
Lecture	11:	Memory	Hierarchy
-- Cache	Organization	and	Performance

CSCE	513	Computer	Architecture

1

Department	of	Computer	Science	and	Engineering
Yonghong Yan

yanyh@cse.sc.edu
https://passlab.github.io/CSCE513

Topics	for	Memory	Hierarchy

• Memory	Technology	and	Principal	of	Locality
– CAQA:	2.1,	2.2,	B.1
– COD:	5.1,	5.2

• Cache	Organization	and	Performance
– CAQA:	B.1,	B.2
– COD:	5.2,	5.3

• Cache	Optimization
– 6	Basic	Cache	Optimization	Techniques

• CAQA:	B.3
– 10	Advanced	Optimization	Techniques

• CAQA:	2.3
• Virtual	Memory	and	Virtual	Machine

– CAQA:	B.4,	2.4;	COD:	5.6,	5.7
– Skip	for	this	course

2

Caching	Exploits	Both	Types	of	Locality	by	
Preloading	and	Keeping	Data	in	Faster	Memory

• Exploit	temporal	locality	by	remembering	the	contents	of	
recently	accessed	locations.

• Exploit	spatial	locality	by	fetching	blocks	of	data	around	
recently	accessed	locations.

3

double A[N];
sum = 0;
for(i=0; i<N; i++)
sum += A[i];

return sum;

64-byte	block	size,	A[i]	is	an	8-byte	double	è
A	block	(cache	line)	can	hold	8 elements	of	A.	

Referencing	to	A[0]	will	cause	the	memory	system	to	bring	A[0:7]	to	the	cache	è
Future	reference	to	A[1:7]	are	all	hits	in	cache	è faster	access	than	reading	from	
memory

Terminology	for	Memory	Hierarchy	
Performance

• Hit:	Data	appears	in	some	block	in	upper	level	(example:	Block	X)	
– Hit	Rate:	the	fraction	of	memory	access	found	in	the	upper	level.
– Hit	Time:	Time	to	access	the	upper	level	which	consists	of	

• Upper-level	access	time	+	Time	to	determine	hit/miss.

• Miss:	data	needs	to	be	retrieve	from	a	block	in	lower	level	(Block	Y)
– Miss	Rate		=	1	- (Hit	Rate),	i.e.	#	misses	/	#	memory	access
– Miss	Penalty:	Time	to	replace	a	block	in	the	upper	level

• Time	to	deliver	the	block	the	processor.

• Hit	Time	<<	Miss	Penalty	(500	instructions	on	21264!)
Lower Level

MemoryUpper Level
Memory

To Processor

From Processor
Block X Block Y

4

4	Questions	for	Cache	Organization

• Q1:	Where	can	a	block	be	placed	in	the	upper	level?
– Block	placement

• Q2:	How	is	a	block	found	if	it	is	in	the	upper	level?
– Block	identification

• Q3:	Which	block	should	be	replaced	on	a	miss?
– Block	replacement

• Q4:	What	happens	on	a	write?	
– Write	strategy

5

Q1:	Where	Can	a	Block	be	Placed	in	The	Upper	
Level?

• Block	Placement	
– Direct	Mapped,	Fully	Associative,	Set	Associative

• Direct	mapped:	(Block	number)	mod	(Number	of	blocks	in	cache)
• Set	associative:	(Block	number)	mod	(Number	of	sets	in	cache)

– #	of	set	£ #	of	blocks
– n-way:	n blocks	in	a	set
– 1-way	=	direct	mapped

• Fully	associative: #	of	set	=	1

Block-frame address

Block no. 0 1 2 3 54 76 8 129 31

Direct mapped: data block 12 can go
only into block 4 (12 mod 8)

0 1 2 3 4 5 6 7Block no.

Set associative: data block 12 can
go anywhere in set 0 (12 mod 4)

0 1 2 3 4 5 6 7

Set0

Block no.

