Lecture 21: Data Level Parallelism
-- SIMD ISA Extensions for Multimedia and
Roofline RerformanceMeodel

CSCE 513 Computer Architecture

Department of Computer Science and
Engineering

Yonghong Yan
yanyh@cse.sc.edu
https://passlab.github.io/CSCE513

Topics for Data Level Parallelism (DLP)

= Parallelism (centered around ...)
— Instruction Level Parallelism
— Data Level Parallelism
— Thread Level Parallelism

= DLP Introduction and Vector Architecture
—-4.1,4.2

= SIMD Instruction Set Extensions for
Multimedia

-4.3

» Graphical Processing Units (GPU)
— 4.4

= GPU and Loop-Level Parallelism and Others
~4.4,4.5

SIMD Instruction Set extension

for Multimedia
Textbook: CAQA 4.3

What is Multimedia

Examples of individual content forms
combined in multimedia

= Multimedia is a combination of
text, graphic, sound,
animation, and video that is JJUSTE.
delivered interactively to the e 0 et ﬁ

of a Telelcope, thro" which

user by electronic or digitally SelchmiiE

manipulated means. Text Audio Still Images
Medium Elements Time-dependence .ﬂ ﬁ %:y
Text Printable characters No el '
Graphic | Vectors, regions No Animation "% Interactivity

Footage
Image Pixels No
https://en.wikipedia.org/wiki/Multimedia

Audio Sound, Volume Yes
Video Raster images, graphics | Yes
Videos contains frame (images) > >

Image Format and Processing

pixe

Pixels

— Images are matrix of pixels

1111110111111 1111111111101 111111111

oo

¢e
ee

ecccccoe
11111111

©
©
©
©
©
©
©
©
©
©
©
©
©

1111000000
1111¢0¢¢¢cccce

111110000000 10¢CCCCCCCQCQCQCCQCQCCCQCOCT1TTTYT 1Y

R L)
o000
COve-
o000
voooo
vooe

1110¢0¢0co11111111Q0¢0C111¢01

©
©
©
©
©
©
©
©
©
©
©
©

VOO0V OO T
OrErrOr00000
rrrrrOrOOTO
vorvrooooOO"
COrrOo00OOrO
OrErE 00000 r0
rrErrO0000 -
rro0O0000O"
CoOrrooOr

vovooe
vovooo
vovooo
vovooo
roooow

©
©
©
o
©
e =- -

111111111111 11¢¢¢0¢0¢00Q0QQQQCQETTTYTYITYITYTYYY

LT

inary images

B

ther 0 or 1

IS el

— Each pixel

Image Format and Processing

* Pixels A
— Images are matrix of pixels

v 4/ pixel

X

* Grayscale images

— Each pixel value normally range from 0 (black) to 255 (white)
— 8 bits per pixel

But the camera sees this:

194 210 201 212 199 213 215 195 178 158 182 209
180 189 190 221 209 205 191 167 147 115 19 163
114 126 140 188 176 165 152 140 170 106 78 88
87 103 11S 154 143 142 149 153 713 0 7 S
102 112 106 131 122 138 152 147 128 84 S8 66
OF 95 79 104 105 124 129 113 107 8 &9 67
68 71 6 98 89 92 98 95 89 88 76 6
41 56 68 99 63 45 60 82 S8 76 74 65
20 41 6 75 S6 41 S1 73 S5 70 63 &4
SO S0 S7 69 75 75 73 14 S3 &8 5 ¥
72 S9 S3 66 84 92 B4 74 ST 2 63 &
67 61 S8 65 75 18 76 73 59 15 & S0

Image Format and Processing

= Pixels
— Images are matrix of pixels
. pixel
= Color images ! £~
X————»
— Each pixel has three/four values (4 bits or 8 bits each) each
representing a color scale B
fac e RG
A
Sample Length: 4 4 4 4
Channel Membership: Alpha Red Green Blue
Bit Number: 15 14 13121110 9 8 7 6 5 4 3 2 1 0
Sample Length: 8 8 8 B
Channel Membership: Blue Green Red Alpha

