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Topics for Instruction Level Parallelism
§ 5-stage Pipeline Extension, ILP Introduction, Compiler 

Techniques, and Branch Prediction
– C.5, C.6
– 3.1, 3.2
– Branch Prediction, C.2, 3.3

§ Dynamic Scheduling (OOO)
– 3.4, 3.5

§ Hardware Speculation and Static Superscalar/VLIW
– 3.6, 3.7

§ Dynamic Superscalar, Advanced Techniques, ARM 
Cortex-A53, and Intel Core i7
– 3.8, 3.9, 3.12

§ SMT: Exploiting Thread-Level Parallelism to Improve 
Uniprocessor Throughput 
– 3.11
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Pipeline Hazards in ILP
§ Each instruction may depend on the next

LW r1, 0(r2)
LW r5, 12(r1)
ADDI r5, r5, #12
SW 12(r1), r5

F D X M W
t0 t1 t2 t3 t4 t5 t6 t7 t8

F D X M WD D D
F D X M WD D DF F F

F DD D DF F F

t9 t10 t11 t12 t13 t14

What is usually done to cope with this?
– interlocks (slow)
– or bypassing (needs hardware, doesn’t help 

all hazards)
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Multithreading
§ Difficult to continue to extract instruction-level 

parallelism (ILP) from a single sequential thread of 
control

§ Many workloads can make use of thread-level 
parallelism (TLP)
– TLP from multiprogramming (run independent 

sequential jobs)
– TLP from multithreaded applications (run one job 

faster using parallel threads)

§ Multithreading uses TLP to improve utilization of a 
single processor
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Multithread Program in OpenMP

$ gcc –fopenmp hello.c 
 
 
$ export OMP_NUM_THREADS=2 
$ ./a.out 
Hello World 
Hello World 
 
$ export OMP_NUM_THREADS=4 
$ ./a.out 
Hello World 
Hello World 
Hello World 
Hello World 
$ 
 

#include <stdlib.h> 
#include <stdio.h> 
 
int main(int argc, char *argv[]) { 
 
   #pragma omp parallel 
   { 
          printf("Hello World\n"); 
           
   } // End of parallel region 
  
   return(0); 
} 
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Typical OpenMP Parallel Program

7

for(i=0;i<N;i++)   { a[i] = a[i] + b[i]; }

#pragma omp parallel shared (a, b)

{

int id, i, Nthrds, istart, iend;
id = omp_get_thread_num();
Nthrds = omp_get_num_threads();
istart = id * N / Nthrds;
iend = (id+1) * N / Nthrds;
for(i=istart;i<iend;i++)   { a[i] = a[i] + b[i]; }

}

#pragma omp parallel shared (a, b) private (i) 
#pragma omp for schedule(static) 

for(i=0;i<N;i++)   { a[i] = a[i] + b[i]; }

Sequential code

OpenMP parallel
region

OpenMP parallel
region and a 

worksharing for
construct
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Multithreading
How can we guarantee no dependencies between 

instructions in a pipeline?
-- One way is to interleave execution of instructions 

from different program threads on same pipeline

F D X M W
t0 t1 t2 t3 t4 t5 t6 t7 t8

T1: LW r1, 0(r2)
T2: ADD r7, r6, r3
T3: XORI r5, r4, #12
T4: SW 0(r8),  r9
T1: LW r5, 12(r1)

t9

F D X M W
F D X M W

F D X M W
F D X M W

Interleave 4 threads, T1-T4, on non-bypassed 5-stage pipe

Prior instruction 
in a thread 
always 
completes write-
back before next 
instruction in 
same thread 
reads register 
file
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CDC 6600 Peripheral Processors
(Cray, 1964)

§ First multithreaded hardware
§ 10 “virtual” I/O processors
§ Fixed interleave on simple pipeline
§ Pipeline has 100ns cycle time
§ Each virtual processor executes one instruction every 1000ns
§ Accumulator-based instruction set to reduce processor state
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Performance beyond single thread ILP
§ There can be much higher natural parallelism in 

some applications
– e.g., Database or Scientific codes
– Explicit Thread Level Parallelism or Data Level Parallelism

