
Lecture	12:	Memory	Hierarchy
-- Cache	Optimizations

CSCE	513	Computer	Architecture

Department	of	Computer	Science	and	Engineering
Yonghong Yan

yanyh@cse.sc.edu
https://passlab.github.io/CSCE513

1

Topics	for	Memory	Hierarchy

• Memory	Technology	and	Principal	of	Locality
– CAQA:	2.1,	2.2,	B.1
– COD:	5.1,	5.2

• Cache	Organization	and	Performance
– CAQA:	B.1,	B.2
– COD:	5.2,	5.3

• Cache	Optimization
– 6	Basic	Cache	Optimization	Techniques

• CAQA:	B.3
– 10	Advanced	Optimization	Techniques

• CAQA:	2.3
• Virtual	Memory	and	Virtual	Machine

– CAQA:	B.4,	2.4;	COD:	5.6,	5.7
– Skip	for	this	course

2

Cache	and	Memory	Access	(ld/st instructions)

3

A	Summary	on	Sources	of	Cache	Misses

• Compulsory (cold	start	or	process	migration,	first	reference):	first	
access	to	a	block
– “Cold” fact	of	life:	not	a	whole	lot	you	can	do	about	it
– Note:	If	you	are	going	to	run	“billions” of	instruction,	Compulsory	Misses	

are	insignificant
• Conflict (collision):

– Multiple		memory	locations		mapped
to	the	same	cache	location

– Solution	1:	increase		cache	size
– Solution	2:	increase	associativity

• Capacity:
– Cache	cannot	contain	all	blocks	access	by	the	program
– Solution:	increase	cache	size

• Coherence	(Invalidation):	other	process	(e.g.,	I/O)	updates	memory
– We	will	cover	it	later	on.	

Memory	Hierarchy	Performance

• Two	indirect	performance	measures	have	waylaid	many	a	
computer	designer.
– Instruction	count	is	independent	of	the	hardware;
– Miss	rate	could	be	independent	of	the	hardware	mostly

• A	better	measure	of	memory	hierarchy	performance	is	the	
Average	Memory	Access	Time	(AMAT)	per	instructions

AMAT =Hit time+Miss rate×Miss penalty

TimeCycleClockPenaltyMissRateMissnInstructio
AccessesMemoryCPIICTimeCPU Execution) (* ´´´+=

Impact	on	Performance
• Suppose	a	processor	executes	at	

– Clock	Rate	=	200	MHz	(5	ns	per	cycle)
– CPI	=	1.1	
– 50%	arith/logic,	30%	ld/st,	20%	control

• Suppose	that	10%	of	memory	
operations	get	50	cycle	miss	penalty

• Suppose	that	1%	of	instruction	accesses	get	same	miss	penalty

• CPI	=	ideal	CPI	+	average	stalls	per	instruction
=	1.1(cycles/ins)
+	[0.30	(DataMops/ins)	x	0.10	(miss/DataMop)	x	50	(cycle/miss)]	
+	[1 (InstMop/ins)	x	0.01	(miss/InstMop)	x	50	(cycle/miss)]	

=	(1.1	+		1.5	+	.5)	cycle/ins	=	3.1	

• 2/3.1	(64.5%)	of	the	time	the	proc is	stalled	waiting	for	memory!

Ideal	CPI 1.1

Data	Miss 1.5

Inst Miss 0.5

Improving	Cache	Performance

7

Average Memory Access Time = Hit Time + Miss Rate * Miss Penalty

Goals Basic	Approaches
Reducing	Miss Rate Larger	block	size,	larger	cache	size	and	higher

associativity
Reducing	Miss	Penalty Multilevel caches,	and	higher	read	priority	over	

writes
Reducing	Hit	Time Avoid	address	translation	when	indexing	the	cache

1.	Reduce	Miss	Rate	via	Larger	Block	Size

Much	Larger	Block	Size:	à Increase	Miss	Rate

9

Example:	Miss	Rate	vs Reduce	AMAT

10

Larger	Block	Size:	à Increase	Miss	Penalty
Choose	a	Block	Size	Based	on	AMAT

11

Average Memory Access Time = Hit Time + Miss Rate * Miss Penalty

2.	Reduce	Miss	Rate	via	Larger	Cache

• Increasing	capacity	of	cache	reduces	capacity	misses
• May	be	longer	hit	time	and	higher	cost
• Trends:	Larger	L2	or	L3	off-chip	caches

