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Topics for Instruction Level Parallelism
§ 5-stage Pipeline Extension, ILP Introduction, Compiler 

Techniques, and Branch Prediction
– C.5, C.6
– 3.1, 3.2
– Branch Prediction, C.2, 3.3

§ Dynamic Scheduling (OOO)
– 3.4, 3.5

§ Hardware Speculation and Static Superscalar/VLIW
– 3.6, 3.7

§ Dynamic Superscalar, Advanced Techniques, ARM 
Cortex-A53, and Intel Core i7
– 3.8, 3.9, 3.12

§ SMT: Exploiting Thread-Level Parallelism to Improve 
Uniprocessor Throughput 
– 3.11
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Review: 
Overcoming Data Hazards With 
Dynamic Scheduling

Textbook CAQA 3.4 



4

Instruction Scheduling

I6

I2

I4

I1

I5

I3

Valid	orderings:
in-order I1 I2 I3 I4 I5 I6
out-of-order

out-of-order

I1	 FDIV.D f6,	 f6, f4

I2	 FLD f2, 45(x3)

I3	 FMULT.D f0, f2, f4

I4	 FDIV.D f8, f6, f2

I5 FSUB.D f10, f0, f6

I6	 FADD.D f6, f8, f2

I2 I1 I3 I4 I5 I6
I1 I2 I3 I5 I4 I6
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Register Renaming for Eliminating WAR 
and WAW Dependencies

§ Example:

DIV.D      F0,F2,F4
ADD.D    F6,F0,F8
S.D          F6,0(R1)
SUB.D     T2,F10,F14
MUL.D     T1,F10,T2

§ Now only RAW hazards remain, which can be strictly 
ordered

DIV.D     F0,F2,F4
ADD.D    F6,F0,F8
S.D         F6,0(R1)
SUB.D    F8,F10,F14
MUL.D    F6,F10,F8
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Hardware Solution for Addressing Data 
Hazards

§ Dynamic Scheduling of Instructions: 
– In-order issue
– Out-of-order execution
– Out-of-order completion

§ Data Hazard via Register Renaming
– Dynamic RAW hazard detection and scheduling in data-flow 

fashion
– Register renaming for WRW and WRA hazard (name conflict)

§ Implementations
– Scoreboard (CDC 6600 1963)

» Centralized register renaming
– Tomasulo’s Approach (IBM 360/91, 1966)

» Distributed control and renaming via reservation station, 
load/store buffer and common data bus (data+source)
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Organizations of Tomasulo’s Algorithm
§ Load/Store buffer
§ Reservation station
§ Common data bus
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Three Stages of Tomasulo Algorithm
1. Issue—get instruction from FP Op Queue

If reservation station free (no structural hazard), 
control issues instr & sends operands (renames registers).

2. Execution—operate on operands (EX)
When both operands ready then execute;
if not ready, watch Common Data Bus for result

3. Write result—finish execution (WB)
Write on Common Data Bus to all awaiting units; 
mark reservation station available

§ Normal data bus: data + destination (“go to” bus)
§ Common data bus: data + source (“come from” bus)

– 64 bits of data + 4 bits of Functional Unit  source address
– Write if matches expected Functional Unit (produces result)
– Does the broadcast
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Tomasulo Example Cycle 3

Instruction status: Exec Write
Instruction j k Issue Comp Result Busy Address
LD F6 34+ R2 1 3 Load1 Yes 34+R2
LD F2 45+ R3 2 Load2 Yes 45+R3
MULTD F0 F2 F4 3 Load3 No
SUBD F8 F6 F2
DIVD F10 F0 F6
ADDD F6 F8 F2

Reservation Stations: S1 S2 RS RS
Time Name Busy Op Vj Vk Qj Qk

Add1 No
Add2 No
Add3 No
Mult1 Yes MULTD R(F4) Load2
Mult2 No

Register result status:
Clock F0 F2 F4 F6 F8 F10 F12 ... F30
3 FU Mult1 Load2 Load1

• Note: registers names are removed (“renamed”) in 
Reservation Stations
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Register Renaming Summary
§ Purpose of Renaming: removing “Anti-dependencies”

– Get rid of WAR and WAW hazards, since these are not “real” 
dependencies

§ Implicit Renaming: i.e. Tomasulo
– Registers changed into values or response tags
– We call this “implicit” because space in register file may or may not be 

used by results!

