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Topics for Instruction Level Parallelism

• 5-stage Pipeline Extension, ILP Introduction, Compiler 
Techniques, and Branch Prediction
– C.5, C.6
– 3.1, 3.2
– Branch Prediction, C.2, 3.3

• Dynamic Scheduling (OOO)
– 3.4, 3.5

• Hardware Speculation and Static Superscalar/VLIW
– 3.6, 3.7

• Dynamic Superscalar, Advanced Techniques, ARM Cortex-
A53, and Intel Core i7
– 3.8, 3.9, 3.12

• SMT: Exploiting Thread-Level Parallelism to Improve 
Uniprocessor Throughput 
– 3.11
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Extending 5-stage Integer Pipeline 
to Handle Multicycle Operations 

Textbook: CAQA C.5 and C.6

C
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Complex Pipelining: Motivation

• Why would we want more than our in-order pipeline?
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Complex Pipelining: Motivation

Pipelining becomes complex when we want high performance in 
the presence of:

• Long latency or partially pipelined floating-point units
– Not all instructions are floating point or integer

• Memory systems with variable access time
– For example cache misses

• Multiple arithmetic and memory units



Floating Point Representation

• IEEE standard 754

Value = (-1)s * 1.mantissa * 2(exp-127)

Exponent = 0 has special meaning



Floating-Point Unit (FPU)

• Much more hardware than an integer unit
– A simple FPU takes 150,000 gates. Verification complex. Some 

exceptions specific to floating point.
– Integer FU to the order of thousands

• Common to have several FPU’s
– Some integer, some floating point

• Common to have different types of FPU’s: Fadd, Fmul, Fdiv, 
…

• An FPU may be pipelined, partially pipelined or not pipelined
• To operate several FPU’s concurrently the FP register file 

needs to have more read and write ports



Unpipelined FP EXE Stage

• FP takes loops to compute
• Much longer clock period

Single-cycle FPU is a bad idea



Latency and Interval

• Latency
– The number of intervening cycles between an instruction that 

produces a result and an instruction that uses the result. 
– Usually the number of stages after EX that an instruction 

produces a result 
• ALU Integer 0, Load latency 1

• Initiation or repeat interval
– the number of cycles that must elapse between issuing two 

operations of a given type à structural hazards



Pipelined FP EXE

• Increased stall for RAW hazards



Breaking Our Assumption of Integer Pipeline

• The divide unit is not fully pipelined
– structural hazards can occur

• need to be detected and stall incurred.
• The instructions have varying running times

– the number of register writes required in a cycle can be > 1 
• Instructions no longer reach WB in order

– Write after write (WAW) hazards are possible
• Note that write after read (WAR) hazards are not possible, since the 

register reads always occur in ID. 
• Instructions can complete in a different order than they were issued 

(out-of-order complete)
– causing problems with exceptions

• Longer latency of operations
– stalls for RAW hazards will be more frequent. 



Hazards and Forwarding for Longer-Latency 
Pipeline

• H



Stalls of FP Operations
• SPEC89 FP
• Latency average
• FP add, subtract, or convert

– 1.7 cycles, or 56% of the 
latency (3 cycles).

• Multiplies and divides
– 2.8 and 14.2, respectively, or 

46% and 59% of the 
corresponding latency. 

• Structural hazards for 
divides are rare
– since the divide frequency is 

low. 



Stalls per FP Operation

• The total number of 
stalls per instruction
– ranges from 0.65 for 

su2cor to 1.21 for 
doduc, with an average 
of 0.87. 

– FP	result	stalls	dominate	in	all	cases,	with	an	average	of	0.71	stalls	per	
instruction,	or	82%	of	the	stalled	cycles.	



Problems Arising From Writes 

• If we issue one instruction per cycle, how can we avoid 
structural hazards at the writeback stage and out-of-order 
writeback issues?

• WAW Hazards

WAW Hazards



Complex In-Order Pipeline

• Delay writeback so all operations 
have same latency to W stage

– Write ports never oversubscribed 
(one inst. in & one inst. out every 
cycle)

– Stall pipeline on long latency 
operations, e.g., divides, cache 
misses

– Handle exceptions in-order at 
commit point

Commit	
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Inst.	
Mem D Decode X1 X2

Data	
Mem W+GPRs

X2 WFAdd X3

X3

FPRs X1

X2 FMul X3

X2FDiv X3

Unpipelined	
dividerHow	to	prevent	increased	writeback latency	

from	slowing	down	single	cycle	integer	
operations?

