
Lecture	10:	Memory	Hierarchy
-- Memory	Technology	and	Principal	of	Locality

CSCE	513	Computer	Architecture

1

Department	of	Computer	Science	and	Engineering
Yonghong Yan

yanyh@cse.sc.edu
https://passlab.github.io/CSCE513

Topics	for	Memory	Hierarchy

• Memory	Technology	and	Principal	of	Locality
– CAQA:	2.1,	2.2,	B.1
– COD:	5.1,	5.2

• Cache	Organization	and	Performance
– CAQA:	B.1,	B.2
– COD:	5.2,	5.3

• Cache	Optimization
– 6	Basic	Cache	Optimization	Techniques

• CAQA:	B.3
– 10	Advanced	Optimization	Techniques

• CAQA:	2.3
• Virtual	Memory	and	Virtual	Machine

– CAQA:	B.4,	2.4;	COD:	5.6,	5.7
– Skip	for	this	course

2

The	Big	Picture:	Where	are	We	Now?	

• Memory	system
– Supplying	data	on	time	for	computation	(speed)
– Large	enough	to	hold	everything	needed	(capacity)

Control

Datapath

Memory

Processor
Input

Output

3

Overview

• Programmers	want	unlimited	amounts	of	memory	with	
low	latency

• Fast	memory	technology	is	more	expensive	per	bit	than	
slower	memory

• Solution:	organize	memory	system	into	a	hierarchy
– Entire	addressable	memory	space	available	in	largest,	slowest	

memory
– Incrementally	smaller	and	faster	memories,	each	containing	a	

subset	of	the	memory	below	it,	proceed	in	steps	up	toward	the	
processor

• Temporal	and	spatial	locality	insures	that	nearly	all	
references	can	be	found	in	smaller	memories
– Gives	the	allusion	of	a	large,	fast	memory	being	presented	to	the	

processor
4

Memory	Hierarchy

Memory	
Hierarchy

5

Memory	Technology

• Random	Access:	access	time	is	the	same	for	all	locations
• DRAM:	Dynamic	Random	Access	Memory

– High	density,	low	power,	cheap,	slow
– Dynamic:	need	to	be	“refreshed”	regularly
– 50ns	– 70ns,	$20	– $75	per	GB

• SRAM:	Static	Random	Access	Memory
– Low	density,	high	power,	expensive,	fast
– Static:	content	will	last	“forever”(until	lose	power)
– 0.5ns	– 2.5ns,	$2000	– $5000	per	GB

• Magnetic	disk
– 5ms	– 20ms,	$0.20	– $2	per	GB

Ideal memory:
• Access time of SRAM
• Capacity and cost/GB of

disk
6

Static	RAM	(SRAM)	6-Transistor	Cell	– 1	Bit

• Write:
1.	Drive	bit	lines	(bit=1,	bit=0)
2..	Select	row

• Read:
1.		Precharge bit	and	bit	to	Vdd or	Vdd/2	=>	make	sure	equal!
2..	Select	row
3.		Cell	pulls	one	line	low
4.	Sense	amp	on	column	detects	difference	between	bit	and	bit

6-Transistor SRAM Cell

bit bit

word
(row select)

bit bit

word

replaced with pullup
to save area

10

0 1

7

Dynamic	RAM	(DRAM)	1-Transistor	Memory	Cell

• Write:
– 1.	Drive	bit	line
– 2.	Select	row

• Read:
– 1.	Precharge bit	line	to	Vdd
– 2.	Select	row
– 3.	Cell	and	bit	line	share	charges

• Very	small	voltage	changes	on	the	bit	line
– 4.	Sense	(fancy	sense	amp)

• Can	detect	changes	of	~1	million		electrons
– 5.	Write:	restore	the	value	

• Refresh
– 1.	Just	do	a	dummy	read	to	every	cell.

row select

bit

8

Performance:	Latency	and	Bandwidth

• Performance	of	Main	Memory:	
– Latency:	Cache	Miss	Penalty

• Access	Time:	time	between	request	and	word	arrives
• Cycle	Time:	time	between	requests

