Lecture 18: Instruction Level Parallelism

-- Dynamic Superscalar, Advanced Techniques,
ARM Cortex-A53, and Intel Core i7

CSCE 513 Computer Architecture

Department of Computer Science and Engineering
Yonghong Yan
yanyh@cse.sc.edu
https://passlab.qithub.io/CSCES513

Topics for Instruction Level Parallelism

5-stage Pipeline Extension, ILP Introduction, Compiler
Techniques, and Branch Prediction

- C.5,C.6

-3.1,3.2

Dynamic Scheduling (OOO)

-34,35

Hardware Speculation and Static Superscalar/VLIW
—-3.6,3.7

Dynamic Superscalar, Advanced Techniques, ARM
Cortex-A53, and Intel Core i7

- 3.8,3.9,3.12

SMT: Exploiting Thread-Level Parallelism to Improve
Uniprocessor Throughput

- 3.11

Acknowledge and Copyright

» Slides adapted from

— UC Berkeley course “Computer Science 252: Graduate
Computer Architecture” of David E. Culler Copyright(C) 2005
UCB

— UC Berkeley course Computer Science 252, Graduate
Computer Architecture Spring 2012 of John Kubiatowicz
Copyright(C) 2012 UCB

— Computer Science 152: Computer Architecture and
Engineering, Spring 2016 by Dr. George Michelogiannakis
from UC Berkeley

» https://passlab.github.io/CSCE513/copyrightack.htmi

Review

Not Every Stage Takes only one Cycle

= FP EXE Stage
— Multi-cycle Add/Mul D
— Nonpiplined for DIV

FP/integer multiply

i

der

= MEM Stage

IF g IS g RF f EX g DF ; DS f TC g WB

Reg

Data memory

Instruction memory

Figure C.41 The eight-stage pipeline structure of the R4000 uses pipelined instruction and data caches. The
pipe stages are labeled and their detailed function is described in the text. The vertical dashed lines represent the
stage boundaries as well as the location of pipeline latches. The instruction is actually available at the end of IS, but
the tag check is done in RF, while the registers are fetched. Thus, we show the instruction memory as operating

Issues of Multi-Cycle in Some Stages

* The divide unit is not fully pipelined
— structural hazards can occur
» need to be detected and stall incurred.
* The instructions have varying running times
— the number of register writes required in a cycle can be > 1

* Instructions no longer reach WB in order

— Write after write (WAW) hazards are possible

» Note that write after read (WAR) hazards are not possible, since
the register reads always occur in ID.

* [nstructions can complete in a different order than
they were issued (out-of-order complete)

— causing problems with exceptions

= Longer latency of operations
— stalls for RAW hazards will be more frequent.

Hardware Solution for Addressing Data

Hazards

* Dynamic Scheduling of Instructions:
— In-order issue
— Out-of-order execution
— Out-of-order completion

= Data Hazard via Register Renaming

— Dynamic RAW hazard detection and scheduling in data-flow
fashion

— Register renaming for WRW and WRA hazard (name conflict)

* Implementations
— Scoreboard (CDC 6600 1963)

» Centralized register renaming

— Tomasulo’s Approach (IBM 360/91, 1966)

» Distributed control and renaming via reservation station,
load/store buffer and common data bus (data+source)

Register Renaming Summary

= Purpose of Renaming: removing “Anti-dependencies”
— Get rid of WAR and WAW hazards, since these are not “real”
dependencies

* Implicit Renaming: i.e. Tomasulo

— Registers changed into values or response tags

— We call this “implicit” because space in register file may or may not
be used by results!

= Explicit Renaming: more physical registers than
needed by ISA.

— Rename table: tracks current association between architectural
registers and physical registers

— Uses a translation table to perform compiler-like transformation on
the fly

Hardware Speculation: Addressing

Control Hazards

= Branch Prediction:

— Modern branch predictors have high accuracy:
(>95%) and can reduce branch penalties significantly

— Required hardware support
» Branch history tables (Taken or Not)
» Branch target buffers, etc. (Target address)

= |n-order commit for out-of-order execution:

— Instructions fetched and decoded into instruction reorder
buffer in-order

— Execution is out-of-order (= out-of-order completion)

— Commit (write-back to architectural state, i.e., redfile &
memory) is in-order

Speculation: Prediction + Mis-prediction
Recovery

Update predictors

"PCJiFetch" Decode & L, R7/order Bu\&er ~|Commit|”
Rename

I A I A A

v v

v A\

ALuMEM] 2 2 L] DS

Reg.|File \
E\;Lﬁ‘ bel $41 ,,
ranc = Store

Execute

Hardware Speculation in Tomasulo Algorithm

Reservation Station
and Load Buffer

— Register renaming

From instruction unit

Reorder buffer

— For dynamic
scheduling and out-of
order execution

Reorder Buffer
— Register renaming
— For in-order commit

Instruction
queue

Load/store
operations

v

Address unit i

Common Data Bus
— Data forwarding

Also handle memory ___

data hazard data

4

Load buffers

Floating-point
operations

/

Reg #

\

l Data

FP registers I

=

Operand
buses

Y

Operation bus

Reservation

v Address

stations

Common data bus (CDB)

11

Four Steps of Speculative Tomasulo

1. Issue—get instruction from FP Op Queue

If reservation station and reorder buffer slot free, issue instr &
send operands & reorder buffer no. for destination (this stage
sometimes called “dispatch”)

2. Execution—operate on operands (EX)

When both operands ready then execute; if not ready, watch
CDB for result; when both in reservation station, execute;
checks RAW (sometimes called “issue”)

3. Write result—finish execution (WB)

Write on Common Data Bus to all awaiting FUs
& reorder buffer; mark reservation station available.

