Lecture 19: Instruction Level Parallelism

-- SMT: Exploiting Thread-Level Parallelism to
Improve Uniprocessor Throughput

CSCE 513 Computer Architecture

Department of Computer Science and Engineering
Yonghong Yan
yanyh@cse.sc.edu
https://passlab.qithub.io/CSCES513

Topics for Instruction Level Parallelism

5-stage Pipeline Extension, ILP Introduction, Compiler
Techniques, and Branch Prediction

- C.5,C.6

- 3.1, 3.2

Dynamic Scheduling (OOO)

- 3.4,3.5

Hardware Speculation and Static Superscalar/VLIW
- 3.6, 3.7

Dynamic Superscalar, Advanced Techniques, ARM
Cortex-A53, and Intel Core i7

—- 3.8, 3.9, 3.12
SMT: Exploiting Thread-Level Parallelism to Improve
Uniprocessor Throughput

- 3.1

Acknowledge and Copyright

» Slides adapted from

— UC Berkeley course “Computer Science 252: Graduate
Computer Architecture” of David E. Culler Copyright(C) 2005
UCB

— UC Berkeley course Computer Science 252, Graduate
Computer Architecture Spring 2012 of John Kubiatowicz
Copyright(C) 2012 UCB

— Computer Science 152: Computer Architecture and
Engineering, Spring 2016 by Dr. George Michelogiannakis
from UC Berkeley

— Arvind (MIT), Krste Asanovic (MIT/UCB), Joel Emer (Intel/MIT),
James Hoe (CMU), John Kubiatowicz (UCB), and David
Patterson (UCB)

* https://passlab.github.io/CSCE513/copyrightack.htmi

Pipeline Hazards in ILP

= Each instruction may depend on the next
A0 .t1 .t2 .t3 .t4 t5 .t6 .t7 .t8 . t9 t10 t11 t12 t13 t14,

LW r1, 0(r2) FID[X[M[w| i { @ @ @ & |
LWr5,12(r1) | |F|D|D|D[D[X|M|W| { :
ADDI5,r5,#12 | | |F|F|F|[F|D|D|D|D|X[M|W
sw12(r1),r5 i i | i i |F[F|F|F[D|D|D|D

What is usually done to cope with this?

— interlocks (slow)

— or bypassing (needs hardware, doesn’t help
all hazards)

Multithreading

= Difficult to continue to extract instruction-level
parallelism (ILP) from a single sequential thread of
control

* Many workloads can make use of thread-level
parallelism (TLP)

— TLP from multiprogramming (run independent
sequential jobs)

— TLP from multithreaded applications (run one job
faster using parallel threads)

= Multithreading uses TLP to improve utilization of a
single processor

Multithread Program in OpenMP

S gcc —fopenmp hello.c

$ export OMP NUM THREADS=2

S ./a.out
Hello World
Hello World

$ export OMP NUM THREADS=4

S ./a.out

Hello World
Hello World
Hello World
Hello World

$

#include <stdlib.h>
#include <stdio.h>

int main(int argc, char *argv[]) {
#pragma omp parallel
{ printf ("Hello World\n") ;
} // End of parallel region

return (0) ;

}

Typical OpenMP Parallel Program

Sequential code

OpenMP parallel
region

OpenMP parallel
region and a
worksharing for
construct

for(i=0;i<N;i++) {al[i] = a[i] + b[i]; }

#pragma omp parallel shared (a, b)

{

int id, i, Nthrds, istart, iend;

id = omp_get_thread _num();

Nthrds = omp_get num_threads();

istart =id * N / Nthrds;

lend = (id+1) * N / Nthrds;
for(i=istart;i<iend;i++) { ali] = a[i] + bJ[i]; }

#pragma omp parallel shared (a, b) private (i)
#pragma omp for schedule(static)
for(i=0;i<N;i++) { ali] = a[i] + bl[i]; }
7

Multithreading

How can we guarantee no dependencies between
instructions in a pipeline?