Set1 Set2 Set3

Fully associative: data block
12 can go anywhere

Block no. 0 1 2 3 4 5 6 7

6

1	KB	Direct	Mapped	Cache,	32B	blocks

• For	a	2Nbyte	cache
– The	uppermost	(32	- N)	bits	are	always	the	Cache	Tag
– The	lowest	M	bits	are	the	Byte	Select	(Block	Size	=	2M)

Cache Index

0
1
2
3

:

Cache Data
Byte 0

0431

:

Cache Tag Example: 0x50
Ex: 0x01

0x50

Stored as part
of the cache “state”

Valid Bit

:
31

Byte 1Byte 31 :

Byte 32Byte 33Byte 63 :
Byte 992Byte 1023 :

Cache Tag

Byte Select
Ex: 0x00

9 510

7

Set	Associative	Cache

• N-way	set	associative:	N entries	for	each	Cache	Index
– N direct	mapped	caches	operates	in	parallel

• Example:	Two-way	set	associative	cache
– Cache	Index	selects	a	“set”	from	the	cache;
– The	two	tags	in	the	set	are	compared	to	the	input	in	parallel;
– Data	is	selected	based	on	the	tag	result.

Cache Data
Cache Block 0

Cache TagValid

:: :

Cache Data
Cache Block 0

Cache Tag Valid

: ::

Cache Index

Mux 01Sel1 Sel0

Cache Block

Compare
Adr Tag

Compare

OR
Hit

Cache Data
Cache Block 0

Cache TagValid

:: :

Cache Data
Cache Block 0

Cache Tag Valid

: ::

Cache Data
Cache Block 0

Cache Tag Valid

: ::

Cache Index

Mux 01Sel1 Sel0

Cache Block

Compare
Adr Tag

CompareCompare

OR
Hit 8

Disadvantage	of	Set	Associative	Cache

• N-way	Set	Associative	Cache	versus	Direct	Mapped	Cache:
– N	comparators	vs.	1
– Extra	MUX	delay	for	the	data
– Data	comes	AFTER Hit/Miss	decision	and	set	selection

• In	a	direct	mapped	cache,	Cache	Block	is	available	BEFORE	
Hit/Miss:
– Possible	to	assume	a	hit	and	continue.		Recover	later	if	miss.

Cache Data
Cache Block 0

Cache TagValid

:: :

Cache Data
Cache Block 0

Cache Tag Valid

: ::

Cache Index

Mux 01Sel1 Sel0

Cache Block

Compare
Adr Tag

Compare

OR
Hit

Cache Data
Cache Block 0

Cache TagValid

:: :

Cache Data
Cache Block 0

Cache Tag Valid

: ::

Cache Data
Cache Block 0

Cache Tag Valid

: ::

Cache Index

Mux 01Sel1 Sel0

Cache Block

Compare
Adr Tag

CompareCompare

OR
Hit 9

Q2:	Block	Identification

• Tag	on	each	block
– No	need	to	check	index	or	block	offset

• Increasing	associativity	shrinks	index,	expands	tag

10

Block
Offset

Block Address

IndexTag

Cache size = Associativity × 2index_size × 2offest_size

Set Select Data Select

Q3:	Which	block	should	be	replaced	on	a	miss?

• Easy	for	Direct	Mapped
• Set	Associative	or	Fully	Associative

– Random
– LRU	(Least	Recently	Used)
– First	in,	first	out	(FIFO)

Associativity

2-way 4-way 8-way

Size LRU Ran. FIFO LRU Ran. FIFO LRU Ran. FIFO

16KB 114.1 117.3 115.5 111.7 115.1 113.3 109.0 111.8 110.4

64KB 103.4 104.3 103.9 102.4 102.3 103.1 99.7 100.5 100.3

256KB 92.2 92.1 92.5 92.1 92.1 92.5 92.1 92.1 92.5

11

Q4:	What	Happens	on	a	Write?

Write-Through Write-Back

Policy

Data written to
cache block, also
written to lower-
level memory

1. Write data only
to the cache

2. Update lower
level when a
block falls out of
the cache

Debug Easy Hard
Do read misses produce writes? No Yes
Do repeated writes make it to
lower level? Yes No

Additional option -- let writes to an un-cached address allocate a new
cache line (“write-allocate”).

12

Write	Buffers	for	Write-Through	Caches

• Q.	Why	a	write	buffer	?	
– A.	So	CPU	doesn’t	stall	

• Q.	Why	a	buffer,	why	not	just	one	register	?
– A.	Bursts	of	writes	are	common.

