Lecture 15; Instruction Level Parallelism

-- 5-stage Pipeline Extension, ILP Introduction,
Compiler Techniques and Braneh-Prediction

CSCE 513 Computer Architecture

Department of Computer Science and Engineering
Yonghong Yan
yanyh@cse.sc.edu
https://passlab.github.i0/CSCES513

Topics for Instruction Level Parallelism

* 5S-stage Pipeline Extension, ILP Introduction, Compiler
Techniques, and Branch Prediction
— C5,C.6
- 3.1,3.2
°* Dynamic Scheduling (OOO)
— 34,35

* Hardware Speculation and Static Superscalar/VLIW
— 3.6,3.7

* Dynamic Superscalar, Advanced Techniques, ARM Cortex-
AS53, and Intel Core i7

- 3.8,3.9,3.12

* SMT: Exploiting Thread-Level Parallelism to Improve
Uniprocessor Throughput

- 3.11

Extending 5-stage Integer Pipeline
to Handle Multicycle Operations
Textbook: CAQA C.5 and C.6

Complex Pipelining: Motivation

* Why would we want more than our in-order pipeline?

Physical
Address | |nst.

"| cache

|

Physical
Address

Data

Decode > +

Physical
Address

>

Cache

|

Memory Controller

Ph{sical Address

Main Memory (DRAM)

Physical
Address

Complex Pipelining: Motivation

Pipelining becomes complex when we want high performance 1n
the presence of:

* Long latency or partially pipelined floating-point units
— Not all instructions are floating point or integer

* Memory systems with variable access time
— For example cache misses

* Multiple arithmetic and memory units

Floating Point Representation

* TEEE standard 754

Value = (-1)% * 1.mantissa * 2(exp-127)
Exponent = 0 has special meaning

IEEE Floating Point Representation

S exponeant mantissa

1 bit 8 bits 23 bits

IEEE Double Precision Floating Point Representation
1 bit 11 bits 52 bits

S exponent mantissa

Floating-Point Unit (FPU)

* Much more hardware than an integer unit

— A simple FPU takes 150,000 gates. Verification complex. Some
exceptions specific to floating point.

— Integer FU to the order of thousands

* Common to have several FPU’s
— Some integer, some floating point

* Common to have different types of FPU’s: Fadd, Fmul, Fdiv,

* An FPU may be pipelined, partially pipelined or not pipelined
* To operate several FPU’s concurrently the FP register file
needs to have more read and write ports

Unpipelined FP EXE Stage

* FP takes loops to compute

* Much longer clock perioc

EX

Integer unit

EX

FP/integer
multiply

EX

FP adder

Single-cycle FPU is a bad idea

EX

FP/integer

| divider I

Latency and Interval

| [= e o
u

[H@% [
Aag 37 [res
* Latency

— The number of intervening cycles between an instruction that
produces a result and an instruction that uses the result.

— Usually the number of stages after EX that an instruction
produces a result

* ALU Integer 0, Load latency 1
* Initiation or repeat interval

~ Functional unit Latency Initiation interval
Integer ALU 0 1
Data memory (integer and FP loads) 1 1
FP add 3 1
FP multiply (also integer multiply) 6 1
FP divide (also integer divide) 24 25

Figure C.34 Latencies and initiation intervals for functional units.

Pipelined FP EXE

* Increased stall for RAW hazards

Integer unit

q

FP/integer multiply

H M3I M4I MsI M6
IF ID MEM WB
FP adder
Al I A2I A3I A4
FP/integer divider
DIV
MUL.D IF ID Ml M2 M3 M4 M5 M6 MEM WB
ADD.D IF ID Al A2 A3 A4 'MEM| WB
L.D IF ID EX WB
S.D IF ID EX MEM WB

Figure C.36 The pipeline timing of a set of independent FP operations. The stages in italics show where data are
needed, while the stages in bold show where a result is available. The ”.D"” extension on the instruction mnemonic
indicates double-precision (64-bit) floating-point operations. FP loads and stores use a 64-bit path to memory so
that the pipelining timing is just like an integer load or store.

Breaking Our Assumption of Integer Pipeline

* The divide unit 1s not fully pipelined
— structural hazards can occur
* need to be detected and stall incurred.

* The instructions have varying running times
— the number of register writes required in a cycle can be > 1
* Instructions no longer reach WB 1n order

— Write after write (WAW) hazards are possible

* Note that write after read (WAR) hazards are not possible, since the
register reads always occur 1n ID.

* Instructions can complete in a different order than they were 1ssued
(out-of-order complete)
— causing problems with exceptions

* Longer latency of operations
— stalls for RAW hazards will be more frequent.

Hazards and Forwarding for Longer-Latency
Pipeline

Clock cycle number

Instruction 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

L.D F4,0(R2) IF ID EX MEM WB
MUL.D FO,F4,F6 IF ID Stal M1 M2 M3 M4 M5 M6 M7 MEM WB

ADD.D F2,FO,F8 IF Stall ID JStall Stall Stall Stall Stall Stall§ A1l A2 A3 A4 MEM WB
Stall Stall Stall Stall Stall StalljID EX Stall Stall Stall MEM

S.D F2,0(R2) IF

Figure C.37 A typical FP code sequence showing the stalls arising from RAW hazards. The longer pipeline sub-
stantially raises the frequency of stalls versus the shallower integer pipeline. Each instruction in this sequence is
dependent on the previous and proceeds as soon as data are available, which assumes the pipeline has full bypass-
ing and forwarding. The S.D must be stalled an extra cycle so that its MEM does not conflict with the ADD.D. Extra
hardware could easily handle this case.