Bypassing



Floating-Point ISA

• Interaction between floating-point datapath and integer 
datapath is determined by ISA

• RISC-V ISA 
– separate register files for FP and Integer instructions

• the only interaction is via a set of move/convert instructions  (some ISA’s 
don’t even permit this)

– separate load/store for FPR’s and GPR’s (general purpose 
registers) but both use GPR’s for address calculation 

– FP compares write integer registers, then use integer branch



Realistic Memory Systems 

Common approaches to improving memory performance:
• Caches - single cycle except in case of a miss

=>stall
• Banked memory - multiple memory accesses

=> bank conflicts
• split-phase memory operations (separate memory request 

from response), many in flight
=> out-of-order responses

Latency	of	access	to	the	main	memory	is	usually	much	greater	
than	one	cycle	and	often	unpredictable

Solving	this	problem	is	a	central	issue	in	computer	architecture



Multiple-Cycles MEM Stage
• MIPS R4000
• IF: First half of instruction fetch; PC selection actually happens here, together with initiation of 

instruction cache access. 
• IS: Second half of instruction fetch, complete instruction cache access. 
• RF: Instruction decode and register fetch, hazard checking, and instruction cache hit detection. 
• EX: Execution, which includes effective address calculation, ALU operation, and branch-target 

computation and condition evaluation. 
• DF: Data fetch, first half of data cache access. 
• DS: Second half of data fetch, completion of data cache access. 
• TC: Tag check, to determine whether the data cache access hit. 
• WB: Write-back for loads and register-register operations. 



2-Cycles Load Delay

• 2



3-Cycle Branch Delay when Taken



3.1 ILP: Concepts and Challenges

• Instruction-Level Parallelism (ILP): overlap the execution of 
instructions to improve performance.

• 2 approaches to exploit ILP
– Rely on hardware to help discover and exploit the parallelism 

dynamically (e.g., Pentium 4, AMD Opteron, IBM Power), and
– Rely on software technology to find parallelism, statically at 

compile-time (e.g., Itanium 2)
• Pipelining Review (branch taken, wasted cycles in RED)

1 2 3 4 5 6 7 8 9 10 11 12 13
ld###x5##&32(x4) IF ID EXE MEM WB
ld###x6##&16(x4) IF ID EXE MEM WB
add#x6#x5#x6 IF 3 ID EXE MEM WB
add#x6#x6#x6 IF ID EXE MEM WB
BNEZ#x6#L1 IF ID EXE MEM WB

add#x10#x4##10 IF ID EXE MEM WB
add#x11#x5##10 IF ID EXE MEM WB

L1:#######add#x12#x5##10 IF ID EXE MEM WB22



Improving Instruction Level Parallelism (ILP)

Pipeline CPI = Ideal pipeline CPI + Structural Stalls 
+ Data Hazard Stalls + Control Stalls
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Instruction-Level Parallelism (ILP): Basic 
Blocks

• BB: a straight-line code sequence with no branches in except to 
the entry and, no branches out except at the exit;

https://en.wikipedia.org/wiki/Basic_block
24



Instruction-Level Parallelism (ILP)

• Inside a Basic Block (BB), ILP is quite small
• Average dynamic branch frequency 15% to 25%

– 3 to 6 instrs execute between a pair of branches.
– Plus instructions in BB likely to depend on each other.

• To obtain substantial performance enhancements, 
we must exploit ILP across basic blocks. (ILP → 
LLP)
– Loop-Level Parallelism: to exploit parallelism among 

iterations of a loop. E.g., add two matrixes.

for (i=1; i<=1000; i=i+1)
x[i] = x[i] + y[i];
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Data Dependences and Hazards

• Three data dependence: data dependences (true data 
dependences), name dependences, and control dependences.
1. Instruction i produces a result that may be used by instruction j 

(i→ j), or
2. Instruction j is data dependent on instruction k, and instruction 

k is data dependent on instruction i (i→ k → j, dependence 
chain).