• Q.	Are	Read	After	Write	(RAW)	hazards	an	issue	for	write	buffer?
– A.	Yes!		Drain	buffer	before	next	read,	or	send	read	1st after	check	

write	buffers.

Processor
Cache

Write Buffer

DRAM

13

Write-Miss	Policy

• Two	options	on	a	write	miss
– Write	allocate	– the	block	is	allocated	on	a	write	miss,	followed	

by	the	write	hit	actions.
• Write	misses	act	like	read	misses.

– No-write	allocate	– write	misses	do	not	affect	the	cache.		The	
block	is	modified	only	in	the	lower-level	memory.
• Block	stay	out	of	the	cache	in	no-write	allocate until	the	
program	tries	to	read	the	blocks,	but	with	write	allocate even	
blocks	that	are	only	written	will	still	be	in	the	cache.

14

Write-Miss	Policy	Example
• Example:		Assume	a	fully	associative	write-back	cache	with	many	cache	entries	that		

starts	empty.	Below	is	sequence	of	five	memory	operations	(The	address	is	in	square	
brackets):

Write	Mem[100];
Write	Mem[100];
Read	Mem[200];
Write	Mem[200];
Write	Mem[100].

What	are	the	number	of	hits	and	misses	(inclusive	reads	and	writes)	when	using	no-
write	allocate	versus	write	allocate?

• Answer
No-write	Allocate:	 Write	allocate:
Write	Mem[100];				1	write	miss		 Write	Mem[100];				1	write	miss
Write	Mem[100];				1	write	miss														 Write	Mem[100];				1	write	hit
Read	Mem[200];				1	read	miss																 Read	Mem[200];				1	read	miss
Write	Mem[200];				1	write	hit																	 Write	Mem[200];				1	write	hit
Write	Mem[100].				1	write	miss														 Write	Mem[100];				1	write	hit	
4	misses;	1	hit																																											 2	misses;	3	hits

15

What	Happens	on	a	Cache	Miss	in	Pipeline?
• For	in-order	pipeline,	2	options:

– Freeze	pipeline	in	Mem stage	(popular	early	on:	Sparc,	R4000)
IF	ID		EX		Mem	stall	stall	stall	…	stall	Mem			Wr

IF		ID		EX		 stall	stall	stall	…	stall	stall	 Ex			Wr

– Release	load	from	pipeline
• MSHR	=	“Miss	Status/Handler	Registers” (Kroft)
Each	entry	in	this	queue	keeps	track	of	status	of	outstanding	
memory	requests	to	one	complete	memory	line.
– Per	cache-line:	keep	info	about	memory	address.
– For	each	word:	register	(if	any)	that	is	waiting	for	result.
– Used	to	“merge”multiple	requests	to	one	memory	line

• New	load	creates	MSHR	entry	and	sets	destination	register	to	
“Empty”.		Load	is	“released” from	pipeline.

• Attempt	to	use	register	before	result	returns	causes	instruction	
to	block	in	decode	stage.

Cache Performance

17

Average	Memory	Access	Time	(AMAT)

Average	Memory	Access	Time	(AMAT)
=	Hit	Time	+	Miss	Rate	*	Miss	Penalt
=	Thit(L1)	+	Miss%	(L1)	*	T(Mem)

• Miss	penalty:	Time	to	fetch	a	block	from	lower	memory	level
– Access	time:	function	of	latency
– Transfer	time:	function	of	bandwith b/w	levels

• Transfer	one	“cache	block/line”	at	a	time
• Example:

– Cache	Hit	=	1	cycle
– Miss	rate	=	10%,	Miss	penalty	=	300	cycles
– AMAT	=	1	+	0.1	*	300	=	31	cycles

18

Miss	Rate:	Miss	per	Memory	Reference

Miss	Rate	=	#	Misses	/	#	Memory	reference
• Memory	access	include	both	instruction	access	and	data	access

– Each	instruction	needs	to	be	read	from	memory:	one	I-mem	access
– LW/SW	are	memory	access	instructions:	one	D-mem	access	(in	

addition	to	one	1-mem	access)	
– Count	#	memory	accesses:	Each	iteration,	14	instructions	in	total,	9	

ld/lw/swè 14+9	or	9*2+5	=	23	memory	accesses
• 9	are	data-mem	accesses

19

int sum(int N, int a, int *X) {
int i;
int result = 0;
for (i = 0; i < N; ++i)

 result += X[i];
return result;

