
Lecture 19: Instruction Level Parallelism
-- SMT: Exploiting Thread-Level Parallelism to

Improve Uniprocessor Throughput

CSCE 513 Computer Architecture

Department of Computer Science and Engineering
Yonghong Yan

yanyh@cse.sc.edu
https://passlab.github.io/CSCE513

2

Topics for Instruction Level Parallelism
§ 5-stage Pipeline Extension, ILP Introduction, Compiler

Techniques, and Branch Prediction
– C.5, C.6
– 3.1, 3.2
– Branch Prediction, C.2, 3.3

§ Dynamic Scheduling (OOO)
– 3.4, 3.5

§ Hardware Speculation and Static Superscalar/VLIW
– 3.6, 3.7

§ Dynamic Superscalar, Advanced Techniques, ARM
Cortex-A53, and Intel Core i7
– 3.8, 3.9, 3.12

§ SMT: Exploiting Thread-Level Parallelism to Improve
Uniprocessor Throughput
– 3.11

3

Acknowledge and Copyright
§ Slides adapted from

– UC Berkeley course “Computer Science 252: Graduate
Computer Architecture” of David E. Culler Copyright(C) 2005
UCB

– UC Berkeley course Computer Science 252, Graduate
Computer Architecture Spring 2012 of John Kubiatowicz
Copyright(C) 2012 UCB

– Computer Science 152: Computer Architecture and
Engineering, Spring 2016 by Dr. George Michelogiannakis
from UC Berkeley

– Arvind (MIT), Krste Asanovic (MIT/UCB), Joel Emer (Intel/MIT),
James Hoe (CMU), John Kubiatowicz (UCB), and David
Patterson (UCB)

§ https://passlab.github.io/CSCE513/copyrightack.html

4

Pipeline Hazards in ILP
§ Each instruction may depend on the next

LW r1, 0(r2)
LW r5, 12(r1)
ADDI r5, r5, #12
SW 12(r1), r5

F D X M W
t0 t1 t2 t3 t4 t5 t6 t7 t8

F D X M WD D D
F D X M WD D DF F F

F DD D DF F F

t9 t10 t11 t12 t13 t14

What is usually done to cope with this?
– interlocks (slow)
– or bypassing (needs hardware, doesn’t help

all hazards)

5

Multithreading
§ Difficult to continue to extract instruction-level

parallelism (ILP) from a single sequential thread of
control

§ Many workloads can make use of thread-level
parallelism (TLP)
– TLP from multiprogramming (run independent

sequential jobs)
– TLP from multithreaded applications (run one job

faster using parallel threads)

§ Multithreading uses TLP to improve utilization of a
single processor

6

Multithread Program in OpenMP

$ gcc –fopenmp hello.c

$ export OMP_NUM_THREADS=2
$./a.out
Hello World
Hello World

$ export OMP_NUM_THREADS=4
$./a.out
Hello World
Hello World
Hello World
Hello World
$

#include <stdlib.h>
#include <stdio.h>

int main(int argc, char *argv[]) {

 #pragma omp parallel
 {
 printf("Hello World\n");

 } // End of parallel region

 return(0);
}

7

Typical OpenMP Parallel Program

7

for(i=0;i<N;i++) { a[i] = a[i] + b[i]; }

#pragma omp parallel shared (a, b)

{

int id, i, Nthrds, istart, iend;
id = omp_get_thread_num();
Nthrds = omp_get_num_threads();
istart = id * N / Nthrds;
iend = (id+1) * N / Nthrds;
for(i=istart;i<iend;i++) { a[i] = a[i] + b[i]; }

}

#pragma omp parallel shared (a, b) private (i)
#pragma omp for schedule(static)

for(i=0;i<N;i++) { a[i] = a[i] + b[i]; }

Sequential code

OpenMP parallel
region

OpenMP parallel
region and a

worksharing for
construct

8

Multithreading
How can we guarantee no dependencies between

instructions in a pipeline?
-- One way is to interleave execution of instructions

from different program threads on same pipeline

F D X M W
t0 t1 t2 t3 t4 t5 t6 t7 t8

T1: LW r1, 0(r2)
T2: ADD r7, r6, r3
T3: XORI r5, r4, #12
T4: SW 0(r8), r9
T1: LW r5, 12(r1)

t9

F D X M W
F D X M W

F D X M W
F D X M W

Interleave 4 threads, T1-T4, on non-bypassed 5-stage pipe

Prior instruction
in a thread
always
completes write-
back before next
instruction in
same thread
reads register
file

9

CDC 6600 Peripheral Processors
(Cray, 1964)