• For example, a code sequence

Loop: FLD F0, 0(x1) ;F0=array element
FADD.D F4, F0, F2 ;add scalar in f2
FSD F4, 0(x1) ;store result
ADDI  x1, x1, #-8 ;decrement pointer 8 bytes
BNE x1, x2, Loop ;branch x1!=x2
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True Data Dependence

• Floating-point data part

Loop: FLD F0, 0(x1) ;F0=array element 
FADD.D F4, F0, F2 ;add scalar in f2
FSD F4, 0(x1) ;store result

• Integer data part

ADDI x1, x1, #-8 ;decrement pointer
;8 bytes (per DW)

BNE x1, x2, Loop ;branch x1!=x2

† This type is called a Read After Write (RAW) dependency.
27



True Data Dependence and RAW Hazards

• InstrJ is data dependent (aka true dependence) on InstrI:
1) InstrJ tries to read operand before InstrI writes it;

2) Or InstrJ is data dependent on InstrK which is dependent on InstrI.
• If two instructions are data dependent, they cannot execute 

simultaneously or be completely overlapped.
• Data dependence in instruction sequence → data dependence in 

source code → effect of original data dependence must be 
preserved.

• If data dependence caused a hazard in pipeline, called a Read 
After Write (RAW) hazard.

I: FLD										F0,	0(x1)			;F0=array	element	
J:		FADD.D		F4,	F0,	F2		;add	scalar	in	f2

28



True Data Dependencies à RAW Hazards for 
ILP

• HW/SW must preserve program order: instructions would 
execute in order if executed sequentially as determined by original 
source program.

– Dependences are a property of programs.
• Presence of dependence indicates potential for a hazard, but 

actual hazard and length of any stall is property of the pipeline.
• Importance of the data dependencies.

1) Indicates the possibility of a hazard;
2) Determines order in which results must be calculated;
3) Sets an upper bound on how much parallelism can possibly be 

exploited.
• HW/SW goal: exploit parallelism by preserving program 

order only where it affects the outcome of the program.
29



Detection of True Data Dependency

• Data value being dependent on between instructions either through 
registers or through memory locations. 

• When the data flow occurs in a register
– Detecting the dependence is straightforward since the register 

names are fixed in the instrs within BB, interlock 
– More complicated between BB

• branches intervene and correctness concerns force a compiler or 
hardware to be conservative. 

• Dependences that flow through memory locations are more 
difficult to detect, 
– 100(x4) and 20(x6) may be identical memory addresses.
– The effective address of a load or store may change from one execution 

of the instruction to another 
• so that 20(x4) and 20(x4) may be different

30



Name Dependence #1: Anti-dependence

• Name dependence: when 2 instructions use same register or 
memory location, called a name, but no flow of data 
between the instructions associated with that name; 

• 2 versions of name dependence (WAR and WAW).
• InstrJ writes operand before InstrI reads it

– Called an “anti-dependence” by compiler writers. This results 
from reuse of the name “r1”.

• If anti-dependence caused a hazard in the pipeline, called a 
Write After Read (WAR) hazard.

I:	 sub	r4,r1,r3	
J:	 add	r1,r2,r3
K:	 mul r6,r1,r7

31



Name Dependence #2: Output dependence

• InstrJ writes operand before InstrI writes it.

• Called an “output dependence” by compiler writers. This 
also results from the reuse of name “r1”

• If anti-dependence caused a hazard in the pipeline, called a 
Write After Write (WAW) hazard.

• Instructions involved in a name dependence can execute 
simultaneously if name used in instructions is changed so 
instructions do not conflict.

– Register renaming resolves name dependence for regs;
– Either by compiler or by HW.

I:	 sub	r1,r4,r3	
J:	 add	r1,r2,r3
K:	 mul r6,r1,r7

32



Control Dependencies

• Every instruction is control dependent on some set of 
branches

• Control dependencies must be preserved to preserve 
program order.

if p1 {
S1;

};

if p2 {
S2;

}

• S1 is control dependent on p1, and S2 is control dependent on 
p2 but not on p1.

33



Control Dependence

• Two constrains imposed by control dependence
1. An instruction that is dependent on a branch cannot be 

moved before the branch so that its execution is no longer 
controlled by the branch;

2. An instruction that is not control dependent on a branch 
cannot be moved after the branch so that its execution is 
controlled by the branch.