4. Commit—update register with reorder result

When instr. at head of reorder buffer & result present, update
register with result (or store to memory) and remove instr
from reorder buffer. Mispredicted branch flushes reorder
buffer (sometimes called “graduation”)

12

Instruction In-order Commit

= Also called completion or graduation

= |n-order commit
— In-order issue
— Out-of-order execution
— Out-of-order completion

= Three cases when an instr reaches the head of ROB

— Normal commit: when an instruction reaches the head of the
ROB and its result is present in the buffer

» The processor updates the register with the result and removes
the instruction from the ROB.

— Committing a store:

» is similar except that memory is updated rather than a result
register.

— A branch with incorrect prediction
» indicates that the speculation was wrong.

» The ROB is flushed and execution is restarted at the correct
successor of the branch. 13

Loop: L.D FO,0(R1)
In-order MUL.D F4,FO, F2

—Commmitwith S.D F4,0(R1)

DADDIU R1,R1,#-8

Branch BNE R1,R2,Loop sbranches if R1|l
Reorder buffer
Entry Busy Instruction State Destination Value
1 No L.D FO,0(R1) Commit FO Mem[0 +
Regs[R1]]
2 No MUL.D F4,F0,F2 Commit Fa #1 x Regs [F2]
3 Yes S.D F4,0(R1) Write result 0 + Regs[R1] #2
4 Yes DADDIU R1,R1,#-8 Write result R1 Regs[R1] - 8
5 Yes BNE R1,R2,Loop Write result
6 L.D FO,0(R1) Write result Mem[#4]
7 MUL.D F4,F0,F2 \Vrite result #6 x Regs [F2]
; s plUSHEE ”
9 DADDIU R1,R1,#-8 Write resul® #4 -8

[S——
)

BNE R1,R2,Loop Write result

FP register status

Field FO F1 F2 F3 F4 F5 F6 F7 F8
Reorder # 6 7
Busy Yes No No No Yes No No N

14

Dynamic Scheduling and Speculation

= |LP Maximized (a restricted data-flow)
— In-order issue

IFetch

Opfetch/Ded | |Reg

| v

— Out-of-order execution '

L |

— Out-of-order completion

— In-order commit

S

= Data Hazards

¥

Write Back

— Input operands-driven dynamic scheduling for RAW hazard
— Register renaming for handling WAR and WAW hazards

= Control Hazards (Branching, Precision Exception)
— Branch prediction and in-order commit (speculation)

— Branch prediction without speculation

» Cannot do out-of-order execution/complete for branch

* Implementation: Tomasulo
— Reservation stations and Reorder buffer
— Other solutions as well (scoreboard, history table)

15

Multiple ISSUE via VLIW/Static
Superscalar
Textbook: CAQA 3.7

16

Multiple Issue

* “Flynn bottleneck”
— single issue performance limit is CPI =IPC =1
— hazards + overhead = CPI >=1 (IPC <=1)
— diminishing returns from superpipelining [Hrishikesh paper!]
= Solution: issue multiple instructions per cycle

iInst0
iInst1
Inst2
Inst3

= 1st superscalar: IBM America — RS/6000 - POWER1

1 2 3 4 5 6 7
F D X M W
F D X M W

F D X M W

F D X M W

17

VLIW and Static Superscalar

= Very similar in terms of the requirements for compiler
and hardware support

= We will discuss VLIW/Static superscalar

= Very Long Instruction Word (VLIW)

— packages the multiple operations into one very long

instruction
IntOp 1 Int Op 2 MemOp 1 Mem Op 2 FPOp1 FP Op 2
] }]] } '

Two Integer Units,
Single Cycle Latency

Two Load/Store Units,
Three Cycle Latency

Two Floating-Point Units,
Four Cycle Latency

18

Recall: Unrolled Loop that Minimizes

1 Loop: L.D
2 L.D
3 L.D
4 L.D
5 ADD.D
6 ADD.D
7 ADD.D
8 ADD.D
9 S.D
10 S.D
11 S.D
12 DSUBUI
13 BNEZ
14 S.D

lis for lar
FO0,0(R1) L.D to ADD.D: 1 Cycle
F6,-8(R1) ADD.D to S.D: 2 Cycles

F10,-16 (R1)
F14,-24 (R1)

F4 ,F0,F2 for (1=999; 1>=0; 1=1—1)

F8,F6,F2 x[i] = x[i] + s;

F12,F10,F2

F16,F14,F2 . . . —
Instruction producing result Instruction using result Latency in clock cycles

O (Rl) ! F4 FP ALU op Another FP ALU op 3

- 8 (Rl) ’ F8 FP ALU op Store double 2

-16 (R1) ,F12 Load double FP ALU op 1

R1 , R1 , # 32 Load double Store double 0

R1,LOOP

8 (R1) ,F16 ; 8-32 = -24

14 clock cycles, or 3.5 per iteration

19

Loop Unrolling in VLIW

Unrolled 7 times to avoid delays
7 results in 9 clocks, or 1.3 clocks per iteration (1.8X)
Average: 2.5 ops per clock, 50% efficiency

