
Lecture 15: Instruction Level Parallelism
-- 5-stage Pipeline Extension, ILP Introduction,
Compiler Techniques and Branch Prediction

CSCE 513 Computer Architecture

Department of Computer Science and Engineering
Yonghong Yan

yanyh@cse.sc.edu
https://passlab.github.io/CSCE513

1

Topics for Instruction Level Parallelism

• 5-stage Pipeline Extension, ILP Introduction, Compiler
Techniques, and Branch Prediction
– C.5, C.6
– 3.1, 3.2
– Branch Prediction, C.2, 3.3

• Dynamic Scheduling (OOO)
– 3.4, 3.5

• Hardware Speculation and Static Superscalar/VLIW
– 3.6, 3.7

• Dynamic Superscalar, Advanced Techniques, ARM Cortex-
A53, and Intel Core i7
– 3.8, 3.9, 3.12

• SMT: Exploiting Thread-Level Parallelism to Improve
Uniprocessor Throughput
– 3.11

2

Extending 5-stage Integer Pipeline
to Handle Multicycle Operations

Textbook: CAQA C.5 and C.6

C

3

Complex Pipelining: Motivation

• Why would we want more than our in-order pipeline?

PC
Inst.	
Cache D Decode E M

Data	
Cache W+

Main	Memory	(DRAM)

Memory	Controller

Physical	
Address

Physical	
Address

Physical	
Address

Physical	
Address

Physical	Address

Complex Pipelining: Motivation

Pipelining becomes complex when we want high performance in
the presence of:

• Long latency or partially pipelined floating-point units
– Not all instructions are floating point or integer

• Memory systems with variable access time
– For example cache misses

• Multiple arithmetic and memory units

Floating Point Representation

• IEEE standard 754

Value = (-1)s * 1.mantissa * 2(exp-127)

Exponent = 0 has special meaning

Floating-Point Unit (FPU)

• Much more hardware than an integer unit
– A simple FPU takes 150,000 gates. Verification complex. Some

exceptions specific to floating point.
– Integer FU to the order of thousands

• Common to have several FPU’s
– Some integer, some floating point

• Common to have different types of FPU’s: Fadd, Fmul, Fdiv,
…

• An FPU may be pipelined, partially pipelined or not pipelined
• To operate several FPU’s concurrently the FP register file

needs to have more read and write ports

Unpipelined FP EXE Stage

• FP takes loops to compute
• Much longer clock period

Single-cycle FPU is a bad idea

Latency and Interval

• Latency
– The number of intervening cycles between an instruction that

produces a result and an instruction that uses the result.
– Usually the number of stages after EX that an instruction

produces a result
• ALU Integer 0, Load latency 1

• Initiation or repeat interval
– the number of cycles that must elapse between issuing two

operations of a given type à structural hazards

Pipelined FP EXE

• Increased stall for RAW hazards

Breaking Our Assumption of Integer Pipeline

• The divide unit is not fully pipelined
– structural hazards can occur

• need to be detected and stall incurred.
• The instructions have varying running times

– the number of register writes required in a cycle can be > 1
• Instructions no longer reach WB in order

– Write after write (WAW) hazards are possible
• Note that write after read (WAR) hazards are not possible, since the

register reads always occur in ID.
• Instructions can complete in a different order than they were issued

(out-of-order complete)
– causing problems with exceptions

• Longer latency of operations
– stalls for RAW hazards will be more frequent.

Hazards and Forwarding for Longer-Latency
Pipeline

• H

Stalls of FP Operations
• SPEC89 FP
• Latency average
• FP add, subtract, or convert

– 1.7 cycles, or 56% of the
latency (3 cycles).

• Multiplies and divides
– 2.8 and 14.2, respectively, or

46% and 59% of the
corresponding latency.

• Structural hazards for
divides are rare
– since the divide frequency is

low.

Stalls per FP Operation

• The total number of
stalls per instruction
– ranges from 0.65 for

su2cor to 1.21 for
doduc, with an average
of 0.87.