§ First multithreaded hardware
§ 10 “virtual” I/O processors
§ Fixed interleave on simple pipeline
§ Pipeline has 100ns cycle time
§ Each virtual processor executes one instruction every 1000ns
§ Accumulator-based instruction set to reduce processor state

10

Performance beyond single thread ILP
§ There can be much higher natural parallelism in

some applications
– e.g., Database or Scientific codes
– Explicit Thread Level Parallelism or Data Level Parallelism

§ Thread: instruction stream with own PC and data
– thread may be a process part of a parallel program of multiple

processes, or it may be an independent program
– Each thread has all the state (instructions, data, PC, register

state, and so on) necessary to allow it to execute

§ Thread Level Parallelism (TLP):
– Exploit the parallelism inherent between threads to improve

performance

§ Data Level Parallelism (DLP):
– Perform identical operations on data, and lots of data

11

One approach to exploiting threads:
Multithreading (TLP within processor)

§ Multithreading: multiple threads to share the
functional units of 1 processor via
overlapping
– processor must duplicate independent state of each thread

e.g., a separate copy of register file, a separate PC, and for
running independent programs, a separate page table

– memory shared through the virtual memory mechanisms,
which already support multiple processes

– HW for fast thread switch; much faster than full process
switch » 100s to 1000s of clocks

§ When switch?
– Alternate instruction per thread (fine grain)
– When a thread is stalled, perhaps for a cache miss, another

thread can be executed (coarse grain)

12

Multithreaded Categories
Ti

m
e (

pr
oc

es
so

r c
yc

le) Superscalar Fine-Grained Coarse-Grained Multiprocessing
Simultaneous
Multithreading

Thread 1
Thread 2

Thread 3
Thread 4

Thread 5
Idle slot

13

Course-Grained Multithreading
§ Switches threads only on costly stalls, such as

L2 cache misses
§ Advantages

– Relieves need to have very fast thread-switching
– Doesn’t slow down thread, since instructions from

other threads issued only when the thread encounters
a costly stall

§ Disadvantage is hard to overcome throughput
losses from shorter stalls, due to pipeline start-
up costs
– Since CPU issues instructions from 1 thread, when a

stall occurs, the pipeline must be emptied or frozen
– New thread must fill pipeline before instructions can

complete

§ Because of this start-up overhead, coarse-
grained multithreading is better for reducing
penalty of high cost stalls, where pipeline refill
<< stall time

§ Used in IBM AS/400, Sparcle (for Alewife)

14

Fine-Grained Multithreading
§ Switches between threads on each instruction,

causing the execution of multiples threads to
be interleaved
– Usually done in a round-robin fashion, skipping any

stalled threads
– CPU must be able to switch threads every clock

§ Advantage:
– can hide both short and long stalls, since instructions

from other threads executed when one thread stalls
§ Disadvantage:

– slows down execution of individual threads, since a
thread ready to execute without stalls will be delayed
by instructions from other threads

§ Used on Oracle SPARC processor (Niagra from
Sun), several research multiprocessors, Tera

15

Simultaneous Multithreading (SMT):
Do both ILP and TLP

§ TLP and ILP exploit two different kinds
of parallel structure in a program

§ Could a processor oriented at ILP to
exploit TLP?
– functional units are often idle in data path designed

for ILP because of either stalls or dependences in
the code

§ Could the TLP be used as a source of
independent instructions that might
keep the processor busy during stalls?

§ Could TLP be used to employ the
functional units that would otherwise
lie idle when insufficient ILP exists?

16

Simultaneous Multi-threading ...

1

2

3

4

5

6

7

8

9

M M FX FX FP FP BR CCCycle
One thread, 8 units

M = Load/Store, FX = Fixed Point, FP = Floating Point, BR = Branch, CC = Condition Codes

1

2

3

4

5

6

7

8

9

M M FX FX FP FP BR CCCycle

Two threads, 8 units

17

Choosing Policy
§ Among four threads, from which do we fetch?

– Fetch from thread with the least instructions in flight.