• Control dependence need not be preserved
– Willing to execute instructions that should not have been 

executed
– violating the control dependences, ok if can do so without 

affecting correctness of the program
• Not just branch or jump

– Exception 
34



Exception Behavior

• Preserving exception behavior 
– Any changes in instruction execution order must not change how 

exceptions are raised in program (Þ no new exceptions).
• Example

ADD X2, X3, X4
BEQ X2, X0, L1
Ld X1, 0(X2)

L1:

• Problem with moving LW before BEQZ even if branch is not 
taken?
– LW may cause memory protection exception

† Assume branches not delayed.

35



Preserving Data Flow

• Data flow: actual flow of data values among instructions that 
produce results and those that consume them.
– Branches make flow dynamic, determine which instruction is 

supplier of data.
• Example

ADD X1, X2, X3
BEQ X4, X0, L
SUB  X1, X5, X6

L: …
OR X7, X1, X8

• X1 of OR depends on ADD or SUB? 
– Must preserve data flow on execution.

36



3.2 Basic Compiler Techniques for Exposing ILP

• This code, add a scalar to a vector

for (i=1000; i>0; i=i–1)
x[i] = x[i] + s;

• Assume following latencies for all examples
– Ignore delayed branch in these examples

Instruction producing result Instruction using result Latency in cycles
FP ALU op Another FP ALU op 3
FP ALU op Store double 2
Load double FP ALU op 1
Load double Store double 0

Figure 3.2 Latencies of FP operations used in this chapter.
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Latencies

• 5 stage pipeline
• Branches have one cycle delay
• Load à EXE-USE: 1 cycle delay

38



FP Loop: Where are the Hazards?

• First translate into MIPS/RISC-V code
– To simplify, assume 8 is lowest address
– R1 stores the address of X[999] when the loop starts

Loop: L.D F0,0(R1) ;F0=vector element
ADD.D F4,F0,F2 ;add scalar from F2
S

39



FP Loop Showing Stalls: V1

• Example 3-1 (p.178): Show how the loop would look on RISC-V, both 
scheduled and unscheduled including any stalls or idle clock cycles. Schedule for 
delays from floating-point operations, but remember that we are ignoring 
delayed branches.

• Answer

† 9 clock cycles, 6
for useful work 
Rewrite code to 
minimize stalls?

40



Revised FP Loop Minimizing Stalls: V2

• Swap ADDI and FSD by changing address of FSD

† 7 clock cycles
† 3 for execution (FLD, FADD.D,FSD)
† 4 for loop overhead; How make  faster?

41



Unroll Loop Four Times: V3

• 27 clock cycles (6*4+3), or 6.75 per iteration (Assumes R1 
is multiple of 4) compared with 9 for unrolled/unscheduled

42



Unroll Loop Four Times

• 27 clock cycles (6*4+3), or 6.75 per iteration (Assumes R1 is 
multiple of 4) compared with 9 for unrolled/unscheduled
– Reducing instrs for branch and loop bound calculation

• Reduce branch stall
• Code size increases

– 5 instructions to 14 instructions

43



Unrolling Loop in Real Program

• Do not usually know upper bound of loop.
• Suppose it is n, and we would like to unroll the loop to make 

k copies of the body.
• Instead of a single unrolled loop, we generate a pair of 

consecutive loops:
– 1st executes (n mod k) times and has a body that is the original 

loop;
– 2nd is the unrolled body surrounded by an outer loop that iterates 

(n/k) times.
• For large values of n, most of the execution time will be spent 

in the unrolled loop.

44



Unrolled Loop That Minimizes Stalls: V4

† 14 clock cycles
45



Four Versions Compared

46

Total	Cycles	(1000	Iterations) Cycles	Per	Iterations Code	Sizes
V1:	Original

V2:	Scheduled

V3:	Unrolled

V4:	Scheduled	and	
Unrolled



5 Loop Unrolling Decisions
• Requires understanding how one instruction depends on another 

and how the instructions can be changed or reordered given the 
dependences:
1. Determine loop unrolling useful by finding that loop iterations were 

independent (except for maintenance code);
2. Use different registers to avoid unnecessary constraints forced by 

using same registers for different computations; 
3. Eliminate the extra test and branch instructions and adjust the loop 

termination and iteration code;
4. Determine that loads and stores in unrolled loop can be interchanged 

by observing that loads and stores from different iterations are 
independent;
• Transformation requires analyzing memory addresses and finding 

that they do not refer to the same address.
5. Schedule the code, preserving any dependences needed to yield the 

same result as the original code.