Stalls of FP Operations

SPECS9 FP

Latency average

FP add, subtract, or convert

— 1.7 cycles, or 56% of the
latency (3 cycles).

Multiplies and divides

— 2.8 and 14.2, respectively, or mdico N2
46% and 59% of the -
corresponding latency. Fz

doduc

ear

hydro2d

FP SPEC benchmarks

Structural hazards for

15.4

12.4

W Add/subtract/c
[0 Compares

B Multiply

@ Divide

1 Divide structur;

18.6

divides are rare 00 5o

— since the divide frequency is
low.

10.0 15.0
Number of stalls

20.0 2t

Stalls per FP Operation

* The total number of
stalls per instruction
— ranges from 0.65 for

doduc

M FP result stalls
[J FP compare stalls
@ Branch/load stalls
[FP structural

0.52

ear

su2cor to 1.21 for :
doduc, with an average ¢ . .
of 0.87. I
‘é’ mdidp 0.88
su2cor

0.00 0.10 0.20 030 040 050 060 070 0.80 0.90 1.00
Number of stalls

— FP result stalls dominate in all cases, with an average of 0.71 stalls per
instruction, or 82% of the stalled cycles.

Problems Arising From Writes

* If we i1ssue one 1nstruction per cycle, how can we avoid
structural hazards at the writeback stage and out-of-order
writeback 1ssues?

* WAW Hazards

Clock cycle number

Instruction 1 2 3 4 5 6 7 8 9 10 11
MUL.D FO,F4,F6 IF ID M1 M2 M3 M4 M5 M6 M7 MEM [§WB
IF ID EX MEM WB

ces IF ID EX MEM WB

ADD.D F_2,F4,F6 IF ID Al A2 A3 A4 MEM [|WB
IWAW Hazards ¥ D EBEX MEM WB

“es IF ID EX MEM WB

L.D F2,0(R2) IF ID EX MEM |WB

Figure C.38 Three instructions want to perform a write-back to the FP register file simultaneously, as shown in
clock cycle 11. This is not the worst case, since an earlier divide in the FP unit could also finish on the same clock.
Note that although the MUL.D, ADD.D, and L.D all are in the MEM stage in clock cycle 10, only the L. D actually uses the
memory, so no structural hazard exists for MEM.

Complex In-Order Pipeline

Inst.

Decode |H GPRs
Mem

* Delay writeback so all operations [
have same latency to W stage
— Write ports never oversubscribed | FPRs

(one inst. in & one inst. out every
cycle)

— Stall pipeline on long latency
operations, e.g., divides, cache
misses

— Handle exceptions in-order at
commit point

How to prevent increased writeback latency
from slowing down single cycle integer
operations?

Commit
Point

npipelin
: ivider

Bypassing

Floating-Point ISA

* Interaction between floating-point datapath and integer
datapath 1s determined by ISA

* RISC-V ISA

— separate register files for FP and Integer instructions

* the only interaction 1s via a set of move/convert instructions (some ISA’s
don’t even permit this)

— separate load/store for FPR’s and GPR’s (general purpose
registers) but both use GPR’s for address calculation

— FP compares write integer registers, then use integer branch

Realistic Memory Systems

Common approaches to improving memory performance:
* (Caches - single cycle except in case of a miss

=>stall
* Banked memory - multiple memory accesses

=> bank conflicts

* split-phase memory operations (separate memory request
from response), many in flight

=> out-of-order responses

Latency of access to the main memory is usually much greater
than one cycle and often unpredictable

Solving this problem is a central issue in computer architecture

Multiple-Cycles MEM Stage

* MIPS R4000

e [F: First half of instruction fetch; PC selection actually happens here, together with initiation of
instruction cache access.

* IS: Second half of instruction fetch, complete instruction cache access.
* RF: Instruction decode and register fetch, hazard checking, and instruction cache hit detection.

* EX: Execution, which includes effective address calculation, ALU operation, and branch-target
computation and condition evaluation.

* DF: Data fetch, first half of data cache access.

* DS: Second half of data fetch, completion of data cache access.
* TC: Tag check, to determine whether the data cache access hit.
* WB: Write-back for loads and register-register operations.