12

3.	Reduce	Miss	Rate	via	Higher	Associativity

• 2:1	Cache	Rule:	
– Miss	Rate	DM	cache	size	N	=	Miss	Rate	2-way	cache	size	N/2

• 8-way	set	associative	is	as	effective	as	fully	associative	for	
practical	purposes

• Tradeoff:	higher	associative	cache	complicates	the	circuit
– May	have	longer	clock	cycle

• Beware:	Execution	time	is	the	
only	final	measure!
– Will	Clock	Cycle	time	increase?
– Hill	[1988]	suggested	hit	time	for	
2-way	vs.	1-way	external	cache	+10%,	
internal	+	2%	

Associativity	ßà AMAT

14

Associativity	ßà AMAT:	High	Associativity	
Leads	to	Higher	Access	Time

15

4.	Reduce	Miss	Penalty	via	Multilevel	Caches

16

• Approaches
– Make	the	cache	faster	to	keep	pace	with	the	speed	of	CPUs
– Make	the	cache	larger	to	overcome	the	widening	gap

• L1:	fast	hits,	L2:	fewer	misses
• L2	Equations

• Hit	TimeL1 <<	Hit	TimeL2 <<	…	<<	Hit	TimeMem

• Miss	RateL1 <	Miss	RateL2 <	…

Miss	Rate	in	Multilevel	Caches

17

• Local	miss	rate—misses	in	this	cache	divided	by	the	total	
number	of	memory	accesses	to	this	cache	(Miss	rateL1	,	
Miss	rateL2)
– L1	cache	skims	the	cream	of	the	memory	accesses

• Global	miss	rate—misses	in	this	cache	divided	by	the	total	
number	of	memory	accesses	generated	by	the	CPU	(Miss	
rateL1,	Miss	RateL1	x	Miss	RateL2)	
– Indicate	what	fraction	of	the	memory	accesses	that	leave	the	

CPU	go	all	the	way	to	memory

Miss	Rates	in	Multilevel	Caches

18

19

Multilevel	Caches:	Design	of	L2

• Size
– Since	everything	in	L1	cache	is	likely	to	be	in	L2	cache,	L2	cache	

should	be	much	bigger	than	L1
• Whether	data	in	L1	is	in	L2

– novice	approach:	design	L1	and	L2	independently
– multilevel	inclusion:	L1	data	are	always	present	in	L2

• Advantage:	easy	for	consistency	between	I/O	and	cache	(checking	
L2	only)

• Drawback:	L2	must	invalidate	all	L1	blocks	that	map	onto	the	2nd-
level	block	to	be	replaced	=>	slightly	higher	1st-level	miss	rate
– i.e.	Intel	Pentium	4:	64-byte	block	in	L1	and	128-byte	in	L2

– multilevel	exclusion:	L1	data	is	never	found	in	L2
• A	cache	miss	in	L1	results	in	a	swap	of	blocks	between	L1	and	L2
• Advantage:	prevent	wasting	space	in	L2

– i.e.	AMD	Athlon:	64	KB	L1	and	256	KB	L2

Multilevel	Caches:	Example

20

Multilevel	Caches:	Example

21

5.	Reduce	Miss	Penalty	by	Giving	Priority	to	
Read	Misses	over	Writes

22

• Serve	reads	before	writes	have	been	completed
• Write	through	with	write	buffers

SW R3,	512(R0) ;	M[512]	<- R3 (cache	index	0)
LW R1,	1024(R0) ;	R1	<- M[1024] (cache	index	0)
LW R2,	512(R0) ;	R2	<- M[512] (cache	index	0)

Problem:	write	through	with	write	buffers	offer	RAW	conflicts	with	main	
memory	reads	on	cache	misses

– If	simply	wait	for	write	buffer	to	empty,	might	increase	read	miss	penalty	
(old	MIPS	1000	by	50%)

– Check	write	buffer	contents	before	read;	if	no	conflicts,	let	the	memory	
access	continue

• Write	Back
Suppose	a	read	miss	will	replace	a	dirty	block
– Normal:	Write	dirty	block	to	memory,	and	then	do	the	read
– Instead:	Copy	the	dirty	block	to	a	write	buffer,	do	the	read,	and	then	do	the	
write

– CPU	stall	less	since	restarts	as	soon	as	do	read

6.	Reduce	Hit	Time	by	Avoiding	Address	
Translation	during	Indexing	of	the	Cache

•Importance	of	cache	hit	time
–Average	Memory	Access	Time		=		Hit	Time +		Miss	Rate		*		Miss	Penalty
–More importantly, cache access time limits the clock cycle rate in many
processors today!