– FP	result	stalls	dominate	in	all	cases,	with	an	average	of	0.71	stalls	per	
instruction,	or	82%	of	the	stalled	cycles.	

Problems Arising From Writes

• If we issue one instruction per cycle, how can we avoid
structural hazards at the writeback stage and out-of-order
writeback issues?

• WAW Hazards

WAW Hazards

Complex In-Order Pipeline

• Delay writeback so all operations
have same latency to W stage

– Write ports never oversubscribed
(one inst. in & one inst. out every
cycle)

– Stall pipeline on long latency
operations, e.g., divides, cache
misses

– Handle exceptions in-order at
commit point

Commit	
Point

PC
Inst.	
Mem D Decode X1 X2

Data	
Mem W+GPRs

X2 WFAdd X3

X3

FPRs X1

X2 FMul X3

X2FDiv X3

Unpipelined	
dividerHow	to	prevent	increased	writeback latency	

from	slowing	down	single	cycle	integer	
operations?

Bypassing

Floating-Point ISA

• Interaction between floating-point datapath and integer
datapath is determined by ISA

• RISC-V ISA
– separate register files for FP and Integer instructions

• the only interaction is via a set of move/convert instructions (some ISA’s
don’t even permit this)

– separate load/store for FPR’s and GPR’s (general purpose
registers) but both use GPR’s for address calculation

– FP compares write integer registers, then use integer branch

Realistic Memory Systems

Common approaches to improving memory performance:
• Caches - single cycle except in case of a miss

=>stall
• Banked memory - multiple memory accesses

=> bank conflicts
• split-phase memory operations (separate memory request

from response), many in flight
=> out-of-order responses

Latency	of	access	to	the	main	memory	is	usually	much	greater	
than	one	cycle	and	often	unpredictable

Solving	this	problem	is	a	central	issue	in	computer	architecture

Multiple-Cycles MEM Stage
• MIPS R4000
• IF: First half of instruction fetch; PC selection actually happens here, together with initiation of

instruction cache access.
• IS: Second half of instruction fetch, complete instruction cache access.
• RF: Instruction decode and register fetch, hazard checking, and instruction cache hit detection.
• EX: Execution, which includes effective address calculation, ALU operation, and branch-target

computation and condition evaluation.
• DF: Data fetch, first half of data cache access.
• DS: Second half of data fetch, completion of data cache access.
• TC: Tag check, to determine whether the data cache access hit.
• WB: Write-back for loads and register-register operations.

2-Cycles Load Delay

• 2

3-Cycle Branch Delay when Taken

3.1 ILP: Concepts and Challenges

• Instruction-Level Parallelism (ILP): overlap the execution of
instructions to improve performance.

• 2 approaches to exploit ILP
– Rely on hardware to help discover and exploit the parallelism

dynamically (e.g., Pentium 4, AMD Opteron, IBM Power), and
– Rely on software technology to find parallelism, statically at

compile-time (e.g., Itanium 2)
• Pipelining Review (branch taken, wasted cycles in RED)

1 2 3 4 5 6 7 8 9 10 11 12 13
ld###x5##&32(x4) IF ID EXE MEM WB
ld###x6##&16(x4) IF ID EXE MEM WB
add#x6#x5#x6 IF 3 ID EXE MEM WB
add#x6#x6#x6 IF ID EXE MEM WB
BNEZ#x6#L1 IF ID EXE MEM WB

add#x10#x4##10 IF ID EXE MEM WB
add#x11#x5##10 IF ID EXE MEM WB

L1:#######add#x12#x5##10 IF ID EXE MEM WB22

Improving Instruction Level Parallelism (ILP)

Pipeline CPI = Ideal pipeline CPI + Structural Stalls
+ Data Hazard Stalls + Control Stalls

23

Instruction-Level Parallelism (ILP): Basic
Blocks

• BB: a straight-line code sequence with no branches in except to
the entry and, no branches out except at the exit;

https://en.wikipedia.org/wiki/Basic_block
24

Instruction-Level Parallelism (ILP)

• Inside a Basic Block (BB), ILP is quite small
• Average dynamic branch frequency 15% to 25%

– 3 to 6 instrs execute between a pair of branches.
– Plus instructions in BB likely to depend on each other.