IF g IS g RF : EX g DF g DS : TC g WB

Reg

Data memory

Instruction memory

Figure C.41 The eight-stage pipeline structure of the R4000 uses pipelined instruction and data caches. The

mlvmm cbaman ava lalialad acd slinlac dasadllad L i sl 2 Adacccllaad 2 slhd tnvcse Thda vvnavtlcal dadlkhad Il ad vAavvacnaw-m & &l A

2-Cycles Load Delay

Time (in clock cycles) > —
CC1 cCc2 CcC3 CC4 CC5 CcCe6 CC7 cCs8 CCo9 CcC 10 CC 11
LD R1 Instrtfjction memory [Data memory ~ | Reg
Instruction 1 Instruction memoéry Diata memory? Reg
Instruction 2 Qata memoryé Reg
ADDD R2, R1 Déata memoryé Reg
Clock number
Instruction number 1 2 3 4 5 6 7 8 9
LD R1,... IF IS RF EX DF DS TC WB
DADD R2,R1,... IF IS RF EX DF DS
DSUB R3,R1,... IF IS RF EX DF
OR R4,RI1,... IF IS RF EX

Figure C.43 A load instruction followed by an immediate use results in a 2-cycle stall. Normal forwarding paths
can be used after 2 cycles, so the DADD and DSUB get the value by forwarding after the stall. The OR instruction gets

3-Cycle Branch Delay when Taken

—— o
Time (in clock cycles)
CC1 : CC2 CC3 CC4 . CC5 cCé6 : CC7 CcCs8 CCo9 CC10 . CC11
BEQZ Instruction memory [Reg Data memory Reg
Instruction 1 : Instruction memory Dgta memory . |Reg

Instruction2 : Instruction memory 5 Reg ’ Data memory Reg 5
Instruction 3 : 1 Instrufuctior'i: memory 5 Reg ’ Data memory — |Reg
Target P Instruction memory [~ Reg ’ Data memory —I

Clock number
Instruction number 1 2 3 4 5 6 7 8 9
Branch instruction IF DF DS TC WB
Delay slot EX DF DS TC WB
Stall Stall Stall Stall Stall Stall Stal
1
Stall Stall Stall Stall Stall Stall Stal
1
Branch target IF IS RF EX DF

3.1 ILP: Concepts and Challenges

* Instruction-Level Parallelism (ILP): overlap the execution of
instructions to improve performance.

* 2 approaches to exploit ILP

— Rely on hardware to help discover and exploit the parallelism
dynamically (e.g., Pentium 4, AMD Opteron, IBM Power), and

— Rely on software technology to find parallelism, statically at

compile-time (e.g., [tanium 2)

* Pipelining Review (branch taken, wasted cycles in RED)
1 [2 [3] 4[5 [6 7 [8]9J1w[1]12]13
Id x5 -32(x4)[IF | 1D | EXE [MEM| wB
Id x6 -16(x4) IF | 1D [EXE [MEM[wB
add x6 x5 x6 IF - ID | EXE [MEM| WB
add x6 x6 X6 I F [D [ExE [MEM]| wB
BNEZ x6 L1 IF | 1D [EXE [MEM[wB
adextox4#16 i | 18 [£xE [mEM| ws
addxHx5#16 i | 1B [ExE [mEM| w8
L1: addx12x5 #10 I F | D [ExE [MEM] B

Improving Instruction Level Parallelism (ILP)

Pipeline CPI =

Ideal pipeline CPI
Data Hazard Stalls + Control Stalls

Structural Stalls

Technique Reduces Section
Forwarding and bypassing Potential data hazard stalls C.2
Delayed branches and simple branch scheduling Control hazard stalls C2
Basic compiler pipeline scheduling Data hazard stalls C2,32
Basic dynamic scheduling (scoreboarding) Data hazard stalls from true dependences C.7
Loop unrolling Control hazard stalls 3.2
Branch prediction Control stalls 3.3
Dynamic scheduling with renaming Stalls from data hazards, output dependences, and 3.4
antidependences
Hardware speculation Data hazard and control hazard stalls 3.6
Dynamic memory disambiguation Data hazard stalls with memory 3.6
Issuing multiple instructions per cycle Ideal CPI 3.7,3.8
Compiler dependence analysis, software Ideal CPI, data hazard stalls H.2,H.3
pipelining, trace scheduling
Hardware support for compiler speculation Ideal CPI, data hazard stalls, branch hazard stalls H.4, H.5

Eisssnwn D 1 Tha maniavrtarshnicdiiacs avanmiinad in Arnnandiv s Fhantdar D and Annandiv il ava chaum famnathav sl

Instruction-Level Parallelism (ILP): Basic
Blocks

* BB: a straight-line code sequence with no branches in except to
the entry and, no branches out except at the exit;

B1 [
1 g : ENTER
w = 0; w = 0; w=0; |
X = x + ¥ X =x + v; X =x+ ¥ l
if(x > z) if(x > 2) Af(x > z) | B
{ B2 / \
Y = X; _ ¥ A
W Y = x; y = X B2 B3
} x++; ;x++; I : | * 2
else B3 \ /
{ et [e -1
. ¥ 2 Y = 2; | B4 |
Y = Z; z++; z++; | -
z++; ‘ L — -
} o l
W XY B il W= X+ z; EXIT
Source Code Basic Blocks pgasic Blocks Flow Graph ,

https://en.wikipedia.org/wiki/Basic_block

Instruction-Level Parallelism (ILP)

* Inside a Basic Block (BB), ILP is quite small 2

* Average dynamic branch frequency 15% to 25% : _ 2;+ -
— 3 to 6 instrs execute between a pair of branches. 11’; :;> i
— Plus mstructions in BB likely to depend on each other. g,

* To obtain substantial performance enhancements, y = x;
we must exploit ILP across basic blocks. (ILP — [***7
LLP) B3
— Loop-Level Parallelism: to exploit parallelism among Z;;z‘

iterations of a loop. E.g., add two matrixes. =
for (i=1; i<=1000; i=i+1) w=x+ 2

x[i] = x[i] + y[i]; Basic Blocks

25

Data Dependences and Hazards

* Three data dependence: data dependences (true data
dependences), name dependences, and control dependences.
1. Instruction i produces a result that may be used by instruction j
(i —j), or
2. Instruction j 1s data dependent on 1nstruction &, and instruction
k 1s data dependent on 1nstruction i (i — k£ — j, dependence
chain).