18

Simultaneous Multithreading Details
§ Simultaneous multithreading (SMT): insight that

dynamically scheduled processor already has many
HW mechanisms to support multithreading
– Large set of virtual registers that can be used to hold the

register sets of independent threads
– Register renaming provides unique register identifiers, so

instructions from multiple threads can be mixed in datapath
without confusing sources and destinations across threads

– Out-of-order completion allows the threads to execute out of
order, and get better utilization of the HW

§ Just adding a per thread renaming table and keeping
separate PCs
– Independent commitment can be supported by logically

keeping a separate reorder buffer for each thread

Source: Micrprocessor Report, December 6, 1999
“Compaq Chooses SMT for Alpha”

19

Design Challenges in SMT
§ Since SMT makes sense only with fine-grained

implementation, impact of fine-grained scheduling on
single thread performance?
– A preferred thread approach sacrifices neither throughput nor

single-thread performance?
– Unfortunately, with a preferred thread, the processor is likely

to sacrifice some throughput, when preferred thread stalls
§ Larger register file needed to hold multiple contexts
§ Clock cycle time, especially in:

– Instruction issue - more candidate instructions need to be
considered

– Instruction completion - choosing which instructions to
commit may be challenging

§ Ensuring that cache and TLB conflicts generated by
SMT do not degrade performance

20

Simple Multithreaded Pipeline
§ Have to carry thread select down pipeline to ensure correct state

bits read/written at each pipe stage
§ Appears to software (including OS) as multiple, albeit slower,

CPUs

+1

2 Thread
select

PC
1PC

1PC
1PC

1
I$ IR GPR1GPR1GPR1GPR1

X

Y

2

D$

21

Multithreading Costs
§ Each thread requires its own user state

– PC
– GPRs

§ Also, needs its own system state
– Virtual-memory page-table-base register
– Exception-handling registers

§ Other overheads:
– Additional cache/TLB conflicts from competing threads
– (or add larger cache/TLB capacity)
– More OS overhead to schedule more threads (where do all

these threads come from?)

22

For most apps, most execution units lie
idle in an OoO superscalar

From: Tullsen, Eggers, and Levy,
“Simultaneous Multithreading: Maximizing
On-chip Parallelism”, ISCA 1995.

For an 8-way
superscalar.

“Processor busy”

are

the actual

used issue slots

23

O-o-O Simultaneous Multithreading
[Tullsen, Eggers, Emer, Levy, Stamm, Lo, DEC/UW, 1996]

§ Add multiple contexts and fetch engines and allow
instructions fetched from different threads to issue
simultaneously

§ Utilize wide out-of-order superscalar processor issue
queue to find instructions to issue from multiple
threads

§ OOO instruction window already has most of the
circuitry required to schedule from multiple threads

§ Any single thread can utilize whole machine

24

Power 4

Single-threaded predecessor to
Power 5. 8 execution units in
out-of-order engine, each may
issue an instruction each cycle.

25

Power 4

Power 5

2 fetch (PC),
2 initial decodes

2 commits
(architected
register sets)

26

Power 5 data flow ...

Why only 2 threads? With 4, one of the shared
resources (physical registers, cache, memory
bandwidth) would be prone to bottleneck

27

Changes in Power 5 to support SMT
§ Increased associativity of L1 instruction cache and

the instruction address translation buffers
§ Added per thread load and store queues
§ Increased size of the L2 (1.92 vs. 1.44 MB) and L3

caches
§ Added separate instruction prefetch and buffering per

thread
§ Increased the number of virtual registers from 152 to

240
§ Increased the size of several issue queues
§ The Power5 core is about 24% larger than the Power4

core because of the addition of SMT support

28

Pentium-4 Hyperthreading (2002)

§ First commercial SMT design (2-way SMT)
– Hyperthreading == SMT

§ Logical processors share nearly all resources of the physical
processor

– Caches, execution units, branch predictors
§ Die area overhead of hyperthreading ~ 5%
§ When one logical processor is stalled, the other can make

progress
– No logical processor can use all entries in queues when two threads are

active
§ Processor running only one active software thread runs at

approximately same speed with or without hyperthreading
§ Hyperthreading dropped on OoO P6 based follow-ons to

Pentium-4 (Pentium-M, Core Duo, Core 2 Duo), until revived with
Nehalem generation machines in 2008.

§ Intel Atom (in-order x86 core) has two-way vertical
multithreading

29

Initial Performance of SMT
§ Pentium 4 Extreme SMT yields 1.01 speedup for

SPECint_rate benchmark and 1.07 for SPECfp_rate
– Pentium 4 is dual threaded SMT
– SPECRate requires that each SPEC benchmark be run against

a vendor-selected number of copies of the same benchmark
§ Running on Pentium 4 each of 26 SPEC benchmarks

paired with every other (262 runs) speed-ups from
0.90 to 1.58; average was 1.20

§ Power 5, 8-processor server 1.23 faster for
SPECint_rate with SMT, 1.16 faster for SPECfp_rate

§ Power 5 running 2 copies of each app speedup
between 0.89 and 1.41
– Most gained some
– Fl.Pt. apps had most cache conflicts and least gains

29

30

Intel i7 Performance
§ 2-thread SMT

31

End of Chapter 3