Memory Memory FP FP Integer
reference 1 reference 2 operation 1 operation 2 operation/branch
L.D FO,0(R1) L.D F6,-8(R1)

L.D F10,-16(R1) L.D F14,-24(R1)

L.D F18,-32(R1) L.D F22,-40(R1) ADD.D F4,F0,F2 ADD.D F8,F6,F2

L.D F26,-48(R1) ADD.D F12,F10,F2 ADD.D F16,F14,F2

ADD.D F20,F18,F2

ADD.D F24,F22,F2

S.D F4,0(R1) S.D F8,-8(R1) ADD.D F28,F26,F2

S.D F12,-16(R1) S.D F16,-24(R1) DADDUI R1,R1,#-56
S.D F20,24(R1) S.D F24,16(R1)

S.D F28,8(R1) BNE R1,R2,Loop

Figure 3.16 VLIW instructions that

cycles assuming no branch delay; norr
ations in 9 clock cycles, or 2.5 operati
operation, is about 60%. To achieve thi
this loop. The VLIW code sequence abc
MIPS processor can use as few as two |

Instruction producing result

Instruction using result

Latency in clock cycles

FP ALU op Another FP ALU op 3
FP ALU op Store double 2
Load double FP ALU op 1
Load double Store double 0

20

Summary

= VLIW: Explicitly Parallel, Static Superscalar
— Requires advanced and aggressive compiler techniques

— Trace Scheduling: Select primary “trace” to compress + fixup
code

= Other aggressive techniques

— Boosting: Moving of instructions above branches

» Need to make sure that you get same result (i.e. do not violate
dependencies)

» Need to make sure that exception model is same (i.e. not unsafe)

» [tanium/EPIC/VLIW is not a breakthrough in ILP

— If anything, it is as complex or more so than a dynamic
processor

—Some refers to as Itanic!
= BUT it is used today:

— e.g. Tl sigal processor C6x

21

Very Important Terms

= Dynamic Scheduling > Out-of-order Execution
= Speculation 2 In-order Commit
= Superscalar = Multiple Issue

m Implementation Addressing Approaches

Dynamic Out-of- Reservation Data hazards Register
Scheduling order Stations, Load/Store (RAW, WAW, renaming
execution Buffer and CDB WAR)
Speculation In-order Branch Prediction + Control Prediction and
commit Reorder Buffer hazards misprediction
recovery
Superscalar Multiple Software and To Increase By compiler or

IVLIW issue Hardware CPI hardware

22

Dynamic Scheduling, Multiple
Issue (Dynamic Superscalar),

and Speculation
Textbook: CAQA 3.8

23

Dynamic Scheduling, Multiple

| n lati

= Microarchitecture quite similar to those
in modern microprocessors

n

— Real
Seconds _ Instructions Seconds
Program ~ Program Cycle

= Consider two issue per clock

— Example: CPU with floating point ALUs:
Issue 1 FP + 1 Integer instruction per cycle.

» Save at least 1 cycle than the pipeline

— Challenges
» Find the right instructions
» Dependency between instructions

ar — 4l

ddd
S.HdO
anss)

AP

LUTE,
pped

nav

waw

aM

24

5-Stage In-order 2-Wide Pipeline

redfile

L PC
BP
1$
[’ F

= what is involved in
— fetching two instructions per cycle?
— decoding two instructions per cycle?
— executing two ALU operations per cycle?
— accessing the data cache twice per cycle?
— writing back two results per cycle?

= what about 4 or 8 instructions per cycle?

v v

25

Implementation using Temasulo’s

ApDr

h

= Similar to Tomasulo with Speculation

vy

Reorder buffer

From instruction unit

Load/store
operations

Reg #y¢ y Data

issue

er clock cycle

. Multip:{ issue = one

per fun
— 4-wide

ctional unit

Integer and FP registers

Address unit i Floating-pe

Operand
buses

A

| Load buffers

Store
address

Reservation

stations

Common data bus (CDB)

26

1.

Options and Challenges of Multiple Issue

How to issue two instructions and keep in-order instruction
issue for Tomasulo?

— Assume 1 integer + 1 floating point
— 1 Tomasulo control for integer, 1 for floating point

Issue two instrs pipelined in one cycle (half and half for each
instr), so that issue remains in order - superpipelining

— Hard to extend to 4 or more
Issue 2 instrs per cycle in parallel = true superscalar

— Between FP and Integer operations: Only FP loads might cause
dependency between integer and FP issue:

» Replace load reservation station with a load queue;
operands must be read in the order they are fetched

» Load checks addresses in Store Queue to avoid RAW violation
» Store checks addresses in Load Queue to avoid WAR,WAW
» Called “decoupled architecture”

Mix of both
— Superpipeling and superscalar

27

Multiple Issue Challenges

= While Integer/FP split is simple for the HW, get CPI of
0.5 only for programs with:

— Exactly 50% FP operations
— No hazards

= |f more instructions issue at same time, greater
difficulty of decode and issue:

— Even 2-scalar => examine 2 opcodes, 6 register specifiers, &
decide if 1 or 2 instructions can issue

— Multiported rename logic: must be able to rename same
register multiple times in one cycle!

— Rename logic one of key complexities in the way of multiple
issue!