}

.L3:
 lw a5,-20(s0) /* a5 = i */
 sll a5,a5,2 /* a5 = i<<2, which is i=i*4 */
 ld a4,-48(s0) /* a4 = X */
 add a5,a4,a5 /* the &X[i] */
 lw a5,0(a5) /* the X[i] */
 lw a4,-24(s0) /* load result */
 addw a5,a4,a5 /* result += X[i] */
 sw a5,-24(s0) /* store to result */
 lw a5,-20(s0) /* i */
 addw a5,a5,1 /* i++ */
 sw a5,-20(s0) /* store i */
.L2:
 lw a4,-20(s0) /* i */
 lw a5,-36(s0) /* N */
 blt a4,a5,.L3 /* if (i < N) goto .L3 */
	

Miss	Per	Instruction	(Textbook	B-15	and	B-16)

20

Misses for instruction cache are very low, why?
Because instruction access has good locality!

Miss	Rate	ßàMiss	Per	Instruction (Textbook	B-15	
and	B-16)

• Memory	Access	Per	Instruction:	
– Each	instruction	needs	to	be	read	from	memory:	one	I-mem	access
– LW/SW	instructions:	one	D-mem	access	(in	addition	to	one	1-mem	

access)	
• E.g.	36%	are	load/store	instruction

– Memory	Access	Per	Instruction	=	1	+	0.36	=	1.36

21

Miss	Rate	ßàMiss	Per	Instruction (Textbook	B-15	
and	B-16)

NOTE:	Very	low	
instruction	miss	rate

22

Miss	Rate	for	Programmers	

• Because	instruction	miss	rate	is	very	low	è Only	count	data-
memory	access

– 1	data	mem	access	
• Since	scalar	variables	(i,	result)	are	all	in	registers	
• Only	X[i]	is	LW	(right	value)

23

int sum(int N, int a, int *X) {
int i;
int result = 0;
for (i = 0; i < N; ++i)

 result += X[i];
return result;

}

Counting data-mem access only needs to look
at source code! and count array reference!

AMAT	for	Multi-Level	Cache

• Average	Memory	Access	Time	(AMAT)
=	Hit	Time	+	Miss	Rate	*	Miss	Penalty

Miss	Penalty(L3)	=	T(Mem)
Miss	Penalty(L2)	=	AMAT(L3)	=	Thit(L3)	+	Miss%(L3)	*	Miss	Penalty(L3)
Miss	Penalty(L1)	=	AMAT(L2)	=	Thit(L2)	+	Miss%(L2)	*	Miss	Penalty(L2)
AMAT	=	Thit(L1)	+	Miss%(L1)	*	Miss	Penalty(L1)

= Thit(L1)	+	Miss%(L1)	*	{Thit(L2)	+	Miss%(L2)	*	Miss	Penalty(L2)}
=	Thit(L1)	+	Miss%(L1)	* {Thit(L2)	+	Miss%(L2)	*	

[Thit(L3)	+	Miss%(L3)	*	T(Mem)] }
24

AMAT	Example	for	Multi-Level	Cache

AMAT	=	Thit(L1)	+	Miss%(L1)	*	{Thit(L2)	+	Miss%(L2)	*	
[Thit(L3)	+	Miss%(L3)	*	T(Mem)] }

– Miss	rate	L1=10%,	Thit(L1)	=	1	cycle
– Miss	rate	L2	=	5%,	Thit(L2)	=	10	cycles
– Miss	rate	L3	=	1%,	Thit(L3)	=	20	cycles
– T(Mem)	=	300	cycles

• AMAT	=	
– 2.115	compared	to	31	with	single-level	L1	cache

25

CPU	Performance	Revisit

• CPU	performance	factors
– Instruction	count

• Determined	by	ISA	and	compiler
– CPI	and	Cycle	time

• Determined	by	CPU	hardware

CPU Time = Instructions
Program

* Cycles
Instruction

*Time
Cycle

26

CPU	Performance	with	Memory	Factor
• Components	of	CPU	time

– Program	execution	cycles
• Includes	cache	hit	time

– Memory	stall	cycles
• Mainly	from	cache	misses

• Memory	Stall	Cycles:	the	number	of	cycles	during	
which	the	processor	is	stalled	waiting	for	a	memory	
access.	