•Fast hit time:
–Quickly and efficiently find out if data is in the cache, and
– if it is, get that data out of the cache

•Four techniques:
1.Small and simple caches
2.Avoiding address translation during indexing of the cache
3.Pipelined cache acces
4.Trace caches

23

Avoiding	address	translation	during	cache	indexing

•Two	tasks:	indexing	the	cache	and	comparing	addresses
•virtually	vs.	physically	addressed	cache

–virtual	cache:	use	virtual	address	(VA)	for	the	cache
–physical	cache:	use	physical	address	(PA)	after	translating	virtual	address

•Challenges	to	virtual	cache
1.Protection:	page-level	protection	(RW/RO/Invalid)	must	be	checked

–It’s	checked	as	part	of	the	virtual	to	physical	address	translation
–solution:	an	addition	field	to	copy	the	protection	information	from	TLB	and	
check	it	on	every	access	to	the	cache

2.context	switching:	same	VA	of	different	processes	refer	to	different	PA,	requiring	the	cache	to	
be	flushed
–solution:	increase	width	of	cache	address	tag	with	process-identifier	tag	(PID)

3.Synonyms	or	aliases:	two	different	VA	for	the	same	PA
–inconsistency	problem:	two	copies	of	the	same	data	in	a	virtual	cache
–hardware	antialiasing solution:	guarantee	every	cache	block	a	unique	PA

–Alpha	21264:	check	all	possible	locations.	If	one	is	found,	it	is	invalidated
–software	page-coloring solution:	forcing	aliases	to	share	some	address	bits

–Sun’s	Solaris:	all	aliases	must	be	identical	in	last	18	bits	=>	no	duplicate	PA
4.I/O:	typically	use	PA,	so	need	to	interact	with	cache	(see	Section	5.12)

24

Virtually	indexed,	physically	tagged	cache

25

CPU

TB

$

MEM

VA

PA

PA

Conventional
Organization

CPU

$

TB

MEM

VA

VA

PA

Virtually Addressed Cache
Translate only on miss

Synonym Problem

CPU

$ TB

MEM

VA
PA

Tags
PA

Overlap cache access
with VA translation:
requires $ index to
remain invariant

across translation

VA
Tags

L2 $

Summary	of	the	6	Basic	Cache	Optimization	
Techniques	(Textbook	B.3)

26

Advanced	Cache	Optimization	Techniques
1. Reducing	the	hit	time—Small	and	simple	first-level	caches	and	way-

prediction.	Both	techniques	also	generally	decrease	power	
consumption.	

2. Increasing	cache	bandwidth—Pipelined	caches,	multibanked caches,	
and	nonblocking caches.	These	techniques	have	varying	impacts	on	
power	consumption.	

3. Reducing	the	miss	penalty—Critical	word	first	and	merging	write	
buffers.	These	optimizations	have	little	impact	on	power.	

4. Reducing	the	miss	rate—Compiler	optimizations.	Obviously	any	
improvement	at	compile	time	improves	power	consumption.	

5. Reducing	the	miss	penalty	or	miss	rate	via	parallelism—Hardware	
prefetching	and	compiler	prefetching.	These	optimizations	generally	
increase	power	consumption,	primarily	due	to	prefetched data	that	
are	unused.

• Increase	hardware	complexity	
• Require	sophisticated	compiler	transformation

27

1.	Small	and	Simple	First-level	Caches	

28

• Cache-hit	critical	path,	three	steps:
1. addressing	the	tag	memory	using	the	index	portion	of	the	address,	
2. comparing	the	read	tag	value	to	the	address,	and	
3. setting	the	multiplexor	to	choose	the	correct	data	item	if	the	cache	is	set	associative.	

• Guideline:	smaller	hardware	is	faster,	Small	data	cache	and	thus	fast	clock	rate
– size	of	the	L1	caches	has	recently	increased	either	slightly	or	not	at	all.	