28

Multiple Issue

Bundle multiple instrs in one issue unit
— N-wide

Reorder buffer
From instruction unit

Assign a reservation station and a
reorder buffer for every instruction that

might be issued in the next issue bundle
— N entries in ROB

— Ensure enough RS available for the bundle |

me FP adders FP multipliers Integer unit
— If not enough RS/ROB, break the bundle o Oy il

Analyze dependency in the issue bundle
Inter-dependency between instrs in a bundle

— Update the reservation station table entries using the assigned ROB

entries to link the dependency
» Register renaming happened

In-order commit to make sure instrs commit in order

Other techniques

— Speculative multiple issue in Intel i7

29

Example

Example Consider the execution of the following loop, vwisel=merenrentossnsimslonentesia
sleliiagat=aaaad, On a two-issue processor, once without speculation and once
with speculation:

Loop: LD 0(R1) sR2=array element
DADDIU ‘E'z 2,#1 ;increment R2
,0(R1) :store result
DADDIU R1,R1,#8 ;increment pointer
BNE 2,R3,L00P ; branch sisfsitieitimttinend

Assume that there are separate integer functional units for effective address
calculation, for ALU operations, and for branch condition evaluation. Create a
table for the first three iterations of this loop for both processors. Assume that up
to two instructions of any type can commit per clock.

1
BNE has RAW dependence on DADDIU

30

Loop: LD (Rl) ;:R2=array element - -
ODI N AL s ncrement 2 Without Speculation
SD ,0(R1) ;store result
DADDIU R1,R1,#8 ;increment pointer .
BNE 2R3, LOOP : branch wi] LD can be issued but CANNOT be executed

before BNE completes
Issues at Ex e oD at

Iteration clockcycle clockcycle clockcycle clock cycle

number Instructions number number number number Comment

1 LD R2,0(R1) 1 2 3 4

1 DADDIU R2,R2,#1 1 5 4/’6 Wait for LW

1 SD R2,0(R1) 2 3 74 Wait for DADDIU
1 DADDIU R1,R1,#8 2 3 Execute directly
1 BNE R2,R3,L00P 3 J No Speculation Wait for DADDIU
2 DADDIU R2,R2,#1 4 11 V. Wait for LW

2 SD R2,0(R1) 5 9 13 Wait for DADDIU
2 DADDIU R1,R1,#8 5 8 9 Wait for BNE

3 LD R2,0(R1 7 W4 15 16 Wait for BNE

3 DADDIU R2,R2,#1 7 17 18 Wait for LW

3 SD R2,0(R1) 8 15 19 Wait for DADDIU
3 DADDIU R1,R1,#8 8 14 15 Wait for BNE

3 BNE R2,R3,L00P 9 19 Wait for DADDIU

Figure 3.19 The time of issue, execution, and writing result for a dual-issue version of our pipeline without
speculation. Note that the LD following the BNE cannot start execution earlier because it must wait until the branch

PR R RN PRI SR B, o I P SR - N PN RPN PRGN DRl PO Nl My IR i Ry I R | R N

oop: LD (Rl) :R2=array element

o U(R0GD istore result With Speculation
DADDIU |R1,R1,#8 ;increment pointer
BNE R2,R3,L00P sbranch sefmiadedss LD can be speculatively executed before
Issues Executel BNE completes
Iteration atclock atclock at clock clock at clock
number Instructions number number number number number Comment
1 LD R2,0(R1) 1 2 3 4 5 Firsisione®
1 DADDIU R2,R2,#1 1 54/ 6 7 ait for LW
1 SD R2,0(R1) 2 3 \7 Wait for DADDIU
1 DADDIU R1,R1,#8 2 3 4 8 Commit in order
2 LD R2,0(R1) 4 5 6 7 9 No execute delay
2 DADDIU R2,R2,#1 4 8 9 10 Wait for LW
2 SD R2,0(R1) 5 6 10 Wait for DADDIU
2 DADDIU R1,R1,#8 5 6 7 11 Commit in order
2 BNE R2,R3,L0O0P 6 10 11 Wait for DADDIU
3 LD R2,0(R1) 7 8 9 10 12 Earliest possible
3 DADDIU R2,R2,#1 7 11 Gainonlvl 12 13 Wait for LW
3 SD R2,0(R1) 8 9 clock pér 13 Wait for DADDIU
3 DADDIU R1,R1,#8 8 9 e ratin 10 14 Executes earlier
3 BNE R2,R3,L0O0P 9 13 14 Wait for DADDIU

Figure 3.20 The time of issue, execution, and writing result for a dual-issue version of our pipeline with specula-
tion. Note that the LD following the BNE can start execution early because it is speculative.

Putting It All Together: The
Intel Core i7 6700 and ARM
Cortex-A53

Textbook CAQA 3.12

33

Reality and References

Modern processors uses the advanced technologies we talked about in

this class and some others that are not covered
— Principles are the same mostly

Historically and more depth
— Lots of ideas have been evaluated and developed
— Appendix L.5 for history and references
— VLIW/EPIC and software pipelining: Appendix H

More and Latest Info (Conference)

— MICRO: Annual IEEE/ACM International Symposium on Microarchitecture
» https://www.microarch.org

— IEEE Symposium on High Performance Computer Architecture (HPCA)
» http://hpca2017.org/

— International Symposium on Computer Architecture (ISCA)

— ACM International Conference on Architectural Support for
Programming Languages and Operating Systems

» http://www.ece.cmu.edu/calcm/asplos2016

— SIGARCH - The ACM Special Interest Group on Computer Architecture
» https://Iwww.sigarch.org/

34

Intel Core i7 6700 and ARM Cortex-A53
= ARM Cortex-A53 core

— Used as the basis for several tablets and cell phones

= Intel Corei7 6700

— a high-end, dynamically scheduled, speculative processor
intended for high-end desktops and server applications.