27

 timecycleClock cycles) stallMemory cyclesclock (CPUtimeexecution CPU ´+=

Memory	Stall	Cycles	per	Instruction

28

CPU Time = Instructions
Program

* Cycles
Instruction

*Time
Cycle

 timecycleClock cycles) stallMemory cyclesclock (CPUtimeexecution CPU ´+=

Memory	Stall	Cycles

• Memory	Stall	Cycles:	the	number	of	cycles	during	which	the	
processor	is	stalled	waiting	for	a	memory	access.	

• Depends	on	both	the	number	of	misses	and	the	cost	per	miss,	i.e.	
the	miss	penalty:

Penalty Missrate Miss
Instrution

accessesMemory IC

Penalty Miss
Instrution

MissesIC

penalty Missmisses ofNumber cycles stallMemory

´´´=

´´=

´=

† The advantage of the last form is the component can be easily measured.

29

Cache	Performance

• Given
– I-cache	miss	rate	=	2%
– D-cache	miss	rate	=	4%
– Miss	penalty	=	100	cycles
– Base	CPI	(ideal	cache)	=	2
– Load	&	stores	are	36%	of	instructions

• Miss	cycles	per	instruction
– I-cache:	0.02	× 100	=	2
– D-cache:	0.36	× 0.04	× 100	=	1.44

• Actual	CPI	=	2	+	2	+	1.44	=	5.44
– Ideal	CPU	is	5.44/2	=2.72	times	faster

30

Example	(Page	B-18	of	CAQA	Book)	- 1/2

31

Example	(Page	B-18	of	CAQA	Book)- 2/2

32

• CPI for perfect cache (miss rate 0): 1.00
• CPU for 2% miss rate cache: 7
• CPI for No cache: = 1.0+200*1.5 = 301

• a factor of more than 40 times longer than a system
with a cache!

Three	Important	Equations	for	Cache	Performance

Average	Memory	Access	Time	(AMAT)
=	Hit	Time	+	Miss	Rate	*	Miss	Penalty

33

Penalty Missrate Miss
Instrution

accessesMemory IC

Penalty Miss
Instrution

MissesIC

penalty Missmisses ofNumber cycles stallMemory

´´´=

´´=

´=

Summary	of	Performance	Equations

34

Another	Example
• Assume	we	have	a	computer	where	the	clocks	per	instruction	(CPI)	is	1.0	when	all	memory	

accesses	hit	in	the	cache.	The	only	data	accesses	are	loads	and	stores,	and	these	total	50%	of	the	
instructions.	If	the	miss	penalty	is	25	clock	cycles	and	the	miss	rate	is	2%,	how	much	faster	would	
the	computer	be	if	all	instructions	were	cache	hits?

• Answer:	

cycleClock 1.0ICcycleClock 0)CPI(IC
 timecycleClock cycles) stallMemory cyclesclock (CPUtimeexecution CPU

´´=´+´=
´+=

1. Compute the performance for the computer that always hits:

Memory stall cycles = IC× Memory accesses
Instruction

×Miss rate×Miss penalty

 = IC× (1+ 0.5)×0.02×25= IC×0.75

2. For the computer with the real cache, we compute memory stall cycles:

CPU execution time = (CPU clock cycles + Memory stall cycles)×Clock cycle time
 =1.75× IC×Clock cycle

3. Compute the total performance

75.1
cycleClock IC1.0
cycleClock IC1.75

timeexecution CPU
timeexecution CPU cache =

´´
´´

=

4. Compute the performance ratio which is the inverse of the execution times:

1 instruction memory access
+ 0.5 data memory access

35

Performance	Summary

• When	CPU	performance	increased
– Miss	penalty	becomes	more	significant

• Decreasing	base	CPI
– Greater	proportion	of	time	spent	on	memory	stalls

• Increasing	clock	rate
– Memory	stalls	account	for	more	CPU	cycles

• Can’t	neglect	cache	behavior	when	evaluating	system	
performance

36

Midterm

• Oct	15	Monday	8:05	- 9:20
• Close	book	and	close	note
• 1-page	(one	side	of	the	paper)	A4/Letter-size	hand-written	
note