§ Thread: instruction stream with own PC and data
– thread may be a process part of a parallel program of multiple 

processes, or it may be an independent program
– Each thread has all the state (instructions, data, PC, register 

state, and so on) necessary to allow it to execute

§ Thread Level Parallelism (TLP): 
– Exploit the parallelism inherent between threads to improve 

performance

§ Data Level Parallelism (DLP): 
– Perform identical operations on data, and lots of data
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One approach to exploiting threads: 
Multithreading (TLP within processor)

§ Multithreading: multiple threads to share the 
functional units of 1 processor via 
overlapping
– processor must duplicate independent state of each thread 

e.g., a separate copy of register file, a separate PC, and for 
running independent programs, a separate page table

– memory shared through the virtual memory mechanisms, 
which already support multiple processes

– HW for fast thread switch; much faster than full process 
switch » 100s to 1000s of clocks

§ When switch?
– Alternate instruction per thread (fine grain)
– When a thread is stalled, perhaps for a cache miss, another 

thread can be executed (coarse grain)
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Multithreaded Categories
Ti

m
e (

pr
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so

r c
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le) Superscalar Fine-Grained Coarse-Grained Multiprocessing
Simultaneous
Multithreading

Thread 1
Thread 2

Thread 3
Thread 4

Thread 5
Idle slot
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Course-Grained Multithreading
§ Switches threads only on costly stalls, such as 

L2 cache misses
§ Advantages 

– Relieves need to have very fast thread-switching
– Doesn’t slow down thread, since instructions from 

other threads issued only when the thread encounters 
a costly stall 

§ Disadvantage is hard to overcome throughput 
losses from shorter stalls, due to pipeline start-
up costs
– Since CPU issues instructions from 1 thread, when a 

stall occurs, the pipeline must be emptied or frozen 
– New thread must fill pipeline before instructions can 

complete 

§ Because of this start-up overhead, coarse-
grained multithreading is better for reducing 
penalty of high cost stalls, where pipeline refill 
<< stall time

§ Used in IBM AS/400, Sparcle (for Alewife)
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Fine-Grained Multithreading
§ Switches between threads on each instruction, 

causing the execution of multiples threads to 
be interleaved 
– Usually done in a round-robin fashion, skipping any 

stalled threads
– CPU must be able to switch threads every clock

§ Advantage:
– can hide both short and long stalls, since instructions 

from other threads executed when one thread stalls 
§ Disadvantage:

– slows down execution of individual threads, since a 
thread ready to execute without stalls will be delayed 
by instructions from other threads

§ Used on Oracle SPARC processor (Niagra from 
Sun), several research multiprocessors, Tera
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Simultaneous Multithreading (SMT):
Do both ILP and TLP

§ TLP and ILP exploit two different kinds 
of parallel structure in a program 

§ Could a processor oriented at ILP to 
exploit TLP?
– functional units are often idle in data path designed 

for ILP because of either stalls or dependences in 
the code 

§ Could the TLP be used as a source of 
independent instructions that might 
keep the processor busy during stalls? 

§ Could TLP be used to employ the 
functional units that would otherwise 
lie idle when insufficient ILP exists?
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Simultaneous Multi-threading ...

1

2

3

4

5

6

7

8

9

M M FX FX FP FP BR CCCycle
One thread, 8 units

M = Load/Store, FX = Fixed Point, FP = Floating Point, BR = Branch, CC = Condition Codes

1

2

3

4

5

6

7

8

9

M M FX FX FP FP BR CCCycle

Two threads, 8 units
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Choosing Policy
§ Among four threads, from which do we fetch?

– Fetch from thread with the least instructions in flight.



18

Simultaneous Multithreading Details
§ Simultaneous multithreading (SMT): insight that 

dynamically scheduled processor already has many 
HW mechanisms to support multithreading
– Large set of virtual registers that can be used to hold the 

register sets of independent threads 
– Register renaming provides unique register identifiers, so 

instructions from multiple threads can be mixed in datapath
without confusing sources and destinations across threads

– Out-of-order completion allows the threads to execute out of 
order, and get better utilization of the HW 

§ Just adding a per thread renaming table and keeping 
separate PCs
– Independent commitment can be supported by logically 

keeping a separate reorder buffer for each thread

Source: Micrprocessor Report, December 6, 1999
“Compaq Chooses SMT for Alpha”
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Design Challenges in SMT
§ Since SMT makes sense only with fine-grained 

implementation, impact of fine-grained scheduling on 
single thread performance?
– A preferred thread approach sacrifices neither throughput nor 

single-thread performance? 
– Unfortunately, with a preferred thread, the processor is likely 

to sacrifice some throughput, when preferred thread stalls
§ Larger register file needed to hold multiple contexts
§ Clock cycle time, especially in:

– Instruction issue - more candidate instructions need to be 
considered

– Instruction completion - choosing which instructions to 
commit may be challenging

§ Ensuring that cache and TLB conflicts generated by 
SMT do not degrade performance
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Simple Multithreaded Pipeline
§ Have to carry thread select down pipeline to ensure correct state 

bits read/written at each pipe stage
§ Appears to software (including OS) as multiple, albeit slower, 

CPUs

+1

2 Thread 
select

PC
1PC

1PC
1PC

1
I$ IR GPR1GPR1GPR1GPR1

X

Y

2

D$
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Multithreading Costs
§ Each thread requires its own user state

– PC
– GPRs

§ Also, needs its own system state
– Virtual-memory page-table-base register
– Exception-handling registers

§ Other overheads:
– Additional cache/TLB conflicts from competing threads
– (or add larger cache/TLB capacity)
– More OS overhead to schedule more threads (where do all 

these threads come from?)
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For most apps, most execution units lie 
idle in an OoO superscalar

From: Tullsen, Eggers, and Levy,
“Simultaneous Multithreading: Maximizing 
On-chip Parallelism”, ISCA 1995.

For an 8-way 
superscalar.

“Processor busy”

are

the actual

used issue slots
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O-o-O Simultaneous Multithreading
[Tullsen, Eggers, Emer, Levy, Stamm, Lo, DEC/UW, 1996]

§ Add multiple contexts and fetch engines and allow 
instructions fetched from different threads to issue 
simultaneously

§ Utilize wide out-of-order superscalar processor issue 
queue to find instructions to issue from multiple 
threads

§ OOO instruction window already has most of the 
circuitry required to schedule from multiple threads

§ Any single thread can utilize whole machine
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Power 4

Single-threaded predecessor to 
Power 5.  8 execution units in
out-of-order engine, each may
issue an instruction each cycle.
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Power 4

Power 5

2 fetch (PC),
2 initial decodes

2 commits 
(architected 
register sets)
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Power 5 data flow ...

Why only 2 threads? With 4, one of the shared 
resources (physical registers, cache, memory 
bandwidth) would be prone to bottleneck 
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Changes in Power 5 to support SMT
§ Increased associativity of L1 instruction cache and 

the instruction address translation buffers 
§ Added per thread load and store queues 
§ Increased size of the L2 (1.92 vs. 1.44 MB) and L3 

caches
§ Added separate instruction prefetch and buffering per 

thread
§ Increased the number of virtual registers from 152 to 

240
§ Increased the size of several issue queues
§ The Power5 core is about 24% larger than the Power4 

core because of the addition of SMT support
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Pentium-4 Hyperthreading (2002)

§ First commercial SMT design (2-way SMT)
– Hyperthreading == SMT

§ Logical processors share nearly all resources of the physical 
processor

– Caches, execution units, branch predictors
§ Die area overhead of hyperthreading ~ 5%
§ When one logical processor is stalled, the other can make 

progress
– No logical processor can use all entries in queues when two threads are 

active
§ Processor running only one active software thread runs at 

approximately same speed with or without hyperthreading
§ Hyperthreading dropped on OoO P6 based follow-ons  to 

Pentium-4 (Pentium-M, Core Duo, Core 2 Duo), until revived with 
Nehalem generation machines in 2008.

§ Intel Atom (in-order x86 core) has two-way vertical 
multithreading
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Initial Performance of SMT
§ Pentium 4 Extreme SMT yields 1.01 speedup for 

SPECint_rate benchmark and 1.07 for SPECfp_rate
– Pentium 4 is dual threaded SMT
– SPECRate requires that each SPEC benchmark be run against 

a vendor-selected number of copies of the same benchmark
§ Running on Pentium 4 each of 26 SPEC benchmarks 

paired with every other (262 runs) speed-ups from 
0.90 to 1.58; average was 1.20

§ Power 5, 8-processor server 1.23 faster for 
SPECint_rate with SMT, 1.16 faster for SPECfp_rate

§ Power 5 running 2 copies of each app speedup 
between 0.89 and 1.41
– Most gained some
– Fl.Pt. apps had most cache conflicts and least gains

29
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Intel i7 Performance
§ 2-thread SMT
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End of Chapter 3