-- One way is to interleave execution of instructions
from different program threads on same pipeline

Interleave 4 threads, T1-T4, on non-bypassed 5-stage pipe

10 11 2 3 t4 15 16 {7 .t8 . t9

T1:LWr1,002) [E[D[X[M[W}_: . = Pprior instruction
T2: ADDr7,r6,r3 | |F[D[X|M|W; :@ : : inathread
P : ¢ i always
T3: XORIr5,rd, #12. | |E|DIX[MIW[= | Completes write-
T4:SWO0(r8), r9 i : : |F(D|X|M|W[: back before next
.)I‘ instruction in
T1: LWrS, 12(r1) .F D_—X—_M—W same thread

reads register
file
8

CDC 6600 Peripheral Processors
Cray, 1964

First multithreaded hardware

10 “virtual” 1/O processors

Fixed interleave on simple pipeline

Pipeline has 100ns cycle time

Each virtual processor executes one instruction every 1000ns
Accumulator-based instruction set to reduce processor state

Performance beyond single thread ILP

* There can be much higher natural parallelism in
some applications
— e.g., Database or Scientific codes
— Explicit Thread Level Parallelism or Data Level Parallelism

= Thread: instruction stream with own PC and data

— thread may be a process part of a parallel program of multiple
processes, or it may be an independent program

— Each thread has all the state (instructions, data, PC, register
state, and so on) necessary to allow it to execute

= Thread Level Parallelism (TLP):

— Exploit the parallelism inherent between threads to improve
performance

= Data Level Parallelism (DLP):

— Perform identical operations on data, and lots of data

10

One approach to exploiting threads:
Multithreading (TLP within pr r

= Multithreading: multiple threads to share the
functional units of 1 processor via
overlapping

— processor must duplicate independent state of each thread
e.g., a separate copy of register file, a separate PC, and for
running independent programs, a separate page table

— memory shared through the virtual memory mechanisms,
which already support multiple processes

— HW for fast thread switch; much faster than full process
switch =~ 100s to 1000s of clocks

= When switch?

— Alternate instruction per thread (fine grain)

— When a thread is stalled, perhaps for a cache miss, another
thread can be executed (coarse grain)

11

Multithreaded Categories

Simultaneous

Superscalar Fine-Grained Coarse-Grained Multiprocessing pyitithreading

+— Time (processor cycle)

e I e EENNY EEN
[] N [] BONN B
[e I Y \
R R Il [DR
WA '
EEEE D0 N
e LA NAA N\ ;
B NN
R N B RN
B T NN
N []
I Thread 1 Thread 3 Thread 5

Thread 2

Thread 4

Idle slot

12

Course-Grained Multithreading

Switches threads only on costly stalls, such as

L2 cache misses

Advantages

— Relieves need to have very fast thread-switching

— Doesn’t slow down thread, since instructions from

gté‘gétwrg&‘i'f' iIssued only when the thread encounters

Disadvantage Is hard to overcome throughput

losses from shorter stalls, due to pipeline start-

up costs

— Since CPU issues instructions from 1 thread, when a

stall occurs, the pipeline must be emptied or frozen

— New thread must fill pipeline before instructions can

complete

Because of this start-up overhead, coarse-
grained multithreading is better for reducing_
penalty of high cost stalls, where pipeline refill
<< stall time

Used in IBM AS/400, Sparcle (for Alewife)

13

Fine-Grained Multithreading

= Switches between threads on each instruction, =&
causing the execution of multiples threads to
be interleaved

— Usually done in a round-robin fashion, skipping any
stalled threads

— CPU must be able to switch threads every clock
= Advantage:

— can hide both short and long stalls, since instructions |
from other threads executed when one thread stalls

= Disadvantage:

— slows down execution of individual threads, since a
thread ready to execute without stalls will be delayed
by instructions from other threads

» Used on Oracle SPARC processor (Niagra from
Sun), several research multiprocessors, Tera

14

Simultaneous Multithreading (SMT):

Do both ILP and TLP

= TLP and ILP exploit two different kinds
of parallel structure in a program

= Could a processor oriented at ILP to
exploit TLP?

— functional units are often idle in data path designed
for ILP because of either stalls or dependences in

the code
= Could the TLP be used as a source of ‘
independent instructions that might
keep the processor busy during stalls?

= Could TLP be used to employ the
functional units that would otherwise
lie idle when insufficient ILP exists?

15

Simultaneous Multi-threading ...

One thread, 8 units Two threads, 8 units

Cycle M M FX FX FP FP BRCC Cycle M M FX FX FP FPBRCC
1 1
2 2
3 3
4 4
5 5
6 6
7 7
8 8
9 9

M = Load/Store, FX = Fixed Point, FP = Floating Point, BR = Branch, CC = Condition Codes
16

Choosing Policy

= Among four threads, from which do we fetch?