* For example, a code sequence

Loop: FLD FO, O(x1) ;FO=array element
FADD.D F4, FO, F2 :add scalar 1n 12
FSD F4, 0(x1) ;store result
ADDI x1, x1, #-8 ;decrement pointer 8 bytes
BNE x1, x2, Loop ;branch x1!=x2

26

True Data Dependence

Floating-point data part

Loop: FLD F0, O(x1) ;FO=array element
FADD.D F4, l}\(), F2 ;add scalar in 2
FSD F4, 0(x1) ;store result

Integer data part

ADDI x1, x1, #-8 ;decrement pointer
;8 bytes (per DW)
BNE x1, x2, Loop ;branch x1!=x2

T This type 1s called a Read After Write (RAW) dependency.

27

True Data Dependence and RAW Hazards

Instr; 1s data dependent (aka true dependence) on Instr;.
1) Instr, tries to read operand before Instr, writes it;

I: FLD FO, O(x1) ;FO=array element
J: FADD.D F4, FO, F2 ;add scalar in 2
2) Or Instr, 1s data dependent on Instry, which 1s dependent on Instr,.

If two 1nstructions are data dependent, they cannot execute
simultaneously or be completely overlapped.

Data dependence 1n instruction sequence — data dependence in
source code — effect of original data dependence must be
preserved.

If data dependence caused a hazard in pipeline, called a Read
After Write (RAW) hazard.

28

True Data Dependencies > RAW Hazards for
ILP

° HW/SW must preserve program order: instructions would
execute 1n order 1f executed sequentially as determined by original
source program.

— Dependences are a property of programes.

* Presence of dependence indicates potential for a hazard, but
actual hazard and length of any stall 1s property of the pipeline.

* Importance of the data dependencies.
1) Indicates the possibility of a hazard;
2) Determines order in which results must be calculated;

3) Sets an upper bound on how much parallelism can possibly be
exploited.

HW/SW goal: exploit parallelism by preserving program
order only where it affects the outcome of the program.

29

Detection of True Data Dependency

* Data value being dependent on between 1nstructions either through
registers or through memory locations.

* When the data flow occurs 1n a register
— Detecting the dependence is straightforward since the register
names are fixed in the instrs within BB, interlock

— More complicated between BB
* branches intervene and correctness concerns force a compiler or

hardware to be conservative.
* Dependences that flow through memory locations are more

difficult to detect,

— 100(x4) and 20(x6) may be i1dentical memory addresses.

— The effective address of a load or store may change from one execution
of the instruction to another
* so that 20(x4) and 20(x4) may be different

30

Name Dependence #1: Anti-dependence

* Name dependence: when 2 instructions use same register or
memory location, called a name, but no flow of data
between the instructions associated with that name;

* 2 versions of name dependence (WAR and WAW).
* Instr; writes operand before Instr; reads 1t

C I: sub r4,r1,r3
J: add r1,r2,r3
K: mul r6,r1,r7

— Called an “anti-dependence” by compiler writers. This results
from reuse of the name “rl”.

* If anti-dependence caused a hazard in the pipeline, called a
Write After Read (WAR) hazard.

31

Name Dependence #2: Output dependence

Instr; writes operand before Instr; writes it.

<: E sub ri,r4,r3
J: add r1,r2,r3

K: mul r6,rl,r7

Called an “output dependence” by compiler writers. This
also results from the reuse of name “rl”

If anti-dependence caused a hazard 1n the pipeline, called a
Write After Write (WAW) hazard.

Instructions involved in a name dependence can execute
simultaneously 1f name used 1n instructions 1s changed so
instructions do not conflict.

— Register renaming resolves name dependence for regs;

— Either by compiler or by HW.

32

Control Dependencies

* Every instruction 1s control dependent on some set of
branches

* Control dependencies must be preserved to preserve
program order.

if p1{
S1;
b

if p2{
S2;
}

* S1 1s control dependent on pl, and S2 1s control dependent on
p2 but not on pl.

33

Control Dependence

* Two constrains imposed by control dependence

1. An instruction that 1s dependent on a branch cannot be
moved before the branch so that its execution 1s no longer
controlled by the branch;

2. An instruction that 1s not control dependent on a branch
cannot be moved after the branch so that its execution 1s
controlled by the branch.