35

ARM Cortex-A53

» Used as the basis for several tablets and cell phones

— Dual-issue, statically scheduled superscalar with dynamic
issue detection > 0.5 CPl ideally

F1 F2 F3 F4 Iss Ex1 Ex2 Wr
Integer execute and load-store
_Instruction fetch & predict
< - ALU pipe 0 >
Integer
AGU |« l register [
+ ' ALU pipe 1 >
TLB > Hybrid file) PiP
Instruction predictor
™| cache -] MAC pipe ”| Writeback
Indn_fect
- predictor > Divide pipe >
Issue | || Load pipe >
—> Store pipe >
Instruction Decode Floating Point execute
13-Entr NEON MUL/DIV/SQRT pipe
| Early »linstructi gn | Main | Late register
decode queue decode decode file ALU pipe

D1 D2 D3 F1 F2 F3 F4 F5

ARM Cortex-A53 Missprediction Rate

22%

20%

18%

16%

14%

12%

10%

Branch misprediction rate

8%

6%

4%

2%

0%

hmmer h264ref libquantum perlbench sjeng bzip2 gobmk xalancbmk gcc astar

omnetpp mcf

Figure 3.35 Misprediction rate of the A53 branch predictor for SPECint2006.

37

Wasted Word Due to Misprediction on A53

22%

20%

18%

16%

14%

12%

10%

% Wasted work

8%

6%

4%

2%

0%

gce

hmmer h264ref libquantum perlbench sjeng bzip2 gobmk xalancbmk astar omnetpp mcf

Figure 3.36 Wasted work due to branch misprediction on the A53. Because the A53 is an in-order machine, the
amount of wasted work depends on a variety of factors, including data dependences and cache misses, both of which

will cause a stall.

38

Estimated Composition of ARM AS53 CPI

10

B Memory hierarchy stalls
9 -1 O Pipeline stalls
M ideal CPI

m:
o
=

| =E

§ SF

{ S E

| =E
e
] = F
o
i

hmmer h264ref I|bquantum perlbench sjeng bzip2 gobmk xalancbmk gcc astar omnetpp mcf

Figure 3.37 The estimated composition of the CPl on the ARM A53 shows that pipeline stalls are significant but
are outweighed by cache misses in the poorest performing programs. This estimate is obtained by using the L1 and
L2 miss rates and penalties to compute the L1 and L2 generated stalls per instruction. These are subtracted from the
CPI measured by a detailed simulator to obtain the pipeline stalls. Pipeline stalls include all three hazards.

39

Intel Core i7

Aggressive out-of-
order speculative

14 stages pipeline,

Branch mispredictions
costing 17 cycles.

48 load and 32 store

buffers.

Six independent
functional units

— 6-wide superscalar

40

Core i7 Pipeline: IF

* Instruction fetch — Fetch 16 bytes from the | cache

— A multilevel branch target buffer to achieve a balance
between speed and prediction accuracy.

— A return address stack to speed up function return.
— Mispredictions cause a penalty of about 15 cycles.

41

Core i7 Pipeline: Predecode

* Predecode —16 bytes instr in the predecode | buffer

— Macro-op fusion: Fuse instr combinations such as compare
followed by a branch into a single operation.

— Instr break down: breaks the 16 bytes into individual x86
instructions.

» nontrivial since the length of an x86 instruction can be from 1 to
17 bytes and the predecoder must look through a number of
bytes before it knows the instruction length.

— Individual x86 instructions (including some fused
instructions) are placed into the 18-entry instruction queue.

42

Core i7 Pipeline:

Micro-op decode

/—*

16-Byte pre-decode +macro-op

fusion, fetch buffer

v

q

v

A 4

A 4

A 4

e

Micro

Complex

macro-op
decoder

Simple
macro-op
decoder

Simple
macro-op
decoder

Simple
macro-op
decoder

-code

H

v

v

v

- 28-Entry micro-op loop stream detect buffer |
|
I

= Micro-op decode — Translate Individual x86

instructions into micro-ops.

— Micro-ops are simple MIPS-like instructions that can be
executed directly by the pipeline (RISC style)

» introduced in the Pentium Pro in 1997 and has been used since.
— Three simple micro-op decoders handle x86 instructions that

translate directly into one micro-op.

— One complex micro-op decoder produce the micro-op

sequence of complex x86 instr;

» produce up to four micro-ops every cycle

— The micro-ops are placed according to the order of the x86
instructions in the 28- entry micro-op buffer.

43

Core i7 Pipeline:
—loop stream defection

and microfusion

/v—*

16-Byte pre-decode +macro-op
fusion, fetch buffer

v

q

A 4 \/ \ 4 ‘
Complex Simple Simple Simple
. macro-op | macro-op macro-op macro-op
m’: /' decoder decoder decoder decoder
rm— 7 v v v
| 28-Entry micro-op loop stream detect buffer |
|

= Joop stream detection and microfusion by thel micro-
op buffer preforms

— If there is a sequence of instructions (less than 28 instrs or
256 bytes in length) that comprises a loop, the loop stream
detector will find the loop and directly issue the micro-ops
from the buffer

» eliminating the need for the instruction fetch and instruction
decode stages to be activated.