BitNumber: 31 0 8 8 07 54283220 0191817161514 131211109 8 7 6 5 4 3 210

Image Processing

» Mathematical operations by using any form of signal

processing

— Changing pixel values by matrix operations

(4 x0)

Center element of the kernel is placed over the fg : g;

source pixel. The source pixel is then replaced (0 x 0)
with a weighted sum of itself and nearby pixels. 0 x 1)

(0x1)
(0 x0)
(0x1)
+ (-4 x2)

-8

Source pixel

Convolution kernel
(emboss)

New pixel value (destination pixel)

="

i

=)

==

{

Blur the source
horizontally

Blur the blur
verticaly

Result

Image Processing: The major of the filter

matrix

= http://lodev.org/cqtutor/filtering.html

.y = . - . Identit
» https://len.wikipedia.org/wiki/Kernel (im o
age processing)
(4 x0)
Center element of the kernel is placed over the Eg : g;
source pi)fel. The source pixel is then replgced (0 x 0)
with a weighted sum of itself and nearby pixels. 0x1) Edge detection

(0x1)
. (0 x0)
Source pixel (0 x 1)
+ (-4 x2)
-8

Sharpen

Box blur

Convolution kernel

(emboss) (normalized)

New pixel value (destination pixel)

Gaussian blur

(approximation)

Image Data Format and Processing for

SIMD Architecture

= Data element
—4, 8, 16 bits (small)

= Same operations applied to every element
(pixel)

— Perfect for data-level parallelism

Can fit multiple pixels in a regular scalar
register

—E.g. for 8 bit pixel, a 64-bit register can take

8 of them

10

Multimedia Extensions (aka SIMD

xtension lar ISA
64b

32b 32b

16b 16b 16b 16b

8b 8b 8b 8b 8b 8b 8b 8b
= Very short vectors added to existing ISAs for microprocessors

= Use existing 64-bit registers split into 2x32b or 4x16b or 8x8b

— Lincoln Labs TX-2 from 1957 had 36b datapath split into 2x18b or 4x9b

— Newer designs have wider registers
» 128b for PowerPC Altivec, Intel SSE2/3/4
» 256b for Intel AVX

= Single instruction operates on all elements within register

16b 16b 16b 16b

3 A} 3 3
\ \ \ \

\ 16b \ 16b \ 16b 16b

ey o SN © SRR SR O

16b 16b 16b 16b

11

A Scalar FU to A Multi-Lane SIMD Unit

Adder Ass..63 Bas..63 A32.478B32.47 A16.31B16..31 A0..15B0..15
— Partitioning the l l i l l l l l
carry chains 16-bit 16-bit 16-bit 16-bit
LCU LCU LCU LCU
Adder Adder Adder Adder
S48..63 S32.4 S16..31 So..15
P48 948 Cas P32932 C32 P16 916 Cis PO go
C! 64 64-bit Lookahead Carry Unit PG GG
Instruction category Operands
Unsigned add/subtract Thirty-two 8-bit, sixteen 16-bit, eight 32-bit, or four 64-bit
Maximum/minimum Thirty-two 8-bit, sixteen 16-bit, eight 32-bit, or four 64-bit
Average Thirty-two 8-bit, sixteen 16-bit, eight 32-bit, or four 64-bit
Shift right/left Thirty-two 8-bit, sixteen 16-bit, eight 32-bit, or four 64-bit
Floating point Sixteen 16-bit, eight 32-bit, four 64-bit, or two 128-bit

Figure 4.8 Summary of typical SIMD multimedia support for 256-bit-wide opera-
tions. Note that the IEEE 754-2008 floating-point standard added half-precision (16-bit)
and quad-precision (128-bit) floating-point operations.

12

MMX SIMD Extensions to X86

= MMX instructions added in 1996

— Repurposed the 64-bit floating-point registers to perform 8 8-
bit operations or 4 16-bit operations simultaneously.

— MMX reused the floating-point data transfer instructions to
access memory.

— Parallel MAX and MIN operations, a wide variety of masking
and conditional instructions, DSP operations, etc.