* Control dependence need not be preserved

Willing to execute instructions that should not have been
executed

violating the control dependences, ok 1f can do so without
affecting correctness of the program

Not just branch or jump
Exception

34

Exception Behavior

* Preserving exception behavior

— Any changes in instruction execution order must not change how
exceptions are raised in program (= no new exceptions).

* Example

ADD X2, X3, X4
BEQ X2, X0, L1
Ld X1, 0(X2)

L1:

T Assume branches not delayed.

* Problem with moving LW before BEQZ even 1f branch 1s not
taken?

— LW may cause memory protection exception

35

Preserving Data Flow

* Data flow: actual flow of data values among instructions that
produce results and those that consume them.

— Branches make flow dynamic, determine which instruction 1s
supplier of data.

* Example

ADD

BEQ
SUB

OR X7, X1, X8

* X1 of OR depends on ADD or SUB?

— Must preserve data flow on execution.

36

3.2 Basic Compiler Techniques for Exposing ILP

* This code, add a scalar to a vector

for (i=1000; i>0; i=i-1)
x[i] = x[i] + s;

* Assume following latencies for all examples
— Ignore delayed branch in these examples

Instruction producing result Instruction using result Latency in cycles

FP ALU op Another FP ALU op 3
FP ALU op Store double 2
Load double FP ALU op 1
Load double Store double 0

Figure 3.2 Latencies of FP operations used in this chapter.

37

Latencies

* 5 stage pipeline
* Branches have one cycle delay
* Load = EXE-USE: 1 cycle delay

Instruction producing result Instruction using result Latency in clock cycles
FP ALU op Another FP ALU op 3
FP ALU op Store double 2
Load double FP ALU op 1
Load double Store double 0

Figure 3.2 Latencies of FP operations used in this chapter. The last column is the
number of intervening clock cycles needed to avoid a stall. These numbers are similar
to the average latencies we would see on an FP unit. The latency of a floating-point load
to a store is 0 because the result of the load can be bypassed without stalling the store.
We will continue to assume an integer load latency of 1 and an integer ALU operation
latency of 0 (which includes ALU operation to branch).

38

FP Loop: Where are the Hazards?

* First translate into MIPS/RISC-V code
— To simplify, assume 8 1s lowest address
— RI1 stores the address of X[9991 when the loop starts

. for (i=999; i>=0; i=i-1)
x[i] = x[i] + s;

Loop: |flcC f0,00x1) fO=array element
fadd.d f4,f0,f? //add scalar in f2
fsc f4,0(x1) //store result
addi x1,x1,-8 //decrement pointer

//8 bytes (per DW)
bne x1,x2,Loop //branch x1#x2

39

FP Loop Showing Stalls: V1

° Example 3-1 (p. 17 ¢ Instruction producing result Instruction using result Latency in clock cycles
scheduled and unsc FP ALU op Another FP ALU op 3
delays from floatin{FP ALU op Store double 2
delayed branches. Load double FP ALU op 1

e Answer Load double Store double 0

Clock cycle issued

Loop: | fld T0,0(x1) 1

stall 2

fadd.d f4,f0,f? 3T 9 clock cycles, 6
for useful work

Rewrite code to

minimize stalls?

stall

stall

fsd f4,0(x1)
addi x1l,x1,-8
bne x1,x2,Loop

cog o\ npH

40

Revised FP Loop Minimizing Stalls: V2

Loop: fld f0,00x1) B Loop: f1d f0,0(x1)
stall 2Z> i
add x1,x1,-8
fadd.d f4,f0,f2 3 fadd.d f4.f0, f?
stall 4
ol ; stall
6 stall
7 — T5d T4,8(x1)
8 bne x1,x2,Loop

* Swap ADDI and FSD by changing address of FSD

T 7 clock cycles
T 3 for execution (FLD, FADD.D,FSD)
T 4 for loop overhead; How make faster?

41

Unroll Loop Four Times: V3

Loop: f0,0(x1)
f4,f0,f2
t4,0(x1) //drop addi & bne
f6,-8(x1)
f8,f6,f2
f8,—-8(x1) //drop addi & bne

f0,—-16(x1)

fl2,f0,f2

fl12,—-16(x1) //drop addi & bne
fl14,-24(x1)

fle,fl4,f2

addi x1,x1,-32
bne x1,x2,Loop

* 27 clock cycles (6*4+3), or 6.75 per 1teration (Assumes R1
1s multiple of 4) compared with 9 for unrolled/unscheduled

42

Unroll Loop Four Times

* 27 clock cycles (6*4+3), or 6.75 per iteration (Assumes R1 1s
multiple of 4) compared with 9 for unrolled/unscheduled
— Reducing mstrs for branch and loop bound calculation
* Reduce branch stall

* Code size increases
— 5 instructions to 14 instructions

43

Unrolling Loop in Real Program

Do not usually know upper bound of loop.

Suppose it 1s n, and we would like to unroll the loop to make
k copies of the body.

Instead of a single unrolled loop, we generate a pair of

consecutive loops:

— Ist executes (n mod k) times and has a body that is the original
loop;

— 2nd 1s the unrolled body surrounded by an outer loop that iterates
(n/k) times.

For large values of n, most of the execution time will be spent
in the unrolled loop.