§ Explicit Renaming: more physical registers than needed 
by ISA.  
– Rename table: tracks current association between architectural 

registers and physical registers
– Uses a translation table to perform compiler-like transformation on the 

fly
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Hardware-Based Speculation 
to Overcome Control Hazards

Textbook: CAQA 3.6
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Control Hazard from Branches: Two or 
Three Cycles of Stall if Taken

10: BEQ R1,R3,36

14: AND R2,R3,R5 

18: OR  R6,R1,R7

22: ADD R8,R1,R9

36: XOR R10,R1,R11

Reg A
LU DMemIfetch Reg

Reg A
LU DMemIfetch Reg

Reg A
LU DMemIfetch Reg

Reg A
LU DMemIfetch Reg

Reg A
LU DMemIfetch Reg

What do you do with the 3 
instructions in between?
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Control Hazards
§ Break the instruction flow

§ Unconditional Jump
§ Conditional Jump
§ Function call and return
§ Exceptions
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Branches Must Be Resolved Quickly
§ The loop-unrolling example

– we relied on the fact that branches were under control of 
“fast” integer unit in order to get overlap!  

§ Loop: LD F0 0 R1
MULTD F4 F0 F2
SD F4 0 R1
SUBI R1 R1 #8
BNEZ R1 Loop

§ What happens if branch depends on result of multd??
– We completely lose all of our advantages!
– Need to be able to “predict” branch outcome.

» If we were to predict that branch was taken, this would be right 
most of the time.  

§ Problem much worse for superscalar (issue multiple 
instrs per cycle) machines!
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Reducing Control Flow Penalty 
§ Software solutions

– Eliminate branches - loop unrolling
» Increases the run length 

– Reduce resolution time - instruction scheduling 
» Compute the branch condition as early as possible (of limited value)

§ Hardware solutions
– Find something else to do - delay slots  

» Replaces pipeline bubbles with useful work (requires software 
cooperation)

§ Branch speculation
–Speculative (predicted) execution of 

instructions beyond the branch
–Recover mis-predicted branch and its side-

effect
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Speculation: Prediction + Mis-prediction 
Recovery

Fetch Decode & 
Rename Reorder BufferPC

Branch
Prediction

Update predictors

Commit

Branch
Resolution

Branch
Unit ALU

Reg. File

MEM Store 
Buffer D$

Execute

kill
kill

kill kill
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Branch Prediction
§ Motivation

– Branch penalties limit performance of deeply pipelined 
processors

§ Prediction works because Future can be predicted 
from past!
– Programs have patterns and hw just have to figure out what they are
– Modern branch predictors have high accuracy:

(>95%) and can reduce branch penalties significantly
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Branch Prediction
§ Required hardware support

– Branch history tables (Taken or Not)
– Branch target buffers, etc. (Target address)
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Mispredict Recovery
In-order execution machines:

– Assume no instruction issued after branch can 
write-back before branch resolves

– Kill all instructions in pipeline behind mispredicted
branch

Out-of-order execution:
§ Multiple instructions following branch in program 

order can complete before branch resolves

§ Temporary store the intermediate state for those 
instructions that may be cancelled
§ Keep result computation separate from commit
§ Kill instructions following branch in pipeline
§ Restore state to state following branch
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Branch Prediction/Speculation

Fetch Decode & 
Rename Reorder BufferPC

Branch
Prediction

Update predictors

Commit

Branch
Resolution

Branch
Unit ALU

Reg. File

MEM Store 
Buffer D$

Execute

kill
kill

kill kill
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Reorder Buffer is a FIFO Queue
§ Idea: 

– Record instruction issue order
– Allow them to execute out of order
– Reorder them so that they commit in-order

§ On issue:
– Reserve slot at tail of ROB
– Record dest reg, PC
– Tag u-op with ROB slot

§ Done execute
– Deposit result in ROB slot
– Mark exception state

§ WB head of ROB
– Check exception, handle
– Write register value, or
– Commit the store

IFetch

Opfetch/Dcd

Write Back

RF
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Reorder Buffer + 
Forwarding + Speculation