• To obtain substantial performance enhancements,
we must exploit ILP across basic blocks. (ILP →
LLP)
– Loop-Level Parallelism: to exploit parallelism among

iterations of a loop. E.g., add two matrixes.

for (i=1; i<=1000; i=i+1)
x[i] = x[i] + y[i];

25

Data Dependences and Hazards

• Three data dependence: data dependences (true data
dependences), name dependences, and control dependences.
1. Instruction i produces a result that may be used by instruction j

(i→ j), or
2. Instruction j is data dependent on instruction k, and instruction

k is data dependent on instruction i (i→ k → j, dependence
chain).

• For example, a code sequence

Loop: FLD F0, 0(x1) ;F0=array element
FADD.D F4, F0, F2 ;add scalar in f2
FSD F4, 0(x1) ;store result
ADDI x1, x1, #-8 ;decrement pointer 8 bytes
BNE x1, x2, Loop ;branch x1!=x2

26

True Data Dependence

• Floating-point data part

Loop: FLD F0, 0(x1) ;F0=array element
FADD.D F4, F0, F2 ;add scalar in f2
FSD F4, 0(x1) ;store result

• Integer data part

ADDI x1, x1, #-8 ;decrement pointer
;8 bytes (per DW)

BNE x1, x2, Loop ;branch x1!=x2

† This type is called a Read After Write (RAW) dependency.
27

True Data Dependence and RAW Hazards

• InstrJ is data dependent (aka true dependence) on InstrI:
1) InstrJ tries to read operand before InstrI writes it;

2) Or InstrJ is data dependent on InstrK which is dependent on InstrI.
• If two instructions are data dependent, they cannot execute

simultaneously or be completely overlapped.
• Data dependence in instruction sequence → data dependence in

source code → effect of original data dependence must be
preserved.

• If data dependence caused a hazard in pipeline, called a Read
After Write (RAW) hazard.

I: FLD										F0,	0(x1)			;F0=array	element	
J:		FADD.D		F4,	F0,	F2		;add	scalar	in	f2

28

True Data Dependencies à RAW Hazards for
ILP

• HW/SW must preserve program order: instructions would
execute in order if executed sequentially as determined by original
source program.

– Dependences are a property of programs.
• Presence of dependence indicates potential for a hazard, but

actual hazard and length of any stall is property of the pipeline.
• Importance of the data dependencies.

1) Indicates the possibility of a hazard;
2) Determines order in which results must be calculated;
3) Sets an upper bound on how much parallelism can possibly be

exploited.
• HW/SW goal: exploit parallelism by preserving program

order only where it affects the outcome of the program.
29

Detection of True Data Dependency

• Data value being dependent on between instructions either through
registers or through memory locations.

• When the data flow occurs in a register
– Detecting the dependence is straightforward since the register

names are fixed in the instrs within BB, interlock
– More complicated between BB

• branches intervene and correctness concerns force a compiler or
hardware to be conservative.

• Dependences that flow through memory locations are more
difficult to detect,
– 100(x4) and 20(x6) may be identical memory addresses.
– The effective address of a load or store may change from one execution

of the instruction to another
• so that 20(x4) and 20(x4) may be different

30

Name Dependence #1: Anti-dependence

• Name dependence: when 2 instructions use same register or
memory location, called a name, but no flow of data
between the instructions associated with that name;

• 2 versions of name dependence (WAR and WAW).
• InstrJ writes operand before InstrI reads it

– Called an “anti-dependence” by compiler writers. This results
from reuse of the name “r1”.

• If anti-dependence caused a hazard in the pipeline, called a
Write After Read (WAR) hazard.

I:	 sub	r4,r1,r3	
J:	 add	r1,r2,r3
K:	 mul r6,r1,r7

31

Name Dependence #2: Output dependence

• InstrJ writes operand before InstrI writes it.

• Called an “output dependence” by compiler writers. This
also results from the reuse of name “r1”

• If anti-dependence caused a hazard in the pipeline, called a
Write After Write (WAW) hazard.