44

Unrolled Loop That Minimizes Stalls: V4

T 14 clock cycles

Loop:

fl1a f0,0(x1)
fla fo,—8(x1)
fla fO,=16(x1)
fld f14,-24(x1)
fadd.d f4,f0,fZ2
fadd.d Tf8,f6,fZ
fadd.d f12,f0,f2
fadd.d fle,fl4,f?
fsa f4,0(x1)
fsa f8,-8(x1)
fsa f12,16(x1)
fsa f16,8(x1)
addi x1,x1l,-37
bne x1,x2,Loop

Four Versions Compared

_ Total Cycles (1000 Iterations) | Cycles Per Iterations

V1: Original
V2: Scheduled
V3: Unrolled

V4: Scheduled and
Unrolled

46

5 Loop Unrolling Decisions

Requires understanding how one instruction depends on another
and how the 1nstructions can be changed or reordered given the
dependences:

1. Determine loop unrolling useful by finding that loop iterations were
independent (except for maintenance code);

2. Use different registers to avoid unnecessary constraints forced by
using same registers for different computations;

3. Eliminate the extra test and branch instructions and adjust the loop
termination and iteration code;

4. Determine that loads and stores in unrolled loop can be interchanged
by observing that loads and stores from different iterations are
independent;

* Transformation requires analyzing memory addresses and finding
that they do not refer to the same address.

5. Schedule the code, preserving any dependences needed to yield the
same result as the original code.

47

Limits to Loop Unrolling

° 3 Limuts to Loop Unrolling
1. Decrease in amount of overhead amortized with each extra unrolling.
Reducing the ratio of the portion that can not be optimized in
Amdahl’s Law.
2. Growth in code size.
For larger loops, concern it increases the instruction cache miss
rate.

3. Register pressure: potential shortfall in registers created by
aggressive unrolling and scheduling.

If not be possible to allocate all live values to registers, may lose
some or all of its advantage.
* Loop unrolling reduces impact of branches on pipeline; another

way 1s branch prediction.
— We discuss 1t 1n section 3.3: Reducing Branch Costs with Prediction.

48

Summary

* Three kinds of data dependency
— True data dependency
— Name dependency
— Control dependency

* Hazards from dependency
— Stall the pipeline

* Compiler technology
— Loop unrolling
— Instruction Scheduling

49

When Safe to Unroll Loop?

* Example: Where are data dependencies?
(A,B,C distinct & nonoverlapping)

for (1=0; 1<100,; 1i=1+1) {
A[i+1] = A[1] + C[1i]; /* S1 */
B[i+1l] = B[i1] + A[i+4+1]; /* S2 */
}

1. S2 uses the value, A[1+1], computed by S1 in the same iteration.

2. S1 uses a value computed by S1 in an earlier iteration, since iteration i
computes A[1+1] which is read 1n iteration 1+1. The same 1s true of S2 for B[1] and

B[i+1].
This is a “loop-carried dependence”: between iterations
* For our prior example, each iteration was distinct
— In this case, iterations can’t be executed in parallel, Right??7??

Does a loop-carried dependence mean there is

no Earallelism??’?

* Consider:
for (1i=0; i< 8; i=1+1) {
A=A+ Cl[1]; /* S1 */
}
—> Could compute:
“Cycle 17: tempO = C[0] + C[1];
templ = C[2] + C[3];
temp2 = C[4] + C[5];
temp3 = C[6] + C[7];
“Cycle 27: temp4d = tempO + templ;
tempb = temp2 + temp3;
“Cycle37: A = tempd + tempb5;

* Relies on associative nature of “+.

3.3 Reducing Branch Costs with Prediction

* Because of the need to enforce control dependences through
branch hazards and stall, branches will hurt pipeline

performance.
— Solution 1: loop unrolling = reduce branch instrs

— Solution 2: by predicting how they will behave = reduce stalls

* SW/HW technology
— SW: Static Branch Prediction, statically at compile time;
— HW: Dynamic Branch Prediction, dynamically by the hardware
at execution time.

52

Static Branch Prediction

* Appendix C showed scheduling code around delayed branch.

— Reorder code around branches, need to predict branch statically when compile.

* Another and simplest scheme is to predict a branch as taken.

— Average misprediction = untaken branch frequency = 34% SPEC. Unfortunately, from
very accurate (59%) to highly accurate (9%).

Loop: L.D FO,0(R1) 25% 1 22%
() —
ADD.D F4,F0,F2 8 20% - 18%
S.D F4,0(R1) 5 150 Lios - 15%
DADDUI R1,R1,#-8 © <o 1% <° 10%
T 10% - .
g P 6%
BNE R1,R2, Loop ;9‘ 59 4% H
999/1000 is correct for 1000 iterations 0%
0 1 1 1 1
O More accurate scheme Q@?% &;\0”‘\ &@@0 & ® S &o N q/o‘
predicts branches using profile &R ° vs\ ¢
information collected from) Integer (ave. 15%) an Floating Point (ave. 9%)]

earlier runs, and modify

prediction based on last run Figure C.17 The result of predict-taken in SPEC92

53

How It Works In Compiler (GCC)

Built-in Function: long __builtin_expect (long exp, long c)

You may use __builtin expect to Erovide the comEiler with branch Erediction

information. In general, you should Erefer to use actual Eroﬁle feedback for this (-
fprofile-arcs), as programmers are notoriously bad at predicting how their programs

actua”y perform. However, there are appllcatlons 1n which this data 1s hard to collect.