• Alpha	21164	has	8KB	Instruction	and	8KB	data	cache	+	96KB	second	level	cache
• E.g.,	L1	caches	same	size	for	3	generations	of	AMD	microprocessors:	K6,	Athlon,	and	

Opteron
– Also	L2	cache	small	enough	to	fit	on	chip	with	processor	⇒ avoids	time	penalty	of	going	

off	chip
• Guideline:	simpler	hardware	is	faster

– Direct-mapped	caches	can	overlap	the	tag	check	with	the	transmission	of	the	data,	
effectively	reducing	hit	time.	

– Lower	levels	of	associativity	will	usually	reduce	power	because	fewer	cache	lines	must	
be	accessed.	

• General	design:	small	and	simple	cache	for	1st-level	cache
– Keeping	the	tags	on	chip	and	the	data	off	chip	for	2nd-level	caches
– One	emphasis	is	on	fast	clock	time	while	hiding	L1	misses	with	dynamic	execution	and	

using	L2	caches	to	avoid	going	to	memory

Cache	Size	à AMAT

29

http://www.hpl.hp.com/research/cacti/

Cache	Size	à Power	Consumption

30

Examples

31

32

2.	Fast	Hit	Times	Via	Way	Prediction

• How	to	combine	fast	hit	time	of	direct-mapped	with	lower	
conflict	misses	of	2-way	SA	cache?	

• Way	prediction:	keep	extra	bits	in	cache	to	predict	“way”
(block	within	set)	of	next	access	
– Multiplexer	set	early	to	select	desired	block;	only	1	tag	

comparison	done	that	cycle	(in	parallel	with	reading	data)	
– Miss	Þ check	other	blocks	for	matches	in	next	cycle

• Accuracy	» 85%
• Drawback:	CPU	pipeline	harder	if	hit	time	is	variable-length

Hit Time

Way-Miss Hit Time Miss Penalty

3.	Increasing	Cache	Bandwidth	by	Pipelining

• Simply	to	pipeline	cache	access
– Multiple	clock	cycle	for	1st-level	

cache	hit

• Advantage:	fast	cycle	time	and	slow	hit
• Example:	accessing	instructions	from	I-cache

– Pentium:	1	clock	cycle,	mid-1990
– Pentium	Pro	~	Pentium	III:	2	clocks,	mid-1990	to	2000
– Pentium	4:	4	clocks,	2000s
– Intel	Core	i7:	4	clocks	

• Drawback:	Increasing	the	number	of	pipeline	stages	leads	to
– greater	penalty	on	mispredicted branches	and
– more	clock	cycles	between	the	issue	of	the	load	and	the	use	of	the	data

• Note	that	it	increases	the	bandwidth	of	instructions	rather	than	decreasing	
the	actual	latency	of	a	cache	hit

33

34

4.	Increasing	Cache	Bandwidth	with
Non-Blocking	Caches

• Non-blocking or	lockup-free cache	allows	continued	cache	
hits	during	miss
– Requires	F/E	bits	on	registers	or	out-of-order	execution
– Requires	multi-bank	memories

• Hit	under	miss reduces	effective	miss	penalty	by	working	
during	miss	vs.	ignoring	CPU	requests

• Hit	under	multiple	miss or	miss	under	miss further	lowers	
effective	miss	penalty	by	overlapping	multiple	misses
– Significantly	increases	complexity	of	cache	controller	since	can	

be	many	outstanding	memory	accesses
– Requires	multiple	memory	banks
– Penium	Pro	allows	4	outstanding	memory	misses

Effectiveness	of	Non-Blocking	Cache

35

Performance	Evaluation	of	Non-Blocking	
Caches	

• A	cache	miss	does	not	necessarily	stall	the	processor
– difficult	to	judge	the	impact	of	any	single	miss	and	hence	to	

calculate	the	average	memory	access	time.	
• The	effective	miss	penalty	is	the	non-overlapped	time	that	the	

processor	is	stalled.
– not	the	sum	of	the	misses

• The	benefit	of	nonblocking caches	is	complex,	depends		on	
– the	miss	penalty	when	there	are	multiple	misses,	
– the	memory	reference	pattern,	and
– how	many	instructions	the	processor	can	execute	with	a	miss	

outstanding.	
• For	out-of-order	processors

– Check	textbook

36

37

5.	Increasing	Cache	Bandwidth	Via	Multiple	
Banks

• Rather	than	treating	cache	as	single	monolithic	block,	
divide	into	independent	banks	to	support	simultaneous	
accesses
– The	Arm	Cortex-A8	supports	one	to	four	banks	in	its	L2	cache;
– the	Intel	Core	i7	has	four	banks	in	L1	(to	support	up	to	2	

memory	accesses	per	clock),	and	the	L2	has	eight	banks.	

