
Lecture	08:	RISC-V	Pipeline	
Implementation

CSCE	513	Computer	Architecture

Department	of	Computer	Science	and	Engineering
Yonghong Yan

yanyh@cse.sc.edu
https://passlab.github.io/CSCE513

1

Acknowledgement

• Slides	adapted	from	Computer	Science	152:	Computer	
Architecture	and	Engineering,	Spring	2016	by	Dr.	George	
Michelogiannakis from	UC	Berkeley

2

Review

• CPU	performance	factors
– Instruction	count
• Determined	by	ISA	and	compiler

– CPI	and	Cycle	time
• Determined	by	CPU	hardware

• Three	groups	of	instructions
– Memory	reference:	lw,	sw
– Arithmetic/logical:	add,	sub,	and,	or,	slt
– Control	transfer:	jal,	jalr,	b*

• CPI
– Single-cycle,	CPI	=	1,	and	normally	longer	cycle
– 5	stage	unpipelined,	CPI	=	5
– 5	stage	pipelined,	CPI	=	1

CPU Time = Instructions
Program

* Cycles
Instruction

*Time
Cycle

3

Review:	Unpipelined Datapath for	RISC-V

4

0x4

RegWriteEn

Add
Add

clk

WBSelMemWrite

addr

wdata

rdata
Data	
Memory

we

WASel Op2SelImmSelOpCode

clk

clk

addr
inst

Inst.
Memory

PC rd1

GPRs

rs1
rs2

wa
wd rd2

we

Imm
Select

ALU

ALU
Control

PCSel
br
rind
jabs
pc+4

Bcomp?Br	Logic

Review:	Hardwired	Control	Table

5

Opcode ImmSel Op2Sel FuncSel MemWr RFWen WBSel WASel PCSel

ALU
ALUi
LW
SW
BEQtrue
BEQfalse
J
JAL
JALR

Op2Sel=	Reg /	Imm WBSel =	ALU	/	Mem /	PC				
WASel =	rd /	X1 PCSel =	pc+4	/	br /	rind	/	jabs

* * * no yes rindPC rd
jabs* * * no yes PC X1	

jabs* * * no no * *
pc+4SBType12 * * no no * *
brSBType12 * * no no * *
pc+4SType12 Imm + yes no * *

pc+4* Reg Func no yes ALU rd
IType12 Imm Op pc+4no yes ALU rd

pc+4IType12 Imm + no yes Mem rd

An	Ideal	Pipeline	

• All	objects	go	through	the	same	stages
• No	sharing	of	resources	between	any	two	stages
• Propagation	delay	through	all	pipeline	stages	is	equal
• The	scheduling	of	an	object	entering	the	pipeline	is	not	
affected	by	the	objects	in	other	stages

6

stage
1

stage
2

stage
3

stage
4

These	conditions	generally	hold	for	industrial	assembly	lines
For	laundry	pipeline,	two	loads	do	not	depend	on	each	other.

But	instructions	depend	on	each	other!	

Technology	Assumptions

7

Thus,	the	following	timing	assumption	is	reasonable

• A	small	amount	of	very	fast	memory	(caches)
backed	up	by	a	large,	slower	memory	

• Fast	ALU	(at	least	for	integers)	
• Multiported Register	files	(slower)

tIF ~=	tID/RF ~=	tEX ~=	tMEM ~=	tWB

A	5-stage	pipeline	will	be focus	of	our	detailed	design
Some	commercial	designs	have	over	30	pipeline	
stages	to	do	an	integer	add!

5-Stage	Pipelined	Execution:	Resource	Usage
The	Whole	Pipeline	Resources	are	Used	by	5	Instructions	in	Every	Cycle!	

8

time	 t0 t1 t2 t3 t4 t5 t6 t7
Instruction	1 IF1 ID1 EX1 ME1 WB1
Instruction	2	 IF2 ID2 EX2 ME2 WB2
Instruction	3 IF3 ID3 EX3 ME3 WB3
Instruction	4	 IF4 ID4 EX4 ME4 WB4
Instruction	5	 IF5 ID5 EX5 ME5 WB5