The return value is the value of exp, which should be an integral expression. The
semantics of the built-in are that it is expected that exp == c. For example:

if (__builtin expect (x, 0))
foo ();

indicates that we do not expect to call foo, since we expect x to be zero. Since you are
limited to integral expressions for exp, you should use constructions such as

if (__builtin expect (ptr != NULL, 1))
foo (*ptr);

when testing pointer or floating-point values.

https://gcc.gnu.org/onlinedocs/gcc/Other-Builtins.html 54

Collect Branch Statistics

gcc -Wall -fprofile-arcs -ftest-coverage cov.c

where cov.c is the name of the program file. This creates an instrumented executable which contains
additional instructions that record the number of times each line of the program is executed. The
option -ftest-coverage adds instructions for counting the number of times individual lines are
executed, while -fprofile-arcs incorporates instrumentation code for each branch of the program.
Branch instrumentation records how freguentlx different Eaths are taken through ‘if’ statements and
other conditionals. The executable must then be run to create the coverage data. The data from the
run is written to several files with the extensions ‘.bb’ *.bbg’ and ‘.da’ respectively in the current
directory. This data can be analyzed using the gcov command and the name of a source file:

55

Dynamic Branch Prediction

°* Why does prediction work?
— Underlying algorithm has regularities;
— Data that 1s being operated on has regularities;
— Instruction sequence has redundancies that are artifacts of way
that humans/compilers think about problems.
* Is dynamic branch prediction better than static branch
prediction?
— Seems to be;

— There are a small number of important branches in programs
which have dynamic behavior.

56

Dynamic Branch Prediction

* Performance = f(accuracy, cost of misprediction)

* Branch History Table (also called Branch Prediction Buffer):
lower bits of PC address index table of 1-bit values.

— Says whether the branch was recently taken or not;
— No address check.

* Problem: in a loop, 1-bit BHT will cause two mispredictions
(average 1s 9 1n 10 1terations before exit).
— End of loop case, when it exits instead of looping as before;

— First time through loop on next time through code, when it
predicts exit instead of looping.

57

Basic Branch Prediction Buffers

* a.k.a. Branch History Table (BHT) - Small direct-mapped
cache of T/NT bits.

IR:

PC:

Branch Instruction

hNEEE—

N

. ¥ ——— Branch Target

/’ N

BHT T (predict taken)

NT (predict not- taken)

PC +4

58

Dynamic Branch Prediction

* Solution: 2-bit scheme where change prediction only 1f get
misprediction twice.

T

@”:T@
T JT NT
Predict Not Predict Not
Taken T Taken

— Red: stop, not taken; NT
— Blue: go, taken;
— Adds hysteresis to decision making process.

59

2-bit Scheme Accuracy

* Mispredict because either:
— Wrong guess for that branch;
— Got branch history of wrong branch when index the table.

* 4,096 entry table

20% ~18%
18%
16% -
14% - 12%

12% - 10%
10% -
8% -
6% -
4% -
2% - 0%
O% I I I I I I I I |:I 1

9% 9% 9%

5% 5%

Misprediction Rate

O
O O .
Q\c') P) Q\O

A
v
A
v

Integer Floating Point
Figure 2.5 The result of 2-bit scheme in SPEC8&9

2-bit Scheme Accuracy

* The accuracy of the predictors for integer programs, which
typically also have higher branch frequencies, 1s lower than
for the loop-intensive scientific programs.

* Two ways to attack this problem
— Large buffer size;
— Increasing the accuracy of the scheme we use for each prediction.
* However, simply increasing the number of bits per predictor
without changing the predictor structure also has little impact.
— Single branch predictor V.S. correlating branch predictors.

61

Frequency of Mispredictions

Accuracy of Different Schemes

4 096 Entries 2-bit BHT
Unlimited Entries 2-bit BHT
1,024 Entries (2, 2) BHT

gcc

I~
(4]
0
@
c

matrix300
tomcatv
doducd
spice
foppp
expresso
egntott

B 4,096 entries: 2-bits per entry B Unlimited entries: 2-bits/entry ™ 1,024 entries (2,2)

62

Improve Prediction Strategy By Correlating Branches

* Consider the worst case for the 2-bit predictor

DSUBUI R3, R1, #2

if (aa==2) ‘ BNEZ R3,L1
aa=0; > DADD R1, R0, RO
if (bb==2) L1:
bb=0; | DSUBUI R3, R2, #2
if (aa!=bb) { BNEZ R3, L2
DADD R2, R0, RO
T Single level predictors can never get this case. L2:
DSUBU R3, R1, R2
: : : BEQZ R3, L3
* Correlating predictors or 2-level predictors —
— Correlation = what happened on the last branch This branch is based on
* Note that the last correlator branch may not always be the same. the Outcome of the
— Predictor = which way to go previous 2 branches.