§ Idea: 
– Issue branch into ROB
– Mark with prediction
– Fetch and issue 

predicted instructions 
speculatively

– Branch must resolve 
before leaving ROB

– Resolve correct
» Commit following instr

– Resolve incorrect
» Mark following instr in 

ROB as invalid
» Let them clear

IFetch

Opfetch/Dcd

Write Back

Reg
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Hardware Speculation in Tomasulo Algorithm

§ + Reorder Buffer
§ - Store Buffer

– Integrated in ROF
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Four Steps of Speculative Tomasulo
1. Issue—get instruction from FP Op Queue

If reservation station and reorder buffer slot free, issue instr & 
send operands & reorder buffer no. for destination (this stage 
sometimes called “dispatch”)

2. Execution—operate on operands (EX)
When both operands ready then execute; if not ready, watch 
CDB for result; when both in reservation station, execute; 
checks RAW (sometimes called “issue”)

3. Write result—finish execution (WB)
Write on Common Data Bus to all awaiting FUs 
& reorder buffer; mark reservation station available.

4. Commit—update register with reorder result
When instr. at head of reorder buffer & result present, update 
register with result (or store to memory) and remove instr
from reorder buffer. Mispredicted branch flushes reorder 
buffer (sometimes called “graduation”)
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Instruction In-order Commit
§ Also called completion or graduation
§ In-order commit

– In-order issue
– Out-of-order execution
– Out-of-order completion

§ Three cases when an instr reaches the head of ROB
– Normal commit: when an instruction reaches the head of the 

ROB and its result is present in the buffer
» The processor updates the register with the result and removes 

the instruction from the ROB. 
– Committing a store:

» is similar except that memory is updated rather than a result 
register. 

– A branch with incorrect prediction
» indicates that the speculation was wrong. 
» The ROB is flushed and execution is restarted at the correct 

successor of the branch.
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Example with ROB and Reservation (Dynamic 
Scheduling and Speculation) 

§ MUL.D is ready to commit

After SUB.D completes execution, if 
exception happens by MUL.D ….



27

In-order 
Commit with 
Branch

IF Misprediction

FLUSHED
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Summary: Dynamic Scheduling and Speculation

§ ILP Maximized (a restricted data-flow)
– In-order issue
– Out-of-order execution
– Out-of-order completion
– In-order commit

§ Data Hazards
– Input operands-driven dynamic scheduling for RAW hazard
– Register renaming for handling WAR and WAW hazards

§ Control Hazards (Branching, Precision Exception)
– Branch prediction and in-order commit

§ Implementation: Tomasulo
– Reservation stations and Reorder buffer
– Other solutions as well (scoreboard, history table)
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Multiple ISSUE via VLIW/Static 
Superscalar

Textbook: CAQA 3.7
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Multiple Issue
§ Issue multiple instructions in one cycle
§ Three major types (VLIW and superscalar)

– Statically scheduled superscalar processors 
– VLIW (very long instruction word) processors 
– Dynamically scheduled superscalar processors 

§ Superscalar
– Variable # of instr per cycle
– In-order execution for static superscalar
– Out-of-order execution for dynamic superscalar

§ VLIW
– Issue a fixed number of instructions formatted either as one large 

instruction or as a fixed instruction packet with the parallel- ism 
among instructions explicitly indicated by the instruction. 

– Inherently statically scheduled by the compiler
– Intel/HP IA-64 architecture, named EPIC—explicitly parallel 

instruction computer 
» Appendix H, 
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Comparison
§ c
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VLIW and Static Superscalar
§ Very similar in terms of the requirements for compiler 

and hardware support
§ We will discuss VLIW

§ Very Long Instruction Word (VLIW)
– packages the multiple operations into one very long 

instruction
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VLIW: Very Long Instruction Word

§ Multiple operations packed into one instruction
§ Each operation slot is for a fixed function
§ Constant operation latencies are specified
§ Architecture requires guarantee of:

– Parallelism within an instruction => no cross-operation RAW 
check

– No data use before data ready => no data interlocks

Two	Integer	Units,
Single	Cycle	Latency

Two	Load/Store	Units,
Three	Cycle	Latency Two	Floating-Point	Units,

Four	Cycle	Latency

Int	Op	2 Mem	Op	1 Mem	Op	2 FP	Op	1 FP	Op	2Int Op	1
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VLIW: Very Large Instruction Word
§ Each “instruction” has explicit coding for multiple 

operations
– In IA-64, grouping called a “packet”
– In Transmeta, grouping called a “molecule” (with “atoms” as 

ops)
§ Tradeoff instruction space for simple decoding

– The long instruction word has room for many operations
– By definition, all the operations the compiler puts in the long 

instruction word are independent => execute in parallel
– E.g., 1 integer operation/branch, 2 FP ops, 2 Memory refs

» 16 to 24 bits per field => 5*16 or 80 bits to 5*24 or 120 bits wide
– Need compiling technique that schedules across several 

branches
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Recall: Unrolled Loop that Minimizes 
Stalls for Scalar

1 Loop: L.D F0,0(R1)
2 L.D F6,-8(R1)
3 L.D F10,-16(R1)
4 L.D F14,-24(R1)
5 ADD.D F4,F0,F2
6 ADD.D F8,F6,F2
7 ADD.D F12,F10,F2
8 ADD.D F16,F14,F2
9 S.D 0(R1),F4
10 S.D -8(R1),F8
11 S.D -16(R1),F12
12 DSUBUI R1,R1,#32
13 BNEZ R1,LOOP
14 S.D 8(R1),F16 ; 8-32 = -24

14 clock cycles, or 3.5 per iteration

L.D to ADD.D: 1 Cycle
ADD.D to S.D: 2 Cycles
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Loop Unrolling in VLIW
Unrolled 7 times to avoid delays
7 results in 9 clocks, or 1.3 clocks per iteration (1.8X)
Average: 2.5 ops per clock, 50% efficiency
Note: Need more registers in VLIW (15 vs. 6 in SS)
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Loop Unrolling in VLIW
§ Unroll 8 times

– Enough registers
8 results in 9 clocks, or 1.125 clocks per iteration
Average: 2.89 (26/9) ops per clock, 58% efficiency (26/45)

L.D

ADD.D

S.D
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Loop Unrolling in VLIW
§ Unroll 10 times

– Enough registers
10 results in 10 clocks, or 1 clock per iteration
Average: 3.2 ops per clock (32/10), 64% efficiency (32/50)

L.D

ADD.D

S.D

L.D L.D

ADD.D ADD.D

S.D S.D
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Problems with 1st Generation VLIW
§ Increase in code size

– generating enough operations in a straight-line code fragment 
requires ambitiously unrolling loops

– whenever VLIW instructions are not full, unused functional 
units translate to wasted bits in instruction encoding

§ Operated in lock-step; no hazard detection HW
– a stall in any functional unit pipeline caused entire processor 

to stall, since all functional units must be kept synchronized
– Compiler might prediction function units, but caches hard to 

predict

§ Binary code compatibility
– Pure VLIW => different numbers of functional units and unit 

latencies require different versions of the code
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Intel/HP IA-64 “Explicitly Parallel 
Instruction Computer (EPIC)”

§ IA-64: instruction set architecture
– 128 64-bit integer regs + 128 82-bit floating point regs

» Not separate register files per functional unit as in old VLIW
– Hardware checks dependencies 

(interlocks Þ binary compatibility over time)
§ 3 Instructions in 128 bit “bundles”; field determines if 

instructions dependent or independent
– Smaller code size than old VLIW, larger than x86/RISC
– Groups can be linked to show independence > 3 instr

§ Predicated execution (select 1 out of 64 1-bit flags) 
Þ 40% fewer mispredictions?

§ Speculation Support: 
– deferred exception handling with “poison bits”
– Speculative movement of loads above stores + check to see if incorect

§ Itanium™ was first implementation (2001)
– Highly parallel and deeply pipelined hardware at 800Mhz
– 6-wide, 10-stage pipeline at 800Mhz on 0.18 µ process

§ Itanium 2™ is name of 2nd implementation (2005)
– 6-wide, 8-stage pipeline at 1666Mhz on 0.13 µ process
– Caches: 32 KB I, 32 KB D, 128 KB L2I, 128 KB L2D, 9216 KB L3
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Summary
§ VLIW: Explicitly Parallel, Static Superscalar

– Requires advanced and aggressive compiler techniques
– Trace Scheduling: Select primary “trace” to compress + fixup 

code
§ Other aggressive techniques

– Boosting: Moving of instructions above branches
» Need to make sure that you get same result (i.e. do not violate 

dependencies)
» Need to make sure that exception model is same (i.e. not unsafe)

§ Itanium/EPIC/VLIW is not a breakthrough in ILP
– If anything, it is as complex or more so than a dynamic 

processor

–Some refers to as Itanic!
§ BUT it is used today:

– e.g. TI sigal processor C6x 
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Class Lectures End Here!