– Bandwidth:	I/O	&	Large	Block	Miss	Penalty	(L2)
• Main	Memory	is	DRAM	: Dynamic	Random	Access	Memory

– Needs	to	be	refreshed	periodically	(8	ms)
– Addresses	divided	into	2	halves	(Memory	as	a	2D	matrix):

• RAS or	Row	Access	Strobe and	CAS or	Column	Access	Strobe
• Cache	uses	SRAM	: Static	Random	Access	Memory

– No	refresh	(6	transistors/bit	vs.	1	transistor)
Size:	DRAM/SRAM	 4-8
Cost/Cycle	time:	SRAM/DRAM	 8-16

9

Stacked/Embedded	DRAMs

• Stacked	DRAMs	in	same	package	as	processor
– High	Bandwidth	Memory	(HBM)

10

Flash	Memory

• Type	of	EEPROM
• Types:		NAND	(denser)	and	NOR	(faster)
• NAND	Flash:

– Reads	are	sequential,	reads	entire	page	(.5	to	4	KiB)
– 25	us	for	first	byte,	40	MiB/s	for	subsequent	bytes
– SDRAM:		40	ns	for	first	byte,	4.8	GB/s	for	subsequent	bytes
– 2	KiB	transfer:	75	uS	vs	500	ns	for	SDRAM,	150X	slower
– 300	to	500X	faster	than	magnetic	disk

11

NAND	Flash	Memory

• Must	be	erased	(in	blocks)	before	being	overwritten
• Nonvolatile,	can	use	as	little	as	zero	power
• Limited	number	of	write	cycles	(~100,000)
• $2/GiB,	compared	to	$20-40/GiB	for	SDRAM	and	$0.09	
GiB	for	magnetic	disk

• Phase-Change/Memrister	Memory
– Possibly	10X	improvement	in	write	performance	and	2X	

improvement	in	read	performance

12

CPU-Memory	Performance	Gap:	Latency

CPU-DRAM	Memory	Latency Gap	àMemory	Wall

Processor-Memory
Performance Gap:
(grows 50% / year)

13

CPU-Memory	Performance	Gap:	Bandwidth

• Memory	hierarchy	design	becomes	more	crucial	with	
recent	multi-core	processors:

• Aggregate	peak	bandwidth	grows	with	#	cores:
– Intel	Core	i7	can	generate	two	references	per	core	per	clock
– Four	cores	and	3.2	GHz	clock

• 25.6	billion	64-bit	data	references/second	+
• 12.8	billion	128-bit	instruction	references/second
• =	409.6	GB/s!

– DRAM	bandwidth	is	only	8%	of	this	(34.1	GB/s)
• Requires:

– Multi-port,	pipelined	caches
– Two	levels	of	cache	per	core
– Shared	third-level	cache	on	chip

14

Memory	Hierarchy

• Keep	most	recent	accessed	data	and	its	adjacent	data	in	the	
smaller/faster	caches	that	are	closer	to	processor

• Mechanisms	for	replacing	data

15

Control

Datapath

Secondary
Storage
(Disk)

Processor

R
egisters

Main
Memory
(DRAM)

2nd/3rd

Level
Cache

(SRAM)

O
n-C

hip
C

ache

1s 10,000,000s
(10s ms)

Speed (ns): 10s 100s

100s GsSize (bytes): Ks Ms

Tertiary
Storage
(Tape)

10,000,000,000s
(10s sec)

Ts

Why	Hierarchy	Works

• The	Principle	of	Locality:
– Program	access	a	relatively	small	portion	of	the	
address	space	at	any	instant	of	time.

Address Space0 2^n - 1

Probability
of reference

16

The	Principle	of	Locality
• Programs	tend	to	reuse	data	and	instructions	near	those	
they	have	used	recently,	or	that	were	recently	referenced	
themselves

• Spatial	locality: Items	with	nearby	addresses	tend	to	be	
referenced	close	together	in	time

• Temporal	locality: Recently	referenced	items	are	likely	to	
be	referenced	in	the	near	future

• Data
–Reference	array	elements	in	succession	(stride-1	
reference	pattern):	Spatial	Locality

–Reference	sum	each	iteration:	Temporal	Locality
• Instructions

–Reference	instructions	in	sequence:	Spatial	Locality
–Cycle	through	loop	repeatedly:	Temporal	Locality

sum = 0;
for(i=0; i<n; i++)
sum += a[i];

return sum;

17

Memory	Hierarchy	of	a	Computer	System
• By	taking	advantage	of	the	principle	of	locality:

– Present	the	user	with	as	much	memory	as	is	available	in	the	
cheapest	technology.