Write
-Back	

(WB)	- I1
I-Fetch	
(IF)	- I5

Execute	
(EX)	- I3

Decode,	Reg.	Fetch	
(ID)	- I4

Memory	
(ME)	- I2

addr

wdata

rdata
Data
Memory

we
ALU

Imm
Select

0x4
Add

addr
rdata

Inst.
Memory

rd1

GPRs

rs1
rs2
wa
wdrd2

we

IRPC

Instruction	Register	in	
Each	Stage

9

IRIR IR

PC A

B
Y

R

MD1 MD2

addr
inst

Inst
Memory

0x4
Add

IR

Imm
Select

ALU
rd1

GPRs

rs1
rs2

wa
wd rd2

we

wdata

addr

wdata

rdata
Data	
Memory

we

• An	instruction	Reg (IR) in	each	stage	to	
contain	the	instruction	in	that	stage

Instruction	1

Connect	Controls	from	Instruction	Register

10

IRIR IR

PC A

B
Y

R

MD1 MD2

addr
inst

Inst
Memory

0x4
Add

IR

Imm
Select

ALU
rd1

GPRs

rs1
rs2

wa
wd rd2

we

Data	
Memorywdata

addr

wdata

rdata

we

ImmSel Op2Sel

WBSelMemWrite

RegWriteEn

F D E M W

ALU
Control

Instruction	1

Instruction	4
In
st
ru
ct
io
n	
3

In
st
ru
ct
io
n	
2

Compared	With	Control	Logic	in	Unpipelined

• Unpipelined:
– Single	control	logic	uses	

the	instruction	from	IF
• Pipelined:
– Distributed	logics	that	

uses instructions	from	
IRs	in	each	stage

11

Instructions	Interact	With	Each	Other	in Pipeline:
Dealing	with	Hazards

• An	instruction	may	need	a	resource	being	used	by	another	
instruction	à structural	hazard
– Solution	#1:	Stalling	newer	instruction	till	older	instruction	finishes
– Solution	#2:	Adding	more	hardware	to	design
• E.g.,	separate	memory	into	I-memory	and	D-memory

– Our	5-stage	pipeline	has	no	structural	hazards	by	design

• An	instruction	depends	on	something	produced	by	an	earlier	one
– Dependence	may	be	for	a	data	value	or	for	using	same	register	(not	the	

value)àdata	hazard
• Solutions	for	RAW	hazards:	#1,	interlocking	(bubble	delay),	and	#2,	
forwarding

• WAR	and	WRW	hazards:	not	possible	for	5-stage	pipeline

– Dependence	may	be	for	the	next	instruction’s	addressà control	hazard	
(branches,	exceptions)
• Solutions:	#	delay,	prediction,	etc

12

Read-After-Write	(RAW)	Data	Hazards

13

...
x1 ¬ x0 + 10
x4 ¬ x1 + 17
...

x1 in GPRs contains stale value since the
passing of value between two
instructions has to go through
GPRs (register file).

x1 ¬ …x4 ¬ x1 …

IRIR IR

PC
A

B

Y

R

MD1 MD2

addr
inst

Inst
Memory

0x4
Add

IR

Imm
Select

ALU
rd1

GPRs

rs1
rs2

wa
wd rd2

we

wdata

addr

wdata

rdata
Data
Memory

we

To	Resolve	Data	Hazards:	#1,	Interlocking,	i.e.	
Stall	Pipeline	by	Inserting	Bubbles

14

stalled stages

time
t0 t1 t2 t3 t4 t5 t6 t7

IF I1 I2 I3 I3 I3 I3 I4 I5
ID I1 I2 I2 I2 I2 I3 I4 I5
EX I1 - - - I2 I3 I4 I5
ME I1 - - - I2 I3 I4 I5
WB I1 - - - I2 I3 I4 I5

time
t0 t1 t2 t3 t4 t5 t6 t7

(I1) x1 ¬ (x0) + 10IF1 ID1 EX1 ME1 WB1
(I2) x4 ¬ (x1) + 17 IF2 ID2 ID2 ID2 ID2 EX2 ME2 WB2
(I3) IF3 IF3 IF3 IF3 ID3 EX3 ME3 WB3
(I4) IF4 ID4 EX4 ME4 WB4
(I5) IF5 ID5 EX5 ME5 WB5

Resource
Usage

- Þ pipeline bubble

Insert	Bubble	for	
Interlocking	

15

IRIR IR

PC
A

B

Y

R

MD1 MD2

addr
inst

Inst
Memory

0x4
Add

IR

Imm
Select

ALU
rd1

GPRs

rs1
rs2

wa
wd rd2

we

wdata

addr

wdata

rdata
Data
Memory

we

bubble

...
x1 ¬ x0 + 10
x4 ¬ x1 + 17
...