Sequential	Interleaving

• Works	best	when	accesses	naturally	spread	across	banks	Þ
– mapping	of	addresses	to	banks	affects	behavior	of	memory	

system
• Simple	mapping	that	works	well	is	sequential	interleaving

– Spread	block	addresses	sequentially	across	banks
– E,g,	bank	i has	all	blocks	with	address	imodulo	n

38

39

6.	Reduce	Miss	Penalty:	
Early	Restart	and	Critical	Word	First

• Don’t	wait	for	full	block	before	restarting	CPU
• Critical	Word	First—Request	missed	word	from	memory	
first,	send	it	to	CPU	right	away;	let	CPU	continue	while	
filling	rest	of	block
– Large	blocks	more	popular	today	Þ Critical	Word	1st	widely	

used	
• Early	restart—As	soon	as	requested	word	of	block	arrives,	
send	to	CPU	and	continue	execution
– Spatial	locality	Þ tend	to	want	next	sequential	word,	so	may	

still	pay	to	get	that	one

block

40

7.	Merging	Write	Buffer	to	Reduce	Miss	Penalty

• Write	buffer	lets	processor	
continue	while	waiting	for	
write	to	complete

• Merging	write	buffer:
– If	buffer	contains	modified	blocks,	addresses	can	be	checked	

to	see	if	new	data	matches	that	of	some	write	buffer	entry	
– If	so,	new	data	combined	with	that	entry

• For	sequential	writes	in	write-through	caches,	increases	
block	size	of	write	(more	efficient)

• Sun	T1	(Niagara)	and	many	others	use	write	merging

Merge	Write	Buffer	Example

41

42

8.	Reducing	Misses	by	Compiler	Optimizations
Software-only	Approach

• McFarling [1989]	reduced	misses	by	75%	in	software	on	8KB	
direct-mapped	cache,	4	byte	blocks

• Instructions
– Reorder	procedures	in	memory	to	reduce	conflict	misses
– Profiling	to	look	at	conflicts	(using	tools	they	developed)

• Data
– Loop	interchange:	Change	nesting	of	loops	to	access	data	in	memory	

order
– Blocking:	Improve	temporal	locality	by	accessing	blocks	of	data	

repeatedly	vs.	going	down	whole	columns	or	rows
– Merging	arrays:	Improve	spatial	locality	by	single	array	of	compound	

elements	vs.	2	arrays
– Loop	fusion:	Combine	2	independent	loops	that	have	same	looping	

and	some	variable	overlap

Loop	Interchange	Example

/* Before */

for (k = 0; k < 100; k = k+1)

for (j = 0; j < 100; j = j+1)

for (i = 0; i < 5000; i = i+1)

x[i][j] = 2 * x[i][j];

/* After */

for (k = 0; k < 100; k = k+1)

for (i = 0; i < 5000; i = i+1)

for (j = 0; j < 100; j = j+1)

x[i][j] = 2 * x[i][j];

43

Sequential accesses instead of striding through memory every 100 words;
improved spatial locality

Sequence of access:
X[0][0], X[1][0], X[2][0], …

Sequence of access:
X[0][0], X[0][1], X[1][2], …

0 1 2 3 4 5 6 … 99
0
1
2
3
4
5

…
4999

Blocking	Example
/* Before */

for (i = 0; i < N; i = i+1)

for (j = 0; j < N; j = j+1)
{r = 0;

for (k = 0; k < N; k = k+1){

r = r + y[i][k]*z[k][j];};

x[i][j] = r;

};

• Two	inner	loops:
– Read	all	NxN	elements	of	z[]
– Read	N	elements	of	1	row	of	y[]	repeatedly
– Write	N	elements	of	1	row		of	x[]

• Capacity	misses	a	function	of	N	&	Cache	Size:
– 2N3	+	N2 =>	(assuming	no	conflict;	otherwise	…)

• Idea:	compute	on	BxB	submatrix	that	fits

44

Array	Access	in	Matrix	Multiplication	

45

Array	Access	for	Blocking/Tiling	Transformation

46

Blocking	Example
/* After */

for (jj = 0; jj < N; jj = jj+B)

for (kk = 0; kk < N; kk = kk+B)

for (i = 0; i < N; i = i+1)

for (j = jj; j < min(jj+B-1,N); j = j+1)