• Some	sample	questions:	
– https://passlab.github.io/CSCE513/Midterm_Fall2016_formatte

d_WithSolutions.pdf

37

Additional

38

Multilevel	Caches

• Primary	cache	attached	to	CPU
– Small,	but	fast

• Level-2	cache	services	misses	from	primary	cache
– Larger,	slower,	but	still	faster	than	main	memory

• Main	memory	services	L-2	cache	misses
• Some	high-end	systems	include	L-3	cache

39

Multilevel	Cache	Considerations

• Primary cache
– Focus on minimal hit time

• L-2 cache
– Focus on low miss rate to avoid main memory access
– Hit time has less overall impact

• Results
– L-1 cache usually smaller than a single cache
– L-1 block size smaller than L-2 block size

40

Multilevel	Cache	Example

• Given
– CPU base CPI = 1, clock rate = 4GHz
– Miss rate/instruction = 2%
– Main memory access time = 100ns

• With just primary cache
– Miss penalty = 100ns/0.25ns = 400 cycles
– Effective CPI = 1 + 0.02 × 400 = 9

41

Example	(cont.)

• Now add L-2 cache
– Access time = 5ns
– Global miss rate to main memory = 0.5%

• Primary miss with L-2 hit
– Penalty = 5ns/0.25ns = 20 cycles

• Primary miss with L-2 miss
– Extra penalty = 500 cycles

• CPI = 1 + 0.02 × 20 + 0.005 × 400 = 3.4
• Performance ratio = 9/3.4 = 2.6

42

Memory	Hierarchy	Performance

• Two	indirect	performance	measures	have	waylaid	many	a	
computer	designer.
– Instruction	count	is	independent	of	the	hardware;
– Miss	rate	is	independent	of	the	hardware.

• A	better	measure	of	memory	hierarchy	performance	is	the	
Average	Memory	Access	Time	(AMAT)	per	instructions

– CPU	with	1ns	clock,	hit	time	=	1	cycle,	miss	penalty	=	20	cycles,	I-
cache	miss	rate	=	5%

– AMAT	=	1	+	0.05	× 20	=	2ns
• 2	cycles	per	instruction

penalty Misssrate MisHit timeAMAT ´+=

43

Example	(B-16):	Separate	vs Unified	Cache
• Which has the lower miss rate: a 16 KB instruction cache with a 16KB data or a 32 KB unified cache?

Use the miss rates in Figure B.6 to help calculate the correct answer, assuming 36% of the
instructions are data transfer instructions. Assume a hit take 1 clock cycle and the miss penalty is 100
clock cycles. A load or store hit takes 1 extra clock cycle on a unified cache if there is only one cache
port to satisfy two simultaneous requests. Using the pipelining terminology of Chapter 2, the unified
cache leads to a structure hazard. What is the average memory access time in each case? Assume
write-through caches with a write buffer and ignore stalls due to the write buffer.

• Answer:
First let’s convert misses per 1000 instructions into miss rates. Solving the general formula from
above, the miss rate is

Since every instruction access has exactly one memory access to fetch the instruction, the instruction
miss rate is

nInstructio
accessesMemory

/1000
nsInstructio 1000

Misses

rate Miss =

004.0
00.1
1000/82.3rate Miss ninstructio KB 16 ==

44

Example	(B-16)
Since 36% of the instructions are data transfers, the data miss rate is

The unified miss rate needs to account for instruction and data access:

As stated above, about 74% of the memory accesses are instruction references. Thus, the overall
miss rate for the split caches is

Thus, a 32 KB unified cache has a slightly lower effective miss rate than two 16 KB caches.
The average memory access time formula can be divided into instruction and data accesses:

Therefore, the time for each organization is

114.0
36.0
1000/9.40rate Miss data KB 16 ==

0318.0
36.000.1

1000/3.43rate Miss unified KB 32 =
+

=

() () 0326.0114.0%26004.0%74 =´+´

()
()penalty Missrate miss DataHit timedata %

penalty Missrate missn InstructioHit timensinstructio % timeaccessmemory Average
´+´

´+´=

() () 52.7200114.01%26200004.01%74AMATsplit =´+´+´+´=

() () 62.72000318.011%262000318.0.01%74AMATunified =´+++´+´+´=
45

Introduction	to	Cache	Organization

46

Cache Memory

• Cache memory
– The level of the memory hierarchy closest to the CPU

• Given accesses X1, …, Xn–1, Xn

n How do we know if
the data is present?

n Where do we look?