– Provide	access	at	the	speed	offered	by	the	fastest	technology.

Control

Datapath

Secondary
Storage
(Disk)

Processor

R
egisters

Main
Memory
(DRAM)

2nd/3rd

Level
Cache

(SRAM)

O
n-C

hip
C

ache

1s 10,000,000s
(10s ms)

Speed (ns): 10s 100s

100s GsSize (bytes): Ks Ms

Tertiary
Storage
(Tape)

10,000,000,000s
(10s sec)

Ts
18

Vector/Matrix	and	Array	in	C

• C	has	row-major	storage	for	multiple	dimensional	array
– A[2,2]	is	followed	by	A[2,3]

• 3-dimensional	array
– B[3][100][100]

19

int A[4][4]

• Stepping	through	columns	in	one	row:
for (i=0;	i<4;	i++)	sum	+=	A[0][i];
accesses	successive	elements

• Stepping	through	rows	in	one	column:
for (i=0;	i<4;	i++)	sum	+=	A[i][0];
Stride-4	access

Locality	Example

• Claim: Being	able	to	look	at	code	and	get	qualitative	sense	
of	its	locality	is	key	skill	for	professional	programmer

• Question: Does	this	function	have	good	locality?

int sumarrayrows(int a[M][N]){
int i, j, sum = 0;

for (i = 0; i < M; i++)
for (j = 0; j < N; j++)

sum += a[i][j];
return sum;

}

20

✅

Locality	Example

• Question: Does	this	function	have	good	locality?

int sumarraycols(int a[M][N]){
int i, j, sum = 0;

for (j = 0; j < N; j++)
for (i = 0; i < M; i++)

sum += a[i][j];
return sum;

}

21

❌

Locality	Example

• Question: Can	you	permute	the	loops	so	that	the	function	
scans	the	3-d	array	a[] with	a	stride-1	reference	pattern	
(and	thus	has	good	spatial	locality)?

int sumarray3d(int a[M][N][N]) {
int i, j, k, sum = 0;

for (i = 0; i < N; i++)
for (j = 0; j < N; j++)

for (k = 0; k < M; k++)
sum += a[k][i][j];

return sum;
}

22

Review:	Memory	Technology	and	Hierarchy

23

Technology Challenge: Memory Wall

Address Space0 2^n - 1Pr
ob

ab
ili

ty
of

 re
fe

re
nc

e

Program Behavior: Principle of Locality

Architecture Approach: Memory Hierarchy

int sumarrayrows(int a[M][N]){
int i, j, sum = 0;

for (i = 0; i < M; i++)
for (j = 0; j < N; j++)
sum += a[i][j];

return sum;
}

Your Code: Exploit Locality, and Work
With Memory Storage Type

Memory	Hierarchy

24

• capacity:		Register	<<	SRAM	<<	DRAM
• latency:			Register	<<	SRAM	<<	DRAM
• bandwidth:	on-chip	>>	off-chip

On	a	data	access:
if	data	Î fast	memory	Þ low	latency	access	(SRAM)
if	data	Ï fast	memory	Þ high	latency	access	(DRAM)

History:	Alpha	21164	(1994)

25

https://en.wikipedia.org/wiki/Alpha_21164

History:	Further	Back

Ideally	one	would	desire	an	indefinitely	large	memory	capacity	
such	that	any	particular	...	word	would	be	immediately	
available.	...	We	are	...	forced	to	recognize	the	possibility	of	
constructing	a hierarchy	of	memories,	each	of	which	has	
greater	capacity	than	the	preceding	but	which	is	less	quickly	
accessible.	
A.	W.	Burks,	H.	H.	Goldstine,	and	J.	von	Neumann
Preliminary	Discussion	of	the	Logical	Design	of	an	Electronic	