• Instructions involved in a name dependence can execute
simultaneously if name used in instructions is changed so
instructions do not conflict.

– Register renaming resolves name dependence for regs;
– Either by compiler or by HW.

I:	 sub	r1,r4,r3	
J:	 add	r1,r2,r3
K:	 mul r6,r1,r7

32

Control Dependencies

• Every instruction is control dependent on some set of
branches

• Control dependencies must be preserved to preserve
program order.

if p1 {
S1;

};

if p2 {
S2;

}

• S1 is control dependent on p1, and S2 is control dependent on
p2 but not on p1.

33

Control Dependence

• Two constrains imposed by control dependence
1. An instruction that is dependent on a branch cannot be

moved before the branch so that its execution is no longer
controlled by the branch;

2. An instruction that is not control dependent on a branch
cannot be moved after the branch so that its execution is
controlled by the branch.

• Control dependence need not be preserved
– Willing to execute instructions that should not have been

executed
– violating the control dependences, ok if can do so without

affecting correctness of the program
• Not just branch or jump

– Exception
34

Exception Behavior

• Preserving exception behavior
– Any changes in instruction execution order must not change how

exceptions are raised in program (Þ no new exceptions).
• Example

ADD X2, X3, X4
BEQ X2, X0, L1
Ld X1, 0(X2)

L1:

• Problem with moving LW before BEQZ even if branch is not
taken?
– LW may cause memory protection exception

† Assume branches not delayed.

35

Preserving Data Flow

• Data flow: actual flow of data values among instructions that
produce results and those that consume them.
– Branches make flow dynamic, determine which instruction is

supplier of data.
• Example

ADD X1, X2, X3
BEQ X4, X0, L
SUB X1, X5, X6

L: …
OR X7, X1, X8

• X1 of OR depends on ADD or SUB?
– Must preserve data flow on execution.

36

3.2 Basic Compiler Techniques for Exposing ILP

• This code, add a scalar to a vector

for (i=1000; i>0; i=i–1)
x[i] = x[i] + s;

• Assume following latencies for all examples
– Ignore delayed branch in these examples

Instruction producing result Instruction using result Latency in cycles
FP ALU op Another FP ALU op 3
FP ALU op Store double 2
Load double FP ALU op 1
Load double Store double 0

Figure 3.2 Latencies of FP operations used in this chapter.

37

Latencies

• 5 stage pipeline
• Branches have one cycle delay
• Load à EXE-USE: 1 cycle delay

38

FP Loop: Where are the Hazards?

• First translate into MIPS/RISC-V code
– To simplify, assume 8 is lowest address
– R1 stores the address of X[999] when the loop starts

Loop: L.D F0,0(R1) ;F0=vector element
ADD.D F4,F0,F2 ;add scalar from F2
S

39

FP Loop Showing Stalls: V1

• Example 3-1 (p.178): Show how the loop would look on RISC-V, both
scheduled and unscheduled including any stalls or idle clock cycles. Schedule for
delays from floating-point operations, but remember that we are ignoring
delayed branches.

• Answer

† 9 clock cycles, 6
for useful work
Rewrite code to
minimize stalls?

40

Revised FP Loop Minimizing Stalls: V2

• Swap ADDI and FSD by changing address of FSD

† 7 clock cycles
† 3 for execution (FLD, FADD.D,FSD)
† 4 for loop overhead; How make faster?

41

Unroll Loop Four Times: V3

• 27 clock cycles (6*4+3), or 6.75 per iteration (Assumes R1
is multiple of 4) compared with 9 for unrolled/unscheduled

42

Unroll Loop Four Times

• 27 clock cycles (6*4+3), or 6.75 per iteration (Assumes R1 is
multiple of 4) compared with 9 for unrolled/unscheduled
– Reducing instrs for branch and loop bound calculation

• Reduce branch stall
• Code size increases

– 5 instructions to 14 instructions

43

Unrolling Loop in Real Program

• Do not usually know upper bound of loop.
• Suppose it is n, and we would like to unroll the loop to make

k copies of the body.
• Instead of a single unrolled loop, we generate a pair of

consecutive loops:
– 1st executes (n mod k) times and has a body that is the original

loop;
– 2nd is the unrolled body surrounded by an outer loop that iterates

(n/k) times.
• For large values of n, most of the execution time will be spent

in the unrolled loop.