— Microfusion combines instr pairs such as load/ALU operation
and ALU operation/store and issues them to a single
reservation station, thus increasing the usage of the buffer.

» Study comparing the microfusion and macrofusion by Bird et al.
[2007] discovered that microfusion had little impact on per-
formance, while macrofusion appears to have a modest positive
impact on integer performance and little impact on FP. 44

Core i7 Pipeline: Issue

= Basic instruction issue
— Looking up the register location in
the register tables

— renaming the registers
— allocating a reorder buffer entry
— fetching any results from the

registers or reorder buffer before send
reservation stations. 2 load

= 36-entry centralized reservation station shared by SiX
functional units

Up to six micro-ops may be dispatched to the functional units
every clock cycle.

45

Core i7 Pipeline: EXE __
and Rgtirgmgnt 128-Entryreowderbuﬁer

36-Entry reservatlon station

|
Store
& load

= Micro-ops are executed by the individual functlon
units

— results are sent back to any waiting reservation station as
well as to the register retirement unit, where they will update
the register state. The entry corresponding to the instruction
in the reorder buffer is marked as complete.

= Retirement

— When one or more instructions at the head of the reorder
buffer have been marked as complete, the pending writes in
the register retirement unit are executed, and the instructions
are removed from the reorder buffer.

46

Intel Core i7: 970 (Nehalem, 2008) vs 6700

(Skylake, 2015)

. . |
128-Entry | 32 KB Inst. cache (8-way associative) |
inst. TLB — ¥
(8-way) Pre-decode+macro-op

* * fusion, fetch buffer
Instruction !
fetch Instruction queue
hardware |~ = = = =
Complex Simple Simple Simple
. macro-op macro-op macro-op macro-op
Micro |~ decoder decoder decoder decoder
oode | ——7 i i i

| 64-Entry micro-op looj

p stream detect buffer |

| Register alias table and allocator |
Retirement
register file |7~ 224-Entry reorder buffer |
v
- 97-Entry reservation station |
v v v v v v
ALU ALU Load Store Store ALU
shift shift address | | address data shift
I I I
SSE SSE { ' ! SSE
shuffle shuffle Memory order buffer shuffle
ALU ALU (72 load; 56 stores pending) ALU
[[[
128-bit 128-bit 128-bit
FMUL FMUL Store FMUL
FDIV FDIV & load FDIV
I I T

A

1536-Entry unified |~ | 64-Entry data TLB ||
L2 TLB (12-way) —| (4-way associative)

32-KB dual-ported data | _| 256 KB unified
cache (8-way associative) cache (4-way)

P4

8 MB all core shared and inclusive L3
cache (16-way associative)

Uncore arbiter (handles scheduling &
clock/power state differences)

Figure 3.38 The Intel Core i7 pipeline structure shown with the memory system components. The
depth is 14 stages, with branch mispredictions typically costing 17 cycles, with the extra few cycles like
time to reset the branch predictor. The six independent functional units can each begin execution of are
in the same cycle. Up to four micro-ops can be processed in the register renaming table.

Intel Core i7: 970 (Nehalem, 2008) vs 6700
(Skvlake, 2015)

Resource i7 920 (Nehalem) i7 6700 (Skylake)
Micro-op queue (per thread) 28 64
Reservation stations 36 97
Integer registers NA 180
FP registers NA 168
Outstanding load buffer 48 72
Outstanding store buffer 32 56
Reorder buffer 128 256

Figure 3.39 The buffers and queues in the first generation i7 and the latest
generation i7. Nehalem used a reservation station plus reorder buffer organization.
In later microarchitectures, the reservation stations serve as scheduling resources,
and register renaming is used rather than the reorder buffer; the reorder buffer in
the Skylake microarchitecture serves only to buffer control information. The choices
of the size of various buffers and renaming registers, while appearing sometimes arbi-
trary, are likely based on extensive simulation.

48

Core i7 Performance

The integer CPI values range from 0.44 to 2.66 with a
standard deviation of 0.77

The FP CPU is from 0.62 to 1.38 with a standard
deviation of 0.25.

Cache behavior is major contribution to the stall CPI

3
’ [i7 6700 M7 920 ’
2,67
2D e
212
2 Ut | HUUSUUUY | O
c
]
©
2
2
Y 1440 OB
g 1.37
8 1.23
S
(@) 1.06 1.02
[DU) U | DI | N 0
0.81 0.92
0.71 074 0.76 077
0.59 0.61 055 060
0.54 0.44
05 - - | . 047)8 ¥ A ||
042 0.41 0.38
0 -
astar bzip2 gcc gobmk h264ref hmmer libquantum mcf omnetpp perlbench sjeng xalancbmk

Figure 3.40 The CPI for the SPECCPUint2006 benchmarks on the i7 6700 and the i7 920. The data in this section
were collected by Professor Lu Peng and PhD student Qun Liu, both of Louisiana State University. 49

Class Lectures End Here.