47

Direct Mapped Cache

• Location determined by address
• Direct mapped: only one choice

– (Block address) modulo (#Blocks in cache)

n #Blocks is a power of 2
n Use low-order address

bits as index to the entry

5-bit address space for total 32 bytes. This is simplified and a cache line
normally contains more bytes, e.g. 64 or 128 bytes. 48

Tags and Valid Bits

• Which particular block is stored in a cache location?
– Store block address as well as the data
– Actually, only need the high-order bits
– Called the tag: the high-order bits

• What if there is no data in a location?
– Valid bit: 1 = present, 0 = not present
– Initially 0

49

Cache Example

• 8-blocks, 1 word/block, direct mapped
• Initial state

Index V Tag Data
000 N
001 N
010 N
011 N
100 N
101 N
110 N
111 N

50

Cache Example

Index V Tag Data
000 N
001 N
010 N
011 N
100 N
101 N
110 Y 10 Mem[10110]
111 N

Word addr Binary addr Hit/miss Cache block
22 10 110 Miss 110

51

Cache Example

Index V Tag Data
000 N
001 N
010 Y 11 Mem[11010]
011 N
100 N
101 N
110 Y 10 Mem[10110]
111 N

Word addr Binary addr Hit/miss Cache block
26 11 010 Miss 010

52

Cache Example

Index V Tag Data
000 N
001 N
010 Y 11 Mem[11010]
011 N
100 N
101 N
110 Y 10 Mem[10110]
111 N

Word addr Binary addr Hit/miss Cache block
22 10 110 Hit 110
26 11 010 Hit 010

53

Cache Example

Index V Tag Data
000 Y 10 Mem[10000]
001 N
010 Y 11 Mem[11010]
011 Y 00 Mem[00011]
100 N
101 N
110 Y 10 Mem[10110]
111 N

Word addr Binary addr Hit/miss Cache block
16 10 000 Miss 000
3 00 011 Miss 011
16 10 000 Hit 000

54

Cache Example

Index V Tag Data
000 Y 10 Mem[10000]
001 N
010 Y 10 Mem[10010]
011 Y 00 Mem[00011]
100 N
101 N
110 Y 10 Mem[10110]
111 N

Word addr Binary addr Hit/miss Cache block
18 10 010 Miss 010

55

Address Subdivision

• 4-byte	data	per	cache	entry:	block	or	line	size
– Cache	line

• Why	do	we	keep	
multiple	bytes	in	
one	cache	line?
– Spatial	locality

56

Example: Larger Block Size

• 64 blocks, 16 bytes/block
– To what block number does address 1200 (decimal) map?:

11

• Map all addresses between 1200 - 1215

Tag Index Offset
03491031

4 bits6 bits22 bits

1200 = 0x4B0
0000 0000 0000 0000 0000 0100 1011 0000

57

Block Size Considerations

• Larger blocks should reduce miss rate
– Due to spatial locality

• But in a fixed-sized cache
– Larger blocks Þ fewer of them

• More competition Þ increased miss rate
– Larger blocks Þ pollution

• Larger miss penalty
– Can override benefit of reduced miss rate
– Early restart and critical-word-first can help

58

Cache Misses

• On cache hit, CPU proceeds normally
– IF or MEM stage to access instruction or data memory
– 1 cycle

• On cache miss: à x10 or x100 cycles
– Stall the CPU pipeline
– Fetch block from next level of hierarchy

• Instruction cache miss
– Restart instruction fetch

• Data cache miss
– Complete data access

100: LW X1 100(X2)

59

Write-Through
• On data-write hit, could just update the block in

cache
– But then cache and memory would be inconsistent

• Write through: also update memory
– But makes writes take longer
– e.g., if base CPI = 1, 10% of instructions are stores, write

to memory takes 100 cycles
• Effective CPI = 1 + 0.1×100 = 11

• Solution: write buffer
– Holds data waiting to be written to memory
– CPU continues immediately

