared to vector 
architectures, which is always a concern for context 
switch times. 

§ Does not requires a lot of memory bandwidth to 
support as what a vector architecture requires. 

§ Others regarding to the virtual memory and cache 
that make SIMD extensions less challenging than 
vector architecture.

The state of the art is that we are putting a full 
or advanced vector capability to multi/manycore

CPUs, and Manycore GPUs



21

State of the Art: Intel Xeon Phi Manycore
Vector Capability

§ Intel Xeon Phi Knight Corner, 2012, ~60 cores, 4-way SMT
§ Intel Xeon Phi Knight Landing, 2016, ~60 cores, 4-way SMT and HBM

– http://www.hotchips.org/wp-content/uploads/hc_archives/hc27/HC27.25-
Tuesday-Epub/HC27.25.70-Processors-Epub/HC27.25.710-Knights-
Landing-Sodani-Intel.pdf

http://primeurmagazine.com/repository/Prim
eurMagazine-AE-PR-12-14-32.pdf



22

The Picture I drew on the blackBoard



23

State of the Art: ARM Scalable Vector 
Extensions (SVE)

§ Announced in August 2016
– https://community.arm.com/groups/processors/blog/2016/08/2

2/technology-update-the-scalable-vector-extension-sve-for-
the-armv8-a-architecture

– http://www.hotchips.org/wp-
content/uploads/hc_archives/hc28/HC28.22-Monday-
Epub/HC28.22.10-GPU-HPC-Epub/HC28.22.131-ARMv8-vector-
Stephens-Yoshida-ARM-v8-23_51-v11.pdf

§ Beyond vector architecture we learned
– Vector loop, predict and speculation
– Vector Length Agnostic (VLA) programming

– Check the slide



24

The Roofline Visual Performance Model 
§ Self-study if you are interested: two pages of textbook

– Useful, simple and interesting

§ More materials:
– Slides: https://crd.lbl.gov/assets/pubs_presos/parlab08-

roofline-talk.pdf
– Paper: 

https://people.eecs.berkeley.edu/~waterman/papers/roofline.p
df

– Website: https://crd.lbl.gov/departments/computer-
science/PAR/research/roofline/