— Fetch from thread with the least instructions in flight.

17

Simultaneous Multithreading Details

= Simultaneous multithreading (SMT): insight that
dynamically scheduled processor already has many
HW mechanisms to support multithreading

— Large set of virtual registers that can be used to hold the
register sets of independent threads

— Register renaming provides unique register identifiers, so
instructions from multiple threads can be mixed in datapath
without confusing sources and destinations across threads

— Out-of-order completion allows the threads to execute out of
order, and get better utilization of the HW

» Just adding a per thread renaming table and keeping
separate PCs

— Independent commitment can be supported by logically
keeping a separate reorder buffer for each thread

Source: Micrprocessor Report, December 6, 1999
“Compaq Chooses SMT for Alpha"18

Design Challenges in SMT

Since SMT makes sense only with fine-grained
implementation, impact of fine-grained scheduling on
single thread performance?

— A preferred thread approach sacrifices neither throughput nor
single-thread performance?

— Unfortunately, with a preferred thread, the processor is likely
to sacrifice some throughput, when preferred thread stalls

Larger register file needed to hold multiple contexts

Clock cycle time, especially in:

— Instruction issue - more candidate instructions need to be
considered

— Instruction completion - choosing which instructions to
commit may be challenging

Ensuring that cache and TLB conflicts generated by
SMT do not degrade performance

19

Simple Multithreaded Pipeline

* Have to carry thread select down pipeline to ensure correct state
bits read/written at each pipe stage

» Appears to software (including OS) as multiple, albeit slower,

p=|

D$

CPUs
;\ 'II :X > B
P HN— 15 —IR—| GPR1 ﬂ =
1N- _ N :Y > é
N
1}
A
‘ I) [|1
2 Thread W 2 W

select

20

Multithreading Costs

= Each thread requires its own user state
- PC
— GPRs

= Also, needs its own system state

— Virtual-memory page-table-base register
— Exception-handling registers

= Other overheads:

— Additional cache/TLB conflicts from competing threads
— (or add larger cache/TLB capacity)

— More OS overhead to schedule more threads (where do all
these threads come from?)

21

For most apps, most execution units lie
le in an rscalar

Percent of Total Issue Cycles

100 e) a
o2al el :é /
» iz For an 8-way
H
? 24 memory conflict Supersca|ar.
80 i mlong fp
: shon fp
70 long integer “Processor busy”
ﬁ short integer
60 R load delays are
N [control hazards the actual
50 N b *h mispredicti .
\\‘ e mber e used issue slots
N a dcache miss
40 § IID icache miss
NI K dub miss
30 Q [itlb miss
: Q B rocessor busy
20 INL
Q i
SN
10 X
I From: Tullsen, Eggers, and Levy,
0 “Simultaneous Multithreading: Maximizing
= o = - ot . .
£E3E7ES 829 E 588 % £ On-chip Parallelism”, ISCA 1995.
=z3 585 Zge SFeE 2
- S5 & EBE - S g
- g

Applications 22

0-0-0 Simultaneous Multithreading
[Tullsen, Eggers, Emer, Levy, Stamm, Lo, DEC/UW, 1996]

Add multiple contexts and fetch engines and allow
instructions fetched from different threads to issue
simultaneously

Utilize wide out-of-order superscalar processor issue
queue to find instructions to issue from multiple
threads

OOO instruction window already has most of the
circuitry required to schedule from multiple threads

Any single thread can utilize whole machine

23

Power 4

Single-threaded predecessor to
Power 5. 8 execution units In
out-of-order engine, each may
issue an instruction each cycle.

Branch redirects \\Ouﬁf-order processing

' !

i Instruction fetch .