50

Advanced Techniques for
Instruction Delivery and
Speculation

Textbook CAQA 3.9

1. Improving Branch Prediction
2. Explicit Register Renaming

3. Others that are important but not covered: Load/store
speculation, value predication, correlate branch
prediction, tournament predictor, trace cache

4. Put all together on ARM Cortex-A53 and Intel Core i7 6700

51

Speculation: Prediction + Mis-prediction

~PC

Fetch

Update predictors

Decode &

*1Commit

> R7/order Bu\&er
Rename
AJ I A I A
) v

\

v

\

Reg.

‘francli\

by

File \\\
bil

ALU

—p

MEM[_

Storé |
Buffer

D$

Execute

Branch Target Buffer for Branch

Predictio
= Hardware support
— Branch history tables (Taken or Not)

— Branch target buffers, etc. (Target address)

= Branch target buffer

— Cache for branch target

-

N PC Target PC Prediction
O 3320 ——
" pC+4 \0\ 3340 ——
S — 3340 4460 | 1(T)
Hit? Taken? F:::h _—
5 | : Address -— 4520 3320 1 (T)
P 4460
PC || Tags | g Targets —
(optional) T 4 52 0 —

53

= Steps

Branch With a Target Buffer

A
Send PC to memory and
branch-target buffer
IF
Entry found in
branch-target
buffer?
y
1 Y (
Send out
predicted
PC
instruction Yes
a taken
branch?
ID
No Taken Yes
Normal branch?
instruction
execution
y
A
i \ Y
Enter Mispredicted branch, Branch correctly
branch instruction kill fetched instruction; predicted;
EX address and next restart fetch at other continue execution
PC into branch- target; delete entry with no stalls
target buffer from target buffer
Y

54

Subroutine Return Stack

Small structure to accelerate JR for subroutine returns,
typically much more accurate than BTBs.

fa() { fb(); nexta: }
fb() { fc(); nextb: }
fc() { fd(); nextc: }

Push return address when
function call executed /\

&nextc

&nextb

&nexta

Pop return address
when subroutine return

decoded

k entries
(typically k=8-16)

55

Special Case Return Addresses

= Register Indirect branch hard to predict address
— SPECB89 85% such branches for procedure return

— Since stack discipline for procedures, save return address in
small buffer that acts like a stack: 8 to 16 entries has small

miss rate Fetch Unit Select for

Indirect Jumps

[On Fetch]
Destination From
Call Instruction
[On Fetch?]

Predicted
Next PC

Return Address Stack

56

Performance: Return Address Predictor

= Cache most recent return addresses:
— Call 2@Push a return address on stack
— Return = Pop an address off stack & predict as new PC

70%

- Go
- m88ksim

-/ cci L
-O- Compress

- Xlisp
—& ljpeg

60%

50% —A- Perl
Py -@- Vortex
5
S
g 40% T N N N N N
=
iel
k3]
3 30% A
S
K]
=

20%

10% -

0%

Return address buffer entries

Fetch Unit to ID|EXE Unit

Stream of Instructions

Instruction Fetch | To Execute Out-Of-Order
with ‘ Execution
Branch Prediction Unit

~_

Correctness Feedback

On Branch Results

Independent “Fetch” unit

* [nstruction fetch decoupled from execution
— Instruction Buffer in-between

= Often issue logic (+ rename) included with Fetch
Stream of Instructions

To Execute
Instruction Fetch Out-Of-Order
with Execution
Branch Prediction Unit

~_ 7

Correctness Feedback

On Branch Results .

Explicit Register Renaming

60

Register Renaming Summary

= Purpose of Renaming: removing “Anti-dependencies”
— Get rid of WAR and WAW hazards, since these are not “real”
dependencies

* Implicit Renaming: i.e. Tomasulo

— Registers changed into values or response tags

— We call this “implicit” because space in register file may or may not be
used by results!

= Explicit Renaming: more physical registers than needed
by ISA.

— Rename table: tracks current association between architectural
registers and physical registers

— #ses a translation table to perform compiler-like transformation on the
y
= With Explicit Renaming:
— All registers concentrated in single register file
— Can utilize bypass network that looks more like 5-stage pipeline
— Introduces a register-allocation problem

» Need to handle branch misprediction and precise exceptions

differently, but ultimately makes things simpler o1

Explicit Register Renaming

* Tomasulo provides Implicit Register Renaming

— User registers renamed to reservation station tags
= Explicit Register Renaming:

— Use physical register file that is larger than number of registers specified by ISA
= Keep a translation table:

— ISA register => physical register mapping

— When register is written, replace table entry with new register from freelist.

— Physical register becomes free when not being used by any instructions in
progress.

* Pipeline can be exactly like “standard” DLX pipeline
— IF, ID, EX, etc....

= Advantages:
— Removes all WAR and WAW hazards
— Like Tomasulo, good for allowing full out-of-order completion
— Allows data to be fetched from a single register file
— Makes speculative execution/precise interrupts easier:

» All that needs to be “undone” for precise break point
is to undo the table mappings

62

Explicit Renaming Support Includes:

Rapid access to a table of translations

A physical register file that has more registers than
specified by the ISA

Ability to figure out which physical registers are free.
— No free registers = stall on issue

Thus, register renaming doesn’t require reservation
stations.

Many modern architectures use explicit register
renaming + Tomasulo-like reservation stations to
control execution.

— R10000, Alpha 21264, HP PA8000

63

Explicit Register Renaming

= Make use of a physical register file that is larger than
number of registers specified by ISA

= Keep a translation table:
— ISA register => physical register mapping

— When register is written, replace table entry with new register

from freelist.