Computing	Instrument,	1946	

26

Next:	Memory	Hierarchy	- Cache	Organization

• Keep	most	recent	accessed	data	and	its	adjacent	data	in	the	
smaller/faster	caches	that	are	closer	to	processor

• Mechanisms	for	replacing	data

27

Control

Datapath

Secondary
Storage
(Disk)

Processor

R
egisters

Main
Memory
(DRAM)

2nd/3rd

Level
Cache

(SRAM)

O
n-C

hip
C

ache

1s 10,000,000s
(10s ms)

Speed (ns): 10s 100s

100s GsSize (bytes): Ks Ms

Tertiary
Storage
(Tape)

10,000,000,000s
(10s sec)

Ts

More	Examples	for	Locality	
Discussion

28

Sources	of	locality

• Temporal	locality
– Code	within	a	loop
– Same	instructions	fetched	repeatedly

• Spatial	locality
– Data	arrays
– Local	variables	in	stack
– Data	allocated	in	chunks	(contiguous	bytes)

for	(i=0;	i<N;	i++)	{
A[i]	=	B[i]	+	C[i]	*	a;

}

29

int sumarrayrows(int a[M][N])
{

int i, j, sum = 0;

for (i = 0; i < M; i++)
for (j = 0; j < N; j++)

sum += a[i][j];
return sum;

}

int sumarraycols(int a[M][N])
{

int i, j, sum = 0;

for (j = 0; j < N; j++)
for (i = 0; i < M; i++)

sum += a[i][j];
return sum;

}

Miss rate = 1/4 = 25% Miss rate = 100%

Writing	Cache	Friendly	Code

• Repeated	references	to	variables	are	good	(temporal	locality)
• Stride-1	reference	patterns	are	good	(spatial	locality)
• Examples:

– cold	cache,	4-byte	words,	4-word	cache	blocks

30

Matrix	Multiplication	Example

• Major	cache	effects	to	consider
– Total	cache	size

• Exploit	temporal	locality	and	blocking)
– Block	size

• Exploit	spatial	locality

• Description:
– Multiply	N	x	N	matrices
– O(N3)	total	operations
– Accesses

• N	reads	per	source	element
• N	values	summed	per	destination

– but	may	be	able	to	hold	in	register

/* ijk */
for (i=0; i<n; i++) {

for (j=0; j<n; j++) {
sum = 0.0;
for (k=0; k<n; k++)

sum += a[i][k] * b[k][j];
c[i][j] = sum;

}
}

Variable sum
held in register

31

Miss	Rate	Analysis	for	Matrix	Multiply

• Assume:	
– Cache	line	size	=	32	Bytes	(big	enough	for	4	64-bit	words)	
– Matrix	dimension	(N)	is	very	large

• Approximate	1/N	as	0.0	
– Cache	is	not	even	big	enough	to	hold	multiple	rows

• Analysis	method:	
– Look	at	access	pattern	of	inner	loop

32

Matrix	Multiplication	(ijk)

33

Matrix	Multiplication	(jik)

34

Matrix	Multiplication	(kij)

35

Matrix	Multiplication	(ikj)

36

Matrix	Multiplication	(jki)

37

Matrix	Multiplication	(kji)

38

Summary	of	Matrix	Multiplication

39

for (i=0; i<n; i++) {
for (j=0; j<n; j++) {

sum = 0.0;
for (k=0; k<n; k++)

sum += a[i][k] *
b[k][j]; c[i][j] = sum;

}

}

ijk (& jik): kij (& ikj): jki (& kji):
• 2 loads, 0 stores
• misses/iter = 1.25

for (k=0; k<n; k++) {
for (i=0; i<n; i++) {

r = a[i][k];
for (j=0; j<n; j++)

c[i][j] += r * b[k][j];

}
}

for (j=0; j<n; j++) {
for (k=0; k<n; k++) {

r = b[k][j];
for (i=0; i<n; i++)

c[i][j] += a[i][k] * r;
}

}

• 2 loads, 1 store
• misses/iter = 0.5

• 2 loads, 1 store
• misses/iter = 2.0