43

SPECULATION EXAMPLE
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Tomasulo With Reorder buffer:

To
Memory

FP adders FP multipliers

Reservation 
Stations

FP Op
Queue

ROB7
ROB6

ROB5

ROB4

ROB3

ROB2

ROB1F0 LD F0,10(R2) N

Done?

Dest Dest

Oldest

Newest

from 
Memory

1 10+R2
Dest

Reorder Buffer

Registers
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Tomasulo With Reorder buffer:

2 ADDD R(F4),ROB1

To
Memory

FP adders FP multipliers

Reservation 
Stations

FP Op
Queue

ROB7
ROB6

ROB5

ROB4

ROB3

ROB2

ROB1

F10
F0

ADDD F10,F4,F0
LD F0,10(R2)

N
N

Done?

Dest Dest

Oldest

Newest

from 
Memory

1 10+R2
Dest

Reorder Buffer

Registers
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Tomasulo With Reorder buffer:

3 DIVD ROB2,R(F6)
2 ADDD R(F4),ROB1

To
Memory

FP adders FP multipliers

Reservation 
Stations

FP Op
Queue

ROB7
ROB6

ROB5

ROB4

ROB3

ROB2

ROB1

F2
F10
F0

DIVD F2,F10,F6
ADDD F10,F4,F0
LD F0,10(R2)

N
N
N

Done?

Dest Dest

Oldest

Newest

from 
Memory

1 10+R2
Dest

Reorder Buffer

Registers
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Tomasulo With Reorder buffer:

3 DIVD ROB2,R(F6)
2 ADDD R(F4),ROB1
6 ADDD ROB5, R(F6)

To
Memory

FP adders FP multipliers

Reservation 
Stations

FP Op
Queue

ROB7
ROB6

ROB5

ROB4

ROB3

ROB2

ROB1

F0 ADDD F0,F4,F6 N
F4 LD F4,0(R3) N
-- BNE F2,<…> N
F2
F10
F0

DIVD F2,F10,F6
ADDD F10,F4,F0
LD F0,10(R2)

N
N
N

Done?

Dest Dest

Oldest

Newest

from 
Memory

1 10+R2
Dest

Reorder Buffer

Registers

6 0+R3
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Tomasulo With Reorder buffer:

3 DIVD ROB2,R(F6)
2 ADDD R(F4),ROB1
6 ADDD ROB5, R(F6)

To
Memory

FP adders FP multipliers

Reservation 
Stations

FP Op
Queue

ROB7
ROB6

ROB5

ROB4

ROB3

ROB2

ROB1

--
F0

ROB5 ST 0(R3),F4
ADDD F0,F4,F6

N
N

F4 LD F4,0(R3) N
-- BNE F2,<…> N
F2
F10
F0

DIVD F2,F10,F6
ADDD F10,F4,F0
LD F0,10(R2)

N
N
N

Done?

Dest Dest

Oldest

Newest

from 
Memory

Dest

Reorder Buffer

Registers

1 10+R2
6 0+R3
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Tomasulo With Reorder buffer:

3 DIVD ROB2,R(F6)

To
Memory

FP adders FP multipliers

Reservation 
Stations

FP Op
Queue

ROB7
ROB6

ROB5

ROB4

ROB3

ROB2

ROB1

--
F0

M[10] ST 0(R3),F4
ADDD F0,F4,F6

Y
N

F4 M[10] LD F4,0(R3) Y
-- BNE F2,<…> N
F2
F10
F0

DIVD F2,F10,F6
ADDD F10,F4,F0
LD F0,10(R2)

N
N
N

Done?