Stall Condition Bubble:	Nop instruction,	e.g.	add	x0,	x0,	x0
Bubble	are	inserted	at	ID	and	by	entering	EXE	stage

Interlock	Control	Logic

16

IRIR IR

PC
A

B

Y

R

MD1 MD2

addr
inst

Inst
Memory

0x4
Add

IR

Imm
Select

ALU
rd1

GPRs

rs1
rs2

wa
wd rd2

we

wdata

addr

wdata

rdata
Data
Memory

we

bubble

Compare the source registers of the instruction in the decode
stage with the destination register of the uncommitted
instructions.

stall
Cstall

ws

rs2
rs1 ?

...
x1 ¬ x0 + 10
x4 ¬ x1 + 17
...

Interlock	Control	Logic
ignoring	jumps	&	branches

17

Should	we	always	stall	if an	rs field	matches	some	rd?

IRIR IR

PC A

B
Y

R

MD1 MD2

addr
inst

Inst
Memory

0x4
Add

IR ALU
rd1

GPRs

rs1
rs2

wa
wd rd2

we

wdata

addr

wdata

rdata
Data	
Memory

we

bubble

stall
Cstall

wsWB

rs1
rs2 ?

weWB

re1 re2
Cre

wsEX
weMEM wsMEM

Cdest Cdest
weEX

not	every	instruction	writes	a	register	=>	we	
not	every	instruction	reads	a	register		=>	re

Imm
Select

we:	write	enable,	1-bit	on/off
ws:	write	select,	5-bit	register	number
re:	read	enable,	1-bit	on/off
rs:	read	select,	5-bit	register	number

...
x1 ¬ x0 + 10
x4 ¬ x1 + 17
...

Source	&	Destination	Registers

18

ALUI/LW/JALR
ALU

SW/Bcond

func7 rs2 rs1 func3 rd opcode

immediate12 rs1 func3 rd opcode

imm rs2 rs1 func3 imm

Jump Offset[19:0]

opcode

rd opcode

source(s) destination
ALU rd <=	rs1	func10	rs2 rs1,	rs2 rd
ALUI rd <=	rs1	op	imm rs1 rd
LW rd <=	M	[rs1	+	imm] rs1 rd
SW M	[rs1	+	imm]	<=	rs2	 rs1,	rs2 -
Bcond rs1,rs2 rs1,	rs2 -

true: PC	<=	PC	+	imm
false: PC	<=	PC	+	4

JAL x1	<=	PC,	PC	<=	PC	+	imm - rd
JALR rd <=	PC,	PC	<=	rs1	+	imm rs1 rd

Deriving	the	Stall	Signal

19

Cdest
ws =	rd
we	=	Case	opcode

ALU,	ALUi,	LW,	JALR	=>on
...	 =>off

Cre
re1	=	Case	opcode

ALU,	ALUi,	LW,	SW,	Bcond,	JALR	=>	on
JAL	=>off

re2	=	Case	opcode
ALU,	SW,	Bcond =>on
… =>off

Cstall stall	=	((rs1D	==	wsEX)	&&	weEX +	
(rs1D	==	wsMEM)	&&	weMEM +	
(rs1D	==	wsWB)	&&	weWB)	&&	re1D	 +
((rs2D	==	wsEX)	&&	weEX +	
(rs2D	==	wsMEM)	&&	weMEM +	
(rs2D	==	wsWB)	&&	weWB)	&&	re2D

source(s) destination
ALU rd <=	rs1	func10	rs2 rs1,	rs2 rd
ALUI rd <=	rs1	op	imm rs1 rd
LW rd <=	M	[rs1	+	imm] rs1 rd
SW M	[rs1	+	imm]	<=	rs2	 rs1,	rs2 -
Bcond rs1,rs2 rs1,	rs2 -

true: PC	<=	PC	+	imm
false: PC	<=	PC	+	4

JAL x1	<=	PC,	PC	<=	PC	+	imm - rd
JALR rd <=	PC,	PC	<=	rs1	+	imm rs1 rd

No	need	the	WB	for	interlock	control	since	we	only	need	to	deal	with	hazard	
between	MEM-EXE	and	EXE-EXE.	For	two	instructions	which	are	in	WB	and	EXE,	
and	have	RAW	hazard,	the	dependency	are	handled	through	the	register	file.	