J ~ MP 1 ISS /4 RF M EX WB M Xfer
->‘ IF H IC BP LD/ST
g — MP [ISS [RF | EA [DC [Fmt [7] WB [Xfer CP -,
|

|
FX I
DO {Dl }— DZN— D3}—Xfer)— GDF" MP 1 ISS ™ RF /1 EX WB | Xfer = 1
|
Instruction crack and :
group formation -1 MP [ISS ™ RF [‘ FP |
|

Fé6 WB M Xfer

: Interrupts and flushes :

__

— Power 4

1
S s Ho ot fwlen "
“5|1F H IC {BPH
- -[155 [RF (< EA [5 DC [Fnt [WB. I
1
! DO (— D1 H D2 H D3 H Xfer @mm ' m E
] R
i D feion” o r,TI__ |
; [re}——Awn 5
: Interrupts and flushes :
L oo o o o o o o e e e e e e e e e e R G W R W M W R M R R G R R M M R S M M R G M M W M R G M M R G W W W M W W W e e e e e e e e
2 commits
e Tediracts power 5 Out-of-order processing (archltected
| sacn FEQisStEr Sets)
J= 1 otion fetch [wp-NssHrr - ex |-——PPeime_ gl fer|
Load/store
F IF C ElJ pipeline
- MP [liSS [RF [H EA [—DC [—Fmt [—{WB [—iXfer [oP [

~MP 1SS [H RF [

2 fetch (PC),"™""" e
2 injtial decodes po pipeine

: b1 H b2 H b3 Hxter|ab H-{mp HlissH rF H ex : —I\WB [—iXfer[—
: Fixed-point
. Group formation and pipeline

WB —iXfer

Branch prediction J

t
Return| | Target
stack cache

Dynamic
instruction
selection
Shared
issue
queues

Program Branch
counter history
tables
<z Alternate
Instruction L]
_ buffer 0 Group formation
lnsct:éﬁt;on Instruction decode
Dispatch
Instruction
translation
Thread
priority

Read
shared-
register files

Shared
execution
units
LSUO Data Data
IF XUO| Translation Cache
FXU1| & Group Store
FPUO . completion queue
FPU1 é
| BXU |
CRL Data Data
Write translation | |cache
shared- {—
register files 1o
cache

|) Shared by two threads [Thread 0 resources [Thread 1 resources |

Why only 2 threads? With 4, one of the shared
resources (physical registers, cache, memory
bandwidth) would be prone to bottleneck

26

Changes in Power 5 to support SMT

Increased associativity of L1 instruction cache and
the instruction address translation buffers

Added per thread load and store queues

Increased size of the L2 (1.92 vs. 1.44 MB) and L3
caches

Added separate instruction prefetch and buffering per
thread

Izrh%reased the number of virtual registers from 152 to

Increased the size of several issue queues

The Power5 core is about 24% larger than the Power4
core because of the addition of SMT support

27

Pentium-4 Hyperthreading (2002)

First commercial SMT design (2-way SMT)
— Hyperthreading == SMT

Logical processors share nearly all resources of the physical
processor

— Caches, execution units, branch predictors
Die area overhead of hyperthreading ~ 5%
When one logical processor is stalled, the other can make

progress

— No logical processor can use all entries in queues when two threads are
active

Processor running only one active software thread runs at
approximately same speed with or without hyperthreading

Hyperthreading dropped on OoO P6 based follow-ons to
Pentium-4 (Pentium-M, Core Duo, Core 2 Duo), until revived with
Nehalem generation machines in 2008.

Intel Atom (in-order x86 core) has two-way vertical
multithreading

28

Initial Performance of SMT

Pentium 4 Extreme SMT yields 1.01 speedup for
SPECint_rate benchmark and 1.07 for SPECfp_rate

— Pentium 4 is dual threaded SMT

— SPECRate requires that each SPEC benchmark be run against
a vendor-selected number of copies of the same benchmark

Running on Pentium 4 each of 26 SPEC benchmarks
paired with every other (262 runs) speed-ups from
0.90 to 1.58; average was 1.20

Power 5, 8-processor server 1.23 faster for
SPECint_rate with SMT, 1.16 faster for SPECfp_rate

Power 5 running 2 copies of each app speedup
between 0.89 and 1.41

— Most gained some
— FIL.Pt. apps had most cache conflicts and least gains

29 29

Intel i7 Performance

2-thread SMT

i7 SMT performance and energy efficiency ratio

2.00 -

1.75 -

1.50 A

B Speedup —— Energy efficiency

A

0-75 T T T T T T T I T T T I T T T I T T
2 >SS O D O ¥ o Q& & Q0 L@ & & .o &
O S 2’ O > Q" N Q .

& & ¢ _@@ LA S & F PSR F & X Q°

AP & ¥ & 7 C S PR

& SN 000 OF « Y &\

> 2 o QD N o O
< O S

30

End of Chapter 3

31