Dest Dest

Oldest

Newest

from 
Memory

1 10+R2
Dest

Reorder Buffer

Registers

2 ADDD R(F4),ROB1
6 ADDD M[10],R(F6)
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Tomasulo With Reorder buffer:

3 DIVD ROB2,R(F6)
2 ADDD R(F4),ROB1

To
Memory

FP adders FP multipliers

Reservation 
Stations

FP Op
Queue

ROB7
ROB6

ROB5

ROB4

ROB3

ROB2

ROB1

--
F0

M[10]
<val2>

ST 0(R3),F4
ADDD F0,F4,F6

Y
Ex

F4 M[10] LD F4,0(R3) Y
-- BNE F2,<…> N
F2
F10
F0

DIVD F2,F10,F6
ADDD F10,F4,F0
LD F0,10(R2)

N
N
N

Done?

Dest Dest

Oldest

Newest

from 
Memory

1 10+R2
Dest

Reorder Buffer

Registers
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Tomasulo With Reorder buffer:

--
F0

M[10]
<val2>

ST 0(R3),F4
ADDD F0,F4,F6

Y
Ex

F4 M[10] LD F4,0(R3) Y
-- BNE F2,<…> N

3 DIVD ROB2,R(F6)
2 ADDD R(F4),ROB1

To
Memory

FP adders FP multipliers

Reservation 
Stations

FP Op
Queue

ROB7
ROB6

ROB5

ROB4

ROB3

ROB2

ROB1

F2
F10
F0

DIVD F2,F10,F6
ADDD F10,F4,F0
LD F0,10(R2)

N
N
N

Done?

Dest Dest

Oldest

Newest

from 
Memory

1 10+R2
Dest

Reorder Buffer

Registers

What about memory
hazards???
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Memory Disambiguation:
Sorting out RAW Hazards in memory

§ Question: Given a load that follows a store in program 
order, are the two related?
– (Alternatively: is there a RAW hazard between the store and 

the load)?

Eg: st 0(R2),R5
ld R6,0(R3)

§ Can we go ahead and start the load early?  
– Store address could be delayed for a long time by some 

calculation that leads to R2 (divide?).  
– We might want to issue/begin execution of both operations in 

same cycle.
– Today: Answer is that we are not allowed to start load until we 

know that address 0(R2) ¹ 0(R3)
– Next Week: We might guess at whether or not they are 

dependent (called “dependence speculation”) and use 
reorder buffer to fixup if we are wrong.
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Hardware Support for Memory 
Disambiguation

§ Need buffer to keep track of all outstanding stores to 
memory, in program order.
– Keep track of address (when becomes available) and value 

(when becomes available)
– FIFO ordering: will retire stores from this buffer in program 

order
§ When issuing a load, record current head of store 

queue (know which stores are ahead of you).
§ When have address for load, check store queue:

– If any store prior to load is waiting for its address, stall load.
– If load address matches earlier store address (associative 

lookup), then we have a memory-induced RAW hazard:
» store value available Þ return value
» store value not available Þ return ROB number of source 

– Otherwise, send out request to memory
§ Actual stores commit in order, so no worry about 

WAR/WAW hazards through memory.
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Memory Disambiguation:

-- LD F4, 10(R3) N

To
Memory

FP adders FP multipliers

Reservation 
Stations

FP Op
Queue

ROB7
ROB6

ROB5

ROB4

ROB3

ROB2

ROB1

F2
F0
--

R[F5]

<val 1>

ST 10(R3), F5 
LD F0,32(R2)
ST 0(R3), F4

N
N
Y

Done?

Dest Dest

Oldest

Newest

from 
Memory

2 32+R2
4 ROB3

Dest

Reorder Buffer

Registers
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Relationship between precise interrupts, 
branch and speculation:

§ Speculation is a form of guessing
– Branch prediction, data prediction
– If we speculate and are wrong, need to back up and restart 

execution to point at which we predicted incorrectly
– This is exactly same as precise exceptions!

§ Branch prediction is a very important!
– Need to “take our best shot” at predicting branch direction.
– If we issue multiple instructions per cycle, lose lots of 

potential instructions otherwise:
» Consider 4 instructions per cycle
» If take single cycle to decide on branch, waste from 4 - 7 

instruction slots!
§ Technique for both precise interrupts/exceptions and 

speculation: in-order completion or commit
– This is why reorder buffers in all new processors