To	Resolve	Data	Hazards:	#2,	Forwarding	(Bypassing)

20

Each	stall	or	kill	introduces	a	bubble	in	the	pipeline
=>	CPI		>		1

time t0 t1 t2 t3 t4 t5 t6 t7
(I1) x1 ¬ x0 + 10 IF1 ID1 EX1 ME1 WB1
(I2) x4 ¬ x1 + 17 IF2 ID2 ID2 ID2 ID2 EX2 ME2 WB2
(I3) IF3 IF3 IF3 IF3 ID3 EX3 ME3
(I4) stalled stages IF4 ID4 EX4
(I5) IF5 ID5

time t0 t1 t2 t3 t4 t5 t6 t7
(I1) x1 ¬ x0 + 10 IF1 ID1 EX1 ME1 WB1
(I2) x4 ¬ x1 + 17 IF2 ID2 EX2 ME2 WB2
(I3) IF3 ID3 EX3 ME3 WB3
(I4) IF4 ID4 EX4 ME4 WB4
(I5) IF5 ID5 EX5 ME5 WB5

A	new	datapath,	i.e.,	a	bypass,	can	get	the	data	from	
the	output	of	the	ALU	to	its	input

Review:	Hardware	Support	for	Forwarding,	and	Detecting	RAW	
Hazards	with	Previous	and	2nd Previous	Instructions

• Slide	48	of	lecture05-06

21

Adding	a	Bypass	(To	Bypass	Register	Files)

22

ASrc

...
(I1) x1	<=	x0	+	10
(I2) x4	<=	x1	+	17

x4	<=	x1... x1	<=	...

IRIR IR

PC A

B
Y

R

MD1 MD2

addr
inst

Inst
Memory

0x4
Add

IR

Imm
Select

ALU
rd1

GPRs

rs1
rs2

wa
wd rd2

we

wdata

addr

wdata

rdata
Data	
Memory

we

bubble

stall

D

E M W

When	does	this	bypass	help?
x1	<=	M[x0	+	10]
x4	<=	x1	+	17

JAL		500
x4	<=	x1	+	17

Yes No,	LoadàEXE-Use No

The	Bypass	Signal:	Deriving	it	from	the	Stall	
Signal

23

ASrc =	(rs1D==	wsE)	&&	weE &&	re1D

we	=	Case	opcode
ALU,	ALUi,	LW,,	JAL	JALR		=>	on	
...					=>	off

No	because	only	ALU	and	ALUi instructions	can	benefit	from	this	
bypass

Is	this	correct?

Split	weE into	two	components:	we-bypass,	we-stall

stall	=	(((rs1D	==	wsE)	&&	weE +	(rs1D	==	wsM)	&&	weM +	(rs1D	==	wsW)	&&	weW)	&&	re1D	
+((rs2D	==	wsE)	&&	weE +	(rs2D	==	wsM)	&&	weM +	(rs2D	==	wsW)	&&	weW)	&&	re2D)

ws =	rd

Bypass	and	Stall	Signals

24

we-bypassE =	Case	opcodeE
ALU,	ALUi =>	on	
...	 =>	off

ASrc =	(rs1D	==	wsE)	&&	we-bypassE &&	re1D

Split	weE into	two	components:	we-bypass,	we-stall

stall	=	 ((rs1D	==	wsE)	&&	we-stallE +	
(rs1D==	wsM)	&&	weM +	(rs1D==	wsW)	&&	weW) &&	re1D

+((rs2D	==	wsE)	&&	weE +	(rs2D	==	wsM)	&&	weM +	(rs2D	==	wsW)	&&	weW) &&	re2D

we-stallE =	Case	opcodeE
LW,	JAL,	JALR=>	on
JAL =>	on
...	 =>	off

Fully	Bypassed	Datapath

25

ASrc
IRIR IR

PC A

B
Y

R

MD1 MD2

addr
inst

Inst
Memory

0x4
Add

IR ALU

Imm
Select

rd1

GPRs

rs1
rs2

wa
wd rd2

we

wdata

addr

wdata

rdata
Data	
Memory

we

bubble

stall

D

E M W

PC	for	JAL,	...

BSrc

Is	there	still
a	need	for	the
stall	signal	? stall	=			(rs1D==	wsE) &&	(opcodeE==LWE)&&(wsE!=0)&&re1D

+	(rs2D==	wsE)	&&	(opcodeE==	LWE)&&(wsE!=0)&&re2D

Control	Hazards:	Branches	and	Jumps

• JAL:	unconditional	jump	to	PC+immediate

• JALR:	indirect	jump	to	rs1+immediate

• Branch:	if	(rs1	conds rs2),	branch	to	PC+immediate

26

Info	for	
Control	Transfer

27

Instruction Taken	known? Target	known?