{r = 0;

for (k = kk; k < min(kk+B-1,N); k = k+1) {

r = r + y[i][k]*z[k][j];};

x[i][j] = x[i][j] + r;

};

• B	called	Blocking	Factor
• Capacity	misses	from	2N3 +	N2 to	2N3/B	+N2

• Reduce	conflict	misses	too?	
47

Reducing	Conflict	Misses	by	Blocking

• Conflict	misses	in	caches	not	FA	vs.	blocking	size
– Lam	et	al	[1991]:	Blocking	factor	of	24	had	1/5	the	misses	vs.	

48	despite	both	fitting	in	cache

48Blocking Factor

M
is

s
Ra

te

0

0.05

0.1

0 50 100 150

Fully Associative Cache

Direct Mapped Cache

Merging/Spliting Arrays	Example

/* Before: 2 sequential arrays */

int val[SIZE];

int key[SIZE];

/* After: 1 array of structures */

struct merge {

int val;

int key;

};

struct merge merged_array[SIZE];

Reduce	conflicts	between	val &	key;	improve	spatial	locality

49

Array of Struct or Struct of Array

Loop	Fusion	Example
/* Before */
for (i = 0; i < N; i = i+1)

for (j = 0; j < N; j = j+1)
a[i][j] = 1/b[i][j] * c[i][j];

for (i = 0; i < N; i = i+1)
for (j = 0; j < N; j = j+1)
d[i][j] = a[i][j] + c[i][j];

/* After */
for (i = 0; i < N; i = i+1)

for (j = 0; j < N; j = j+1)
{a[i][j] = 1/b[i][j] * c[i][j];
d[i][j] = a[i][j] + c[i][j];}

2	misses	per	access	to	a &	c vs.	one	miss	per	access;	improve	
spatial	locality

50

Summary	of	Compiler	Optimizations	to	Reduce	
Cache	Misses	(by	hand)

51

Performance Improvement

1 1.5 2 2.5 3

compress

cholesky
(nasa7)

spice
mxm (nasa7)
btrix (nasa7)

tomcatv
gmty (nasa7)

vpenta (nasa7)

merged
arrays

loop
interchange

loop fusion blocking

9.	Reducing	Misses	by	Hardware Prefetching	of	
Instructions	&	Data

52

• Hardware	prefetch items	before	the	processor	requests	them.	
– Both	instructions	and	data	can	be	prefetched,	
– Either	directly	into	the	caches	or	into	an	external	buffer	that	can	be	

more	quickly	accessed	than	main	memory.	
• Instruction	prefetching

– Typically,	CPU	fetches	2	blocks	on	miss:	requested		and	next	
– Requested	block	goes	in	instruction	cache,	prefetched goes	in	instruction	stream	

buffer

• Data	prefetching
– Pentium	4	can	prefetch data	into	L2	cache	from	up	to	8	streams	from	8	different	4	

KB	pages	
– Prefetching	invoked	if	2	successive	L2	cache	misses	to	a	page,	

if	distance	between	those	cache	blocks	is	<	256	bytes
– The	Intel	Core	i7	supports	hardware	prefetching	into	both	L1	and	L2	with	the	most	

common	case	of	prefetching	being	accessing	the	next	line.	
• Simpler	than	before.	

Hardware	Prefetching

• Relies	on	utilizing	memory	bandwidth	that	otherwise	would	be	
unused
– If	it	interferes	with	demand	misses	it	can	actually	lower	

performance.	
– When	prefetched data	are	not	used	or	useful	data	are	displaced,	

prefetching	will	have	a	very	negative	impact	on	power.	

53

Hardware	Prefetching

• Relies	on	utilizing	memory	bandwidth	that	otherwise	would	be	
unused
– If	it	interferes	with	demand	misses	it	can	actually	lower	

performance.	
– When	prefetched data	are	not	used	or	useful	data	are	displaced,	

prefetching	will	have	a	very	negative	impact	on	power.	

54

55

10.	Compiler-Controlled	Prefetching	to	Reduce	
Miss	Penalty	or	Miss	Rate

Compiler	to	insert	prefetch instructions	to	request	data	
before	the	processor	needs	it.	