44

Unrolled Loop That Minimizes Stalls: V4

† 14 clock cycles
45

Four Versions Compared

46

Total	Cycles	(1000	Iterations) Cycles	Per	Iterations Code	Sizes
V1:	Original

V2:	Scheduled

V3:	Unrolled

V4:	Scheduled	and	
Unrolled

5 Loop Unrolling Decisions
• Requires understanding how one instruction depends on another

and how the instructions can be changed or reordered given the
dependences:
1. Determine loop unrolling useful by finding that loop iterations were

independent (except for maintenance code);
2. Use different registers to avoid unnecessary constraints forced by

using same registers for different computations;
3. Eliminate the extra test and branch instructions and adjust the loop

termination and iteration code;
4. Determine that loads and stores in unrolled loop can be interchanged

by observing that loads and stores from different iterations are
independent;
• Transformation requires analyzing memory addresses and finding

that they do not refer to the same address.
5. Schedule the code, preserving any dependences needed to yield the

same result as the original code.

47

Limits to Loop Unrolling

• 3 Limits to Loop Unrolling
1. Decrease in amount of overhead amortized with each extra unrolling.

u Reducing the ratio of the portion that can not be optimized in
Amdahl’s Law.

2. Growth in code size.
u For larger loops, concern it increases the instruction cache miss

rate.
3. Register pressure: potential shortfall in registers created by

aggressive unrolling and scheduling.
u If not be possible to allocate all live values to registers, may lose

some or all of its advantage.
• Loop unrolling reduces impact of branches on pipeline; another

way is branch prediction.
– We discuss it in section 3.3: Reducing Branch Costs with Prediction.

48

Summary

• Three kinds of data dependency
– True data dependency
– Name dependency
– Control dependency

• Hazards from dependency
– Stall the pipeline

• Compiler technology
– Loop unrolling
– Instruction Scheduling

49

When Safe to Unroll Loop?

• Example: Where are data dependencies?
(A,B,C distinct & nonoverlapping)
for (i=0; i<100; i=i+1) {

A[i+1] = A[i] + C[i]; /* S1 */
B[i+1] = B[i] + A[i+1]; /* S2 */

}

1. S2 uses the value, A[i+1], computed by S1 in the same iteration.
2. S1 uses a value computed by S1 in an earlier iteration, since iteration i
computes A[i+1] which is read in iteration i+1. The same is true of S2 for B[i] and
B[i+1].

This is a “loop-carried dependence”: between iterations

• For our prior example, each iteration was distinct
– In this case, iterations can’t be executed in parallel, Right????

Does a loop-carried dependence mean there is
no parallelism???

• Consider:
for (i=0; i< 8; i=i+1) {

A = A + C[i]; /* S1 */
}

ÞCould compute:

“Cycle 1”: temp0 = C[0] + C[1];
temp1 = C[2] + C[3];
temp2 = C[4] + C[5];
temp3 = C[6] + C[7];

“Cycle 2”: temp4 = temp0 + temp1;
temp5 = temp2 + temp3;

“Cycle 3”: A = temp4 + temp5;

• Relies on associative nature of “+”.

3.3 Reducing Branch Costs with Prediction

• Because of the need to enforce control dependences through
branch hazards and stall, branches will hurt pipeline
performance.
– Solution 1: loop unrolling à reduce branch instrs
– Solution 2: by predicting how they will behave à reduce stalls

• SW/HW technology
– SW: Static Branch Prediction, statically at compile time;
– HW: Dynamic Branch Prediction, dynamically by the hardware

at execution time.

52

Static Branch Prediction

• Appendix C showed scheduling code around delayed branch.
– Reorder code around branches, need to predict branch statically when compile.