• Only stalls on write if write buffer is already full and write multiple
bytes a time

200: SW X1 100(X2)

60

Write-Back

• Alternative: On data-write hit, just update the block in
cache
– Keep track of whether each block is dirty

• When a dirty block is
replaced
– Write it back to

memory
– Can use a write buffer

to allow replacing
block to be read first

61

Write Allocation

• What should happen on a write miss?
• Alternatives for write-through

– Allocate on miss: fetch the block
– Write around: don’t fetch the block

• Since programs often write a whole block before reading
it (e.g., initialization)

• For write-back
– Usually fetch the block

62

Example: Intrinsity FastMATH
• Embedded MIPS processor

– 12-stage pipeline
– Instruction and data access on each cycle

• Split cache: separate I-cache and D-cache
– Each 16KB: 256 blocks × 16 words/block
– D-cache: write-through or write-back

• SPEC2000 miss rates
– I-cache: 0.4%
– D-cache: 11.4%
– Weighted average: 3.2%

63

Example: Intrinsity FastMATH

64

Main	Memory	Supporting	Caches
• Use	DRAMs	for	main	memory

– Fixed	width	(e.g.,	1	word)
– Connected	by	fixed-width	clocked	bus

• Bus	clock	is	typically	slower	than	CPU	clock

• Example	cache	block	read
– 1	bus	cycle	for	address	transfer
– 15	bus	cycles	per	DRAM	access
– 1	bus	cycle	per	data	transfer

• For	4-word	block,	1-word-wide	DRAM
– Miss	penalty	=	1	+	4×15	+	4×1	=	65	bus	cycles
– Bandwidth	=	16	bytes	/	65	cycles	=	0.25	B/cycle

65

Associative Caches

• Fully associative
– Allow a given block to go in any cache entry
– Requires all entries to be searched at once
– Comparator per entry (expensive)

• n-way set associative
– Each set contains n entries
– Block number determines which set

• (Block number) modulo (#Sets in cache)
– Search all entries in a given set at once
– n comparators (less expensive)

66

Associative Cache Example

67

Spectrum of Associativity

• For a cache with 8 entries

68

Associativity Example

• Compare 4-block caches
– Direct mapped, 2-way set associative,

fully associative
– Block access sequence: 0, 8, 0, 6, 8

• Direct mapped

Block
address

Cache
index

Hit/miss Cache content after access
0 1 2 3

0 0 miss Mem[0]
8 0 miss Mem[8]
0 0 miss Mem[0]
6 2 miss Mem[0] Mem[6]
8 0 miss Mem[8] Mem[6]

A
ccess sequence

69

Associativity Example

• 2-way set associative
Block

address
Cache
index

Hit/miss Cache content after access
Set 0 Set 1

0 0 miss Mem[0]
8 0 miss Mem[0] Mem[8]
0 0 hit Mem[0] Mem[8]
6 0 miss Mem[0] Mem[6]
8 0 miss Mem[8] Mem[6]

n Fully associative
Block

address
Hit/miss Cache content after access

0 miss Mem[0]
8 miss Mem[0] Mem[8]
0 hit Mem[0] Mem[8]
6 miss Mem[0] Mem[8] Mem[6]
8 hit Mem[0] Mem[8] Mem[6]

70

How	Much	Associativity

• Increased	associativity	decreases	miss	rate
– But	with	diminishing	returns

• Simulation	of	a	system	with	64KB
D-cache,	16-word	blocks,	SPEC2000
– 1-way:	10.3%
– 2-way:	8.6%
– 4-way:	8.3%
– 8-way:	8.1%

71

Set	Associative	Cache	Organization

72

Replacement	Policy

• Direct	mapped:	no	choice
• Set	associative

– Prefer	non-valid	entry,	if	there	is	one
– Otherwise,	choose	among	entries	in	the	set

• Least-recently	used	(LRU)
– Choose	the	one	unused	for	the	longest	time

• Simple	for	2-way,	manageable	for	4-way,	too	hard	beyond	that
• Random

– Gives	approximately	the	same	performance	as	LRU	for	high	
associativity

73