= Claim: overall speedup 1.5 to 2X for 2D/3D graphics,
audio, video, speech, comm,, ...

— use Iin drivers or added to library routines; no compiler

13

MMX Instructions

Move 32b, 64b
Add, Subtract in parallel: 8 8b, 4 16b, 2 32b

— opt. signed/unsigned saturate (set to max) if overflow

Shifts (sll,srl, sra), And, And Not, Or, Xor
in parallel: 8 8b, 4 16b, 2 32b

Multiply, Multiply-Add in parallel: 4 16b
Compare =, > in parallel: 8 8b, 4 16b, 2 32b

— sets field to Os (false) or 1s (true); removes branches

Pack/Unpack
— Convert 32b<—> 16b, 16b <—> 8b
— Pack saturates (set to max) if number is too large

14

SSE/SSE2/SSE3 SIMD Extensions to X86

= Streaming SIMD Extensions (SSE) successor in 1999

— Added separate 128-bit registers that were 128 bits wide
» 16 8-bit operations, 8 16-bit operations, or 4 32-bit operations.
» Also perform parallel single-precision FP arithmetic.

— Separate data transfer instructions.

— double-precision SIMD floating-point data types via SSE2 in
2001, SSE3 in 2004, and SSE4 in 2007.

» increased the peak FP performance of the x86 computers.

— Each generation also added ad hoc instructions to accelerate
specific multimedia functions.

15

AVX SIMD Extensions for X86

= Advanced Vector Extensions (AVX), added in 2010
= Doubles the width of the registers to 256 bits

— double the number of operations on all narrower data types.
Figure 4.9 shows AVX instructions useful for double-
precision floating-point computations.

= AVXincludes preparations to extend to 512 or 1024
bits bits in future generations of the architecture.

AVX Instruction Description

VADDPD Add four packed double-precision operands

VSUBPD Subtract four packed double-precision operands

VMULPD Multiply four packed double-precision operands

VDIVPD Divide four packed double-precision operands

VFMADDPD Multiply and add four packed double-precision operands

VFMSUBPD Multiply and subtract four packed double-precision operands

VCMPxx Compare four packed double-precision operands for EQ, NEQ, LT, LE, GT, GE, ...
VMOVAPD Move aligned four packed double-precision operands

VBROADCASTSD Broadcast one double-precision operand to four locations in a 256-bit register

f0,a #f Load scalar a

DAXPY x28,x5,#256 {f Last address to 1oad
f1,0(x5) #F Load X[i]

f1,f1,f0 #ax X[i]
doubl T X[1, Y[1: 8-bvt f2,0(x6) ## Load Y[1]
ouble a, X[1, Y[I; // yte £2. 2.1 Fax X171+ Y[i]
for (1i=0; i<32; i++) f2,0(x6) # Store into Y[1i]
- a . -y x5,x5,18 # Increment index to X
Y[1] = a* X[1] + Y[i]; x6,x6,18 # Increment index to Y
. x28,x5,Loop Check if done
" 256-bit SIMD exts to vsetdcfg 4*FP64 # Enable 4 DP FP vregs
RISC-V RVP f1d f0,a #f Load scalar a
— 4 double FP vld v0, x5 i Load vector X
vmu 1 vl,v0,f0 jVector-scalar mult
v1d V2, X6 #f Load vector Y
i . vadd v3,vl,v?2 f#Vector-vector add
. RV64G 258 insts vst v3, X6 JF Store the sum
= SIMD RVP: 67 vdisable ## Disable vector regs
- f1d f0,a ffLoad scalar a
Insts splat.4D f0,f0 #Make 4 copies of a
— 8 Loop iterations add1 x28,x5,#256 {fLast address to 1oad
_ - Loop: f1d.4D f1,0(x5) #lLoad X[1]1 ... X[i+3]
4x reduction fmul.4D f1,f1,f0 FaxX[i1 ... axX[i+3]
= RV64V: 8 instrs f1d.4D f2,0(x6) fFLoad Y[i]1 ... Y[i+3]
] fadd.4D fe,f2,fl #axX[i]*—Y[i];
— 30x reduction FaxX[i+3]+Y[i+3]
fsd.4D f2,0(x6) #Store Y[i]... Y[i+3]
addi x5,x5,732 #Increment index to X
addi X6 ,X6,732 #Increment index to Y

bne x28,x5,Loop #Check if done 17

Multimedia Extensions versus Vectors

= Limited instruction set:
— no vector length control
— no strided load/store or scatter/gather
— unit-stride loads must be aligned to 64/128-bit boundary