• Another and simplest scheme is to predict a branch as taken.
– Average misprediction = untaken branch frequency = 34% SPEC. Unfortunately, from

very accurate (59%) to highly accurate (9%).

12%

22%

18%

11% 12%

4%
6%

9% 10%

15%

0%

5%

10%

15%

20%

25%

M
is

pr
ed

ic
tio

n
Ra

te

Integer (ave. 15%) Floating Point (ave. 9%)

p More accurate scheme
predicts branches using profile
information collected from
earlier runs, and modify
prediction based on last run. Figure C.17 The result of predict-taken in SPEC92

999/1000 is correct for 1000 iterations

53

How It Works In Compiler (GCC)

54https://gcc.gnu.org/onlinedocs/gcc/Other-Builtins.html

Collect Branch Statistics

55

Dynamic Branch Prediction

• Why does prediction work?
– Underlying algorithm has regularities;
– Data that is being operated on has regularities;
– Instruction sequence has redundancies that are artifacts of way

that humans/compilers think about problems.
• Is dynamic branch prediction better than static branch

prediction?
– Seems to be;
– There are a small number of important branches in programs

which have dynamic behavior.

56

Dynamic Branch Prediction

• Performance = ƒ(accuracy, cost of misprediction)
• Branch History Table (also called Branch Prediction Buffer):

lower bits of PC address index table of 1-bit values.
– Says whether the branch was recently taken or not;
– No address check.

• Problem: in a loop, 1-bit BHT will cause two mispredictions
(average is 9 in 10 iterations before exit).
– End of loop case, when it exits instead of looping as before;
– First time through loop on next time through code, when it

predicts exit instead of looping.

57

Basic Branch Prediction Buffers

• a.k.a. Branch History Table (BHT) - Small direct-mapped
cache of T/NT bits.

58

Dynamic Branch Prediction

• Solution: 2-bit scheme where change prediction only if get
misprediction twice.

– Red: stop, not taken;
– Blue: go, taken;
– Adds hysteresis to decision making process.

T

T NT

NT

Predict Taken

Predict Not
Taken

Predict Taken

Predict Not
Taken

11 10

01 00
T

NT
T

NT

59

2-bit Scheme Accuracy

• Mispredict because either:
– Wrong guess for that branch;
– Got branch history of wrong branch when index the table.

• 4,096 entry table
18%

5%

12%
10% 9%

5%

9% 9%

0% 1%
0%
2%
4%
6%
8%
10%
12%
14%
16%
18%
20%

eq
nto
tt

es
pre
ss
o gc

c li
sp
ice

do
du
c
sp
ice

fpp
pp

ma
trix
30
0
na
sa
7

M
is

pr
ed

ic
tio

n
R

at
e

Integer Floating Point

Figure 2.5 The result of 2-bit scheme in SPEC89
60

2-bit Scheme Accuracy

• The accuracy of the predictors for integer programs, which
typically also have higher branch frequencies, is lower than
for the loop-intensive scientific programs.

• Two ways to attack this problem
– Large buffer size;
– Increasing the accuracy of the scheme we use for each prediction.

• However, simply increasing the number of bits per predictor
without changing the predictor structure also has little impact.
– Single branch predictor V.S. correlating branch predictors.

61

Accuracy of Different Schemes

0%Fr
eq

ue
nc

y
of

 M
is

pr
ed

ic
tio

ns

0%
1%

5%
6% 6%

11%

4%

6%
5%

1%2%

4%

6%

8%

10%

12%

14%

16%

18%

20%

4,096 entries: 2-bits per entry Unlimited entries: 2-bits/entry 1,024 entries (2,2)

4,096 Entries 2-bit BHT
Unlimited Entries 2-bit BHT
1,024 Entries (2, 2) BHT

na
sa
7

m
at
rix

30
0

do
du

cd

sp
ic
e

fp
pp

p

gc
c

ex
pr
es
so

eq
nt
ot
t li

to
m
ca
tv

62

Improve Prediction Strategy By Correlating Branches

• Consider the worst case for the 2-bit predictor

if (aa==2)
aa=0;

if (bb==2)
bb=0;

if (aa != bb) {

• Correlating predictors or 2-level predictors
– Correlation = what happened on the last branch

• Note that the last correlator branch may not always be the same.
– Predictor = which way to go

• 4 possibilities: which way the last one went chooses the prediction.
– (Last-taken, last-not-taken) × (predict-taken, predict-not-taken)

if the first
2 fail then
the 3rd will
always be
taken.