* 4 possibilities: which way the last one went chooses the prediction.
— (Last-taken, last-not-taken) X (predict-taken, predict-not-taken)

63

Correlated Branch Prediction

Idea: record m most recently executed branches as taken or not taken, and use
that pattern to select the proper n-bit branch history table.

In general, (m, n) predictor means record last m branches to select between 2™
history tables, each with n-bit counters.
— Thus, old 2-bit BHT 1s a (0, 2) predictor.

Global Branch History: m-bit shift register keeping T/NT status of last m
branches.

Each entry in table has m n-bit predictors.
Total bits for the (m, n) BHT prediction buffer:

Total memory bits =2" xnx2”

— 2™ banks of memory selected by the global branch history (which is just a shift register)
- €.g. a column address;
— Use p bits of the branch address to select row;

— Get the n predictor bits in the entry to make the decision.

64

Correlating Branches

* (2, 2) predictor
— Behavior of recent 2 branches selects between four predictions of
next branch, updating just that prediction.

Branch address

+ 4

2-bits per branch predictor

—> — — I Prediction

| | 2-bit global branch history

65

Example of Correlating Branch Predictors

if (d==0) BNEZ R1,L1 ;branch bl (d!=0)
d=1; DADDIU R1,R0,#1 ;d==0, so d=1
if (d==1) L1: DADDIU R3, R1, #-1

BNEZ R3,L2 ;branch b2 (d!=1)

L2:

66

Example: Multiple Consequent Branches

if (d==0) BNEZ R1,L1 ;branch bl (d1=0) if(d ==0) ;not taken
dut: DADDIU R1,R0,#1 ;d==0, so d=1 d=1;
e L1: DADDIU R3,R1,#-1 else ;taken
if (d==1) e 1y
BNEZ R3, L2 sbranch b2 (d1=1) if(d==1) ;not taken
else ;taken
If b1 is not taken, then b2 will be not taken
Initial value Value of d
ofd == 0? b1 before b2 d==17 b2
0 yes not taken I yes —n(Tl ITl\:l
l no taken l yes not taken
2 no taken 2 no taken

Figure 3.10 Possible execution sequences for a code fragment.

1-bit predictor: consider d alternates between 2 and 0. All branches are mispredicted

b1 b1 New b1 b2 b2 New b2
d=1? prediction action prediction prediction action prediction
2 NT T T NT T T
0 T NT NT T NT NT
2 NT T T NT T T
"0 T NT NT T NT NT

Figure 3.11 Behavior of a 1-bit predictor initialized to not taken. T stands for taken,
NT for not taken. 67

Example: Multiple Consequent Branches

if (d==0) BNEZ R1,L1 sbranch bl (d!=0) if(d ==0) ;not taken
d=1: DADDIU R1,R0,#1 ;d==0, so d=1 d=1;
if (d==1) L1: DADDIU R3,R1,#-1 else ;taken
BNEZ R3, L2 sbranch b2 (d!=1) if(d==1) ;not taken
o else ;taken
L2
2-bits prediction : prediction if last branch not taken/ and prediction if last branch taken
Prediction bits Prediction if last branch not taken Prediction if last branch taken
NT/NT NT - NT
NT/T NT T
T/NT T NT
T/T T T

Figure 3.12 Combinations and meaning of the taken/not taken prediction bits. T stands for taken, NT for not
taken.

(1,1) predictor - 1-bit predictor with 1 bit of correlation: last branch (either taken or
not taken) decides which prediction bit will be considered or updated

d=? b1 prediction b1action New b1 prediction b2 prediction b2 action New b2 prediction
2 NT/NT T T/NT NT/NT T NT/T
0 T/NT NT T/NT NT/T NT NT/T
2 T/NT T T/NT NT/T T NT/T
0 T/NT NT T/NT NT/T NT NT/T

Figure 3.13 The action of the 1-bit predictor with 1 bit of correlation, initialized to not taken/not taken. T stands
for taken, NT for not taken.The prediction used is shown in bold. 68

Branch Prediction with Neural Networks

[1] D. Jimenez and C. Lin, “Dynamic branch prediction with perceptrons™, Proc. of the 7th
Int. Symp. on High Perf.Comp. Arch (HPCA-7), 2001.

[2] D. Jimenez and C. Lin, “Neural methods for dynamic branch prediction”, ACM Trans. on
Computer Systems,2002.

[3] A. Seznec, “Revisiting the perceptron predictor”, Technical Report, IRISA, 2004.
[4] A. Seznec. An optimized 2bcgskew branch predictor. Technical report Irisa, Sep 2003.

[5] G. Loh. The frankenpredictor. In The Ist JILP Championship Branch Prediction
Competition (CBP-1), 2004

[6] K. Aasaraai and A. Baniasadi Low-power Perceptrons
[7] A. Seznec. The O-GEometric History Length branch predictor

[8] M. Monchiero and G. Palermo The Combined Perceptron Branch Predictor

[9] F. Rosenblatt. Principles of Neurodynamics: Perceptrons and the Theory of Brain
Mechanisms. Spartan, 1962.

69

Summary

* Branch Prediction
— Static compiler-based prediction
— Dynamic hardware-based prediction
* Branch history table + Branch Target Buffer

70