47



Limits to Loop Unrolling

• 3 Limits to Loop Unrolling
1. Decrease in amount of overhead amortized with each extra unrolling.

u Reducing the ratio of the portion that can not be optimized in  
Amdahl’s Law.

2. Growth in code size.
u For larger loops, concern it increases the instruction cache miss 

rate.
3. Register pressure: potential shortfall in registers created by 

aggressive unrolling and scheduling.
u If not be possible to allocate all live values to registers, may lose 

some or all of its advantage.
• Loop unrolling reduces impact of branches on pipeline; another 

way is branch prediction.
– We discuss it in section 3.3: Reducing Branch Costs with Prediction.
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Summary

• Three kinds of data dependency
– True data dependency
– Name dependency
– Control dependency

• Hazards from dependency
– Stall the pipeline

• Compiler technology
– Loop unrolling
– Instruction Scheduling

49



When Safe to Unroll Loop?

• Example: Where are data dependencies? 
(A,B,C distinct & nonoverlapping)
for (i=0; i<100; i=i+1) {

A[i+1] = A[i] + C[i];    /* S1 */
B[i+1] = B[i] + A[i+1];  /* S2 */

}

1. S2 uses the value, A[i+1], computed by S1 in the same iteration. 
2. S1 uses a value computed by S1 in an earlier iteration, since iteration i 
computes A[i+1] which is read in iteration i+1. The same is true of S2 for B[i] and 
B[i+1]. 

This is a “loop-carried dependence”: between iterations

• For our prior example, each iteration was distinct
– In this case, iterations can’t be executed in parallel, Right????



Does a loop-carried dependence mean there is 
no parallelism???

• Consider:
for (i=0; i< 8; i=i+1) {

A = A + C[i];    /* S1 */
}

ÞCould compute:

“Cycle 1”:  temp0 = C[0] + C[1];
temp1 = C[2] + C[3];
temp2 = C[4] + C[5];
temp3 = C[6] + C[7];

“Cycle 2”: temp4 = temp0 + temp1;
temp5 = temp2 + temp3;

“Cycle 3”:   A = temp4 + temp5;

• Relies on associative nature of “+”.



3.3 Reducing Branch Costs with Prediction

• Because of the need to enforce control dependences through 
branch hazards and stall, branches will hurt pipeline 
performance.
– Solution 1: loop unrolling à reduce branch instrs
– Solution 2: by predicting how they will behave à reduce stalls

• SW/HW technology
– SW: Static Branch Prediction, statically at compile time;
– HW: Dynamic Branch Prediction, dynamically by the hardware 

at execution time.
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Static Branch Prediction

• Appendix C showed scheduling code around delayed branch.
– Reorder code around branches, need to predict branch statically when compile.

• Another and simplest scheme is to predict a branch as taken.
– Average misprediction = untaken branch frequency = 34% SPEC. Unfortunately, from 

very accurate (59%) to highly accurate (9%).
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How It Works In Compiler (GCC)

54https://gcc.gnu.org/onlinedocs/gcc/Other-Builtins.html



Collect Branch Statistics
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Dynamic Branch Prediction

• Why does prediction work?
– Underlying algorithm has regularities;
– Data that is being operated on has regularities;
– Instruction sequence has redundancies that are artifacts of way 

that humans/compilers think about problems.
• Is dynamic branch prediction better than static branch 

prediction?
– Seems to be;
– There are a small number of important branches in programs 

which have dynamic behavior. 
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Dynamic Branch Prediction

• Performance = ƒ(accuracy, cost of misprediction)
• Branch History Table (also called Branch Prediction Buffer): 

lower bits of PC address index table of 1-bit values.
– Says whether the branch was recently taken or not;
– No address check.

• Problem: in a loop, 1-bit BHT will cause two mispredictions 
(average is 9 in 10 iterations before exit).
– End of loop case, when it exits instead of looping as before;
– First time through loop on next time through code, when it 

predicts exit instead of looping.