DSUBUI R3, R1, #2
BNEZ R3, L1
DADD R1, R0, R0

L1:
DSUBUI R3, R2, #2
BNEZ R3, L2
DADD R2, R0, R0

L2:
DSUBU R3, R1, R2
BEQZ R3, L3

† Single level predictors can never get this case.

This branch is based on
the Outcome of the
previous 2 branches.

63

Correlated Branch Prediction

• Idea: record m most recently executed branches as taken or not taken, and use
that pattern to select the proper n-bit branch history table.

• In general, (m, n) predictor means record last m branches to select between 2m

history tables, each with n-bit counters.
– Thus, old 2-bit BHT is a (0, 2) predictor.

• Global Branch History: m-bit shift register keeping T/NT status of last m
branches.

• Each entry in table has m n-bit predictors.
• Total bits for the (m, n) BHT prediction buffer:

– 2m banks of memory selected by the global branch history (which is just a shift register)
- e.g. a column address;

– Use p bits of the branch address to select row;
– Get the n predictor bits in the entry to make the decision.

pm nbitsmemoryTotal 22__ ´´=

64

Correlating Branches

• (2, 2) predictor
– Behavior of recent 2 branches selects between four predictions of

next branch, updating just that prediction.

Branch	address

2-bits	per	branch	predictor

Prediction

2-bit	global	branch	history

4

65

Example of Correlating Branch Predictors

if (d==0)
d = 1;

if (d==1)
…

BNEZ R1, L1 ;branch b1 (d!=0)
DADDIU R1, R0, #1 ;d==0, so d=1

L1: DADDIU R3, R1, #-1
BNEZ R3, L2 ;branch b2 (d!=1)

…
L2:

66

If b1 is not taken, then b2 will be not taken

1-bit predictor: consider d alternates between 2 and 0. All branches are mispredicted

Example: Multiple Consequent Branches

if(d == 0) ;not taken
d=1;

else ;taken
if(d==1) ;not taken

else ;taken

67

Example: Multiple Consequent Branches

(1,1) predictor - 1-bit predictor with 1 bit of correlation: last branch (either taken or
not taken) decides which prediction bit will be considered or updated

2-bits prediction : prediction if last branch not taken/ and prediction if last branch taken

if(d == 0) ;not taken
d=1;

else ;taken
if(d==1) ;not taken

else ;taken

68

Branch Prediction with Neural Networks
[1] D. Jimenez and C. Lin, “Dynamic branch prediction with perceptrons”, Proc. of the 7th
Int. Symp. on High Perf.Comp. Arch (HPCA-7), 2001.
[2] D. Jimenez and C. Lin, “Neural methods for dynamic branch prediction”, ACM Trans. on
Computer Systems,2002.
[3] A. Seznec, “Revisiting the perceptron predictor”,Technical Report, IRISA, 2004.
[4] A. Seznec. An optimized 2bcgskew branch predictor. Technical report Irisa, Sep 2003.
[5] G. Loh. The frankenpredictor. In The 1st JILP Championship Branch Prediction
Competition (CBP-1), 2004
[6] K. Aasaraai and A. Baniasadi Low-power Perceptrons
[7] A. Seznec. The O-GEometric History Length branch predictor
[8] M. Monchiero and G. Palermo The Combined Perceptron Branch Predictor
[9] F. Rosenblatt. Principles of Neurodynamics: Perceptrons and the Theory of Brain
Mechanisms. Spartan, 1962.

69

Summary

• Branch Prediction
– Static compiler-based prediction
– Dynamic hardware-based prediction

• Branch history table + Branch Target Buffer

70