= Limited vector register length:

— requires superscalar dispatch to keep multiply/add/load units
busy

— loop unrolling to hide latencies increases register pressure

* Trend towards fuller vector support in
microprocessors
— Better support for misaligned memory accesses

— Support of double-precision (64-bit floating-point)

— New Intel AVX spec (announced April 2008), 256b vector
registers (expandable up to 1024b)

18 18

Programming Multimedia SIMD Architectures

* The easiest way to use these instructions has been
through libraries or by writing in assembly language.

— The ad hoc nature of the SIMD multimedia extensions,

= Recent extensions have become more regular

— Compilers are starting to produce SIMD instructions
automatically.

» Addvanced compilers today can generate SIMD FP instructions
to deliver much higher performance for scientific codes.

» Memory alignment is still an important factor for performance

19

Why are Multimedia SIMD Extensions so
Popular

= Cost little to add to the standard arithmetic unit and
they were easy to implement.

= Require little extra state compared to vector
architectures, which is always a concern for context
switch times.

* Does not requires a lot of memory bandwidth to
support as what a vector architecture requires.

* Others regarding to the virtual memory and cache
that make SIMD extensions less challenging than
vector architecture.

The state of the art is that we are putting a full
or advanced vector capability to multi/manycore
CPUs, and Manycore GPUs

20

State of the Art: Intel Xeon Phi Manycore

V r

* Intel Xeon Phi Knight Corner, 2012, ~60 cores, 4-way SMT

* Intel Xeon Phi Knight Landing, 2016, ~60 cores, 4-way SMT and HBM

— http://lwww.hotchips.org/wp-content/uploads/hc_archives/hc27/HC27.25-
Tuesday-Epub/HC27.25.70-Processors-Epub/HC27.25.710-Knights-
Landing-Sodani-Intel.pdf

Icache

(32KB 8-way)

Allocate/
Rename

{

#define N 1000000
float x[N][N], y[N]I[N];
#pragma omp parallel

#pragma omp for

for (int 1i=0; i<N; i++) {

#pragma omp simd safelen(18)

for (int j=18; j<N-18; j++) {
x[1]1[3] = x[i]1[3-18] + sinf(y[il[31);
y[i1[3] = y[i][§+18] + cosf (x[1i][3]);

http://primeurmagazine.com/repository/Prim
eurMagazine-AE-PR-12-14-32. pdf

21

The Picture | drew on the blackBoard

State of the Art: ARM Scalable Vector

Extension VE
= Announced in August 2016

— https://Icommunity.arm.com/qgroups/processors/bloq/2016/08/2
2/technology-update-the-scalable-vector-extension-sve-for-
the-armv8-a-architecture

— http:/Iwww.hotchips.org/wp-
content/uploads/hc archives/hc28/HC28.22-Monday-
Epub/HC28.22.10-GPU-HPC-Epub/HC28.22.131-ARMv8-vector-
Stephens-Yoshida-ARM-v8-23 51-v11.pdf

= Beyond vector architecture we learned
— Vector loop, predict and speculation
— Vector Length Agnostic (VLA) programming

— Check the slide

23

The Roofline Visual Performance Model

= Self-study if you are interested: two pages of textbook
— Useful, simple and interesting

= More materials:

— Slides: https://crd.lbl.gov/assets/pubs presos/parlab(08-
roofline-talk.pdf

— Paper:
https://people.eecs.berkeley.edu/~waterman/papers/roofline.p
df

— Website: https://crd.lbl.qov/departments/computer-
science/PAR/research/roofline/

24