57



Basic Branch Prediction Buffers

• a.k.a. Branch History Table (BHT) - Small direct-mapped 
cache of T/NT bits.

58



Dynamic Branch Prediction

• Solution: 2-bit scheme where change prediction only if get 
misprediction twice.

– Red: stop, not taken;
– Blue: go, taken;
– Adds hysteresis to decision making process.
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T NT

NT

Predict Taken

Predict Not 
Taken

Predict Taken
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11 10

01 00
T

NT
T

NT
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2-bit Scheme Accuracy

• Mispredict because either:
– Wrong guess for that branch;
– Got branch history of wrong branch when index the table.

• 4,096 entry table
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Figure 2.5 The result of 2-bit scheme in SPEC89
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2-bit Scheme Accuracy

• The accuracy of the predictors for integer programs, which 
typically also have higher branch frequencies, is lower than 
for the loop-intensive scientific programs. 

• Two ways to attack this problem
– Large buffer size;
– Increasing the accuracy of the scheme we use for each prediction.

• However, simply increasing the number of bits per predictor 
without changing the predictor structure also has little impact.
– Single branch predictor V.S. correlating branch predictors.
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Accuracy of Different Schemes
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Improve Prediction Strategy By Correlating Branches

• Consider the worst case for the 2-bit predictor

if (aa==2) 
aa=0;

if (bb==2) 
bb=0;

if (aa != bb) {

• Correlating predictors or 2-level predictors
– Correlation = what happened on the last branch

• Note that the last correlator branch may not always be the same.
– Predictor = which way to go

• 4 possibilities: which way the last one went chooses the prediction.
– (Last-taken, last-not-taken) × (predict-taken, predict-not-taken)

if the first 
2 fail then 
the 3rd will 
always be 
taken.

DSUBUI R3, R1, #2
BNEZ R3, L1
DADD R1, R0, R0

L1:
DSUBUI   R3, R2, #2
BNEZ R3, L2
DADD R2, R0, R0

L2:
DSUBU R3, R1, R2
BEQZ R3, L3

† Single level predictors can never get this case.

This branch is based on 
the Outcome of the 
previous 2 branches.
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Correlated Branch Prediction

• Idea: record m most recently executed branches as taken or not taken, and use 
that pattern to select the proper n-bit branch history table.

• In general, (m, n) predictor means record last m branches to select between 2m

history tables, each with n-bit counters.
– Thus, old 2-bit BHT is a (0, 2 ) predictor.

• Global Branch History: m-bit shift register keeping T/NT status of last m
branches.

• Each entry in table has m n-bit predictors.
• Total bits for the (m, n) BHT prediction buffer:

– 2m banks of memory selected by the global branch history (which is just a shift register) 
- e.g. a column address;

– Use p bits of the branch address to select row;
– Get the n predictor bits in the entry to make the decision.

pm nbitsmemoryTotal 22__ ´´=
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Correlating Branches

• (2, 2) predictor 
– Behavior of recent 2 branches selects between four predictions of 

next branch, updating just that prediction.

Branch	address

2-bits	per	branch	predictor

Prediction

2-bit	global	branch	history

4
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Example of Correlating Branch Predictors

if (d==0)
d = 1;

if (d==1)
…

BNEZ R1, L1 ;branch b1 (d!=0)
DADDIU  R1, R0, #1    ;d==0, so d=1

L1: DADDIU  R3, R1, #-1
BNEZ R3, L2 ;branch b2 (d!=1)

…
L2:
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If b1 is not taken, then b2 will be not taken

1-bit predictor: consider d alternates between 2 and 0. All branches are mispredicted

Example: Multiple Consequent Branches

if(d == 0) ;not taken
d=1;

else ;taken
if(d==1) ;not taken

else ;taken
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Example: Multiple Consequent Branches

(1,1) predictor - 1-bit predictor with 1 bit of correlation: last branch (either taken or 
not taken) decides which prediction bit will be considered or updated

2-bits prediction : prediction if last branch not taken/ and prediction if last branch taken

if(d == 0) ;not taken
d=1;

else ;taken
if(d==1) ;not taken

else ;taken
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Summary

• Branch Prediction
– Static compiler-based prediction
– Dynamic hardware-based prediction

• Branch history table + Branch Target Buffer
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