— Physical register becomes free when not being used by any
instructions in progress.

Rename
Table

64

Advantages of Explicit Renaming

Decouples renaming from scheduling:

— Pipeline can be exactly like “standard” DLX pipeline (perhaps with
multiple operations issued per cycle)

— Or, pipeline could be tomasulo-like or a scoreboard, etc.
— Standard forwarding or bypassing could be used

Allows data to be fetched from single register file
— No need to bypass values from reorder buffer
— This can be important for balancing pipeline

Many processors use a variant of this technique:
— R10000, Alpha 21264, HP PA8000

Another way to get precise interrupt points:

— All that needs to be “undone” for precise break point
is to undo the table mappings

— Provides an interesting mix between reorder buffer and future file
» Results are written immediately back to register file
» Registers names are “freed” in program order (by ROB)

65

Explicit register renaming:
R10000 Freelist Management

PO|P2| P4 |F6|F8 |P10|P12|P14|P16|P18|P20|P22|P24|p26|P28|P30

Done?

Current Map Table

Newest

P32|P34|P36|P38| « - - |[P60|P62

Freelist ‘ Oldest

= Physical register file larger than ISA register file

= On issue, each instruction that modifies a register is
allocated new physical register from freelist

= Used on: R10000, Alpha 21264, HP PA8000

66

Explicit register renaming:
R10000 Freelist Management

P32| P2 | P4 | F6 | F8 |[P10|P12|P14|P16|P18|P20|P22|P24|p26|P28|P30
Current Map Table Done?
Newest
P34|p36|P38|P40| « - - |[P60|P62
Freelist
Fo|Po|1LD P32,10(R2) [N | Oldest

* Note that physical register P0 is “dead” (or not “live”)

past the point of this load.

— When we go to commit the load, we free up

67

Explicit register renaming:
R10000 Freelist Management

pP32| P2 | P4 | P6 | P8 |P34|P12|P14|P16|P18|P20|P22|P24|P26|P28|P30
Current Map Table Done?
Newest
P36|pP38|P40|P42| . - - |P60|P62
: F10P10| ADDD P34,P4,P32 N
Freelist
Fo|Po|1LD P32,10(R2) |N| Oldest

68

Explicit register renaming:
R10000 Freelist Management

P32|P36| P4 | F6 | F8 |P34|P12|P14|P16|P18|P20|P22|P24|p26|P28|P30

Current Map Table Done?
— Newest
p38|p40[pa4|pas| - - - |[P60|P62 — BNE P36,<.> N
F2| P2 | DIV) P36,P34,Pq N
: F1dp10| ADDP P34,P4,P32 N
Freelist
Fo|Po |1D p32,10(R2) [N | Oldest

€ _\

.o Checkpoint at BNE instruction
[p3sfeec]eedfeag] - - fpocfee P)

69

Explicit register renaming:
R10000 Freelist Management

P40|P36|P38| F6 | F8 |P34|P12|P14|P16|P18|P20|P22|P24|p26|P28|P30

Current Map Table Done?
ST O0(R3) ,P40 Y

P32| ADDD P40, P38, PH
P4 | LD P38,0 (R3)
BNE P36,<.>

F2| P2 | DIVD P36,P34,Pq
Lﬂﬂ?10 ADDD P34,P4,P32

Fo|Po |1LD P32,10(R2)

€ _\

P42|P44|pP48|P50| «« | PO |P10

Freelist

RIKIZ|I2|K|K

.o Checkpoint at BNE instruction
[p3sfeec]eedfeag] - - fpocfee P)

Newest

Oldest

70

Explicit register renaming:
R10000 Freelist Management

P32

P36

P4

F6

F8

P34

P12

P14

Pl6

P18

P20|P22|P24|p26

P28

P30

Current Map Table

P38

P40

Freelist

PO

P10

Done?

DIVD P36,P34,Pf N

F2| P2
L_uaﬁlo

ADDD P34,P4,P32y

FO

PO

LD P32,10 (R2)

y

Newest

Oldest

Error fixed by kestoking map table and merging freelist

~

.o Checkpoint at BNE instruction
[p3sfeec]eedfeag] - - fpocfee P)

71

Superscalar Register Renaming

* During decode, instructions allocated new physical destination register
» Source operands renamed to physical register with newest value

» Execution unit only sees physical register numbers

Inst 1

Update

Mapping{

Op | Dest|Src1|Src2 Op | Dest|Src1| Src2
; o o Read Addresses Redqister
/£ 5 Rename Table - J List
D> Read Data D ree Lis
|
Op [PDest|PSrc1|PSrc2| | Op |PDest|PSrc1|PSrc2

Inst 2

Superscalar Register Renaming (Try #2)

Inst 1| op [Dest|Srci|Src2 Op |Dest|Srci|Src2| Inst 2

Update 0 Read Addresses ¥ R Reqi
£ £ = — egister
Mapping .| £ 5 Rename Table C—_D C—E gIst
=S Free List
D Read Data >

Must check for |
RAW hazards
between
instructions
Issuing in same

cycle. Can be L\ /Ly

done in parallel

;Nitt rename | Op |PDest|PSrc1|PSrc2|| Op |PDest{PSrc1|PSrc2
ookup.

MIPS R10K renames 4 serially-RAW-dependent insts/cycle
73