• Data	prefetch
– Load	data	into	register	(HP	PA-RISC	loads)
– Cache	prefetch:	load	into	cache	

(MIPS	IV,	PowerPC,	SPARC	v.	9)
– Special	prefetching	instructions	cannot	cause	faults;	form	of	

speculative	execution

• Prefetch instructions	take	time
– Is	cost	of	prefetch issues	<	savings	in	reduced	misses?
– Higher	superscalar	reduces	problem	of	issue	bandwidth

Compiler-Controlled	Prefetching	Example

• Page	#93

56

Compiler-Controlled	Prefetching	Example

57

Prefetching	in	GCC	Compiler

58
https://gcc.gnu.org/onlinedocs/gcc/Other-Builtins.html

Summary	of	the	10	Advanced	Cache	
Optimization	Techniques	

59

Review	on	Cache	Performance	and	
Optimizations

60

Summary	of	the	6	Basic	Cache	Optimization	
Techniques	(Textbook	B.3)

61

Summary	of	the	10	Advanced	Cache	
Optimization	Techniques	

62

Review	of	Cache	Optimizations

• 3	C’s	of	cache	misses
– Compulsory,	Capacity,	Conflict

• Write	policies
– Write	back,	write-through,	write-allocate,	no	write	allocate

• Multi-level	cache	hierarchies reduce	miss	penalty
– 3	levels	common	in	modern	systems	(some	have	4!)
– Can	change	design	tradeoffs	of	L1	cache	if	known	to	have	L2

• Prefetching:	retrieve memory	data	before	CPU	request
– Prefetching can	waste	bandwidth	and	cause	cache	pollution
– Software	vs hardware	prefetching

• Software	memory	hierarchy	optimizations
– Loop	interchange,	loop	fusion,	cache	tiling

63

Design	Guideline

• Cache	block	size:	32	or	64	bytes
– Fixed	size	across	cache	levels

• Cache	sizes	(per	core):
– L1:	Small	and	fastest	for	low	hit	time,	2K	to	62K	each	for	D$	

and	I$	separated
– L2:	Large	and	faster	for	low	miss	rate,	256K	– 512K	for	

combined	D$	and	I$	combined
– L3:	Large	and	fast	for	low	miss	rate:	1MB	– 8MB	for	combined	

D$	and	I$	combined
• Associativity	

– L1:	directed,	2/4	way
– L2:	4/8	way

• Banked,	pipelined	and	no-blocking	access

64

For	Software	Development

• Explicit	or	compiler-controlled	prefetching
– Insert	prefetching	call.	

• Explicit	or	compiler-assisted	code	optimization	for	cache	
performance
– Loop	transformation	(interchange,	blocking,	etc)

65

Memory	Hierarchy	Performance,	B.2	in	
Textbook

• Two	indirect	performance	measures	have	waylaid	many	a	
computer	designer.
– Instruction	count	is	independent	of	the	hardware;
– Miss	rate	is	independent	of	the	hardware.

• A	better	measure	of	memory	hierarchy	performance	is	the	
Average	Memory	Access	Time	(AMAT)	per	instructions

AMAT =Hit time+Miss rate×Miss penalty

TimeCycleClockPenaltyMissRateMissnInstructio
AccessesMemoryCPIICTimeCPU Execution) (* ´´´+=

Equations	(B-19,	B-21)

67

Review

• Finished
– Appendix	A,	Instruction	Set	Principles	
– Appendix	B,	Review	of	Memory	Hierarchy	
– Appendix	C,	Pipelining:	Basic	and	Intermediate	Concepts	
– Chapter	1,	Fundamentals	of	Quantitative	Design	and	Analysis	
– Chapter	2,	Memory	Hierarchy	Design	

• Assignment	#3	posted,	due	10/29
• Second	Half

– Chapter	3,	Instruction-Level	Parallelism	and	Its	Exploitation	
– Chapter	4,	Data-Level	Parallelism	in	Vector,	SIMD,	and	GPU	

Architectures	
– Chapter	5,	Thread-Level	Parallelism	
– Chapter	7,	Domain-Specific	Architectures	

68

Feedback

• Lecture
– Amount	and	depth	of	content

• Assignment
– Amount	and	depth
– Amount	and	depth	of	hand-on	work	and	programming
– Extra	questions	and	bonus	points

• Midterm
– Depth	and	amount

• Nov	12	and	Nov	14	classes	(regular	class	on	Nov	19th)
– Reschedule	one	to	Nov	9	(?)
– Remote	via	webconnect (?)

69