JAL
JALR
B<cond.>

Two	pieces	of	info:	
1.	Taken	or	Not	Taken
2.	Target	address?

• JAL:	unconditional	jump	to	PC+immediate
• JALR:	indirect	jump	to	rs1+immediate
• Branch:	if	(rs1	conds rs2),	branch	to	PC+immediate

After	Inst.	Decode

After	Inst.	Decode After	Inst.	Decode

After	Inst.	Decode After	Reg.	Fetch

After Execute

Speculate	Next	Address	is	PC+4

28

A jump instruction kills (not stalls)
the following instruction

stall

How?

I2

I1

104

IR IR

PC addr
inst

Inst
Memory

0x4
Add

bubble

IR

E M
Add

Jump?

PCSrc (pc+4 / jabs / rind/ br)

I1 096 ADD
I2 100 J 304
I3 104 ADD

I4 304 ADD

kill

Pipelining	Jumps

29

I2

I1

104

stall

IR IR

PC addr
inst

Inst
Memory

0x4
Add

bubble

IR

E M
Add

Jump?

PCSrc (pc+4 / jabs / rind/ br)

IRSrcD = Case opcodeD
JAL Þ bubble
... Þ IM

To kill a fetched
instruction -- Insert
a mux before IR

Any
interaction
between
stall and
jump?

bubble

IRSrcD

I2 I1

304
bubble

I1 096 ADD
I2 100 J 304
I3 104 ADD

I4 304 ADD

kill

Jump	Pipeline	Diagrams

30

time
t0 t1 t2 t3 t4 t5 t6 t7

IF I1 I2 I3 I4 I5
ID I1 I2 - I4 I5
EX I1 I2 - I4 I5
ME I1 I2 - I4 I5
WB I1 I2 - I4 I5

time
t0 t1 t2 t3 t4 t5 t6 t7

(I1) 096: ADD IF1 ID1 EX1 ME1 WB1
(I2) 100: J 304 IF2 ID2 EX2 ME2 WB2
(I3) 104: ADD IF3 - - - -
(I4) 304: ADD IF4 ID4 EX4 ME4 WB4

Resource
Usage

- Þ pipeline bubble

Pipelining	Conditional	Branches

31

I1 096 ADD	
I2 100 BEQ	x1,x2	+200
I3 104 ADD
I4 304 ADD

BEQ?

I2

I1

104

stall

IR IR

PC addr
inst

Inst
Memory

0x4
Add

bubble

IR

E M
Add

PCSrc (pc+4	/	jabs	/	rind	/	br)

bubble

IRSrcD

Branch	condition	is	not	known	until	the	
execute	stage	

A
YALU

Taken?

Pipelining	Conditional	Branches

32

I1 096 ADD	
I2 100 BEQ	x1,x2	+200
I3 104 ADD
I4 304 ADD

stall

IR IR

PC addr
inst

Inst
Memory

0x4
Add

bubble

IR

E M
Add

PCSrc (pc+4	/	jabs	/	rind	/	br)

bubble

IRSrcD

A
YALU

Taken?

If	the	branch	is	taken:
- Kill	the	two	following	instructions
- The	instruction	at	the	decode	stage	is	
not	valid	Þ stall	signal	is	not	valid

I2 I1

108
I3

Bcond?

?

Pipelining	Conditional	Branches

33

I1: 096 ADD	
I2: 100 BEQ	x1,x2	+200
I3: 104 ADD
I4: 304 ADD

stall

IR IR

PC addr
inst

Inst
Memory

0x4
Add

bubble

IR

E M

PCSrc (pc+4/jabs/rind/br)

bubble A
YALU

Taken?
I2 I1

108
I3

Bcond?

Jump?

IRSrcD

IRSrcE

If	the	branch	is	taken
- kill	the	two	following	instructions
- the	instruction	at	the	decode	stage	is	
not	valid	Þ stall	signal	is	not	valid

Ad
d

PC

Branch	Pipeline	Diagrams
(resolved	in	execute	stage)

34

time
t0 t1 t2 t3 t4 t5 t6 t7

IF I1 I2 I3 I4 I5
ID I1 I2 I3 - I5
EX I1 I2 - - I5
ME I1 I2 - - I5
WB I1 I2 - - I5

time
t0 t1 t2 t3 t4 t5 t6 t7

(I1) 096: ADD IF1 ID1 EX1 ME1 WB1
(I2) 100: BEQ +200 IF2 ID2 EX2 ME2 WB2
(I3) 104: ADD IF3 ID3 - - -
(I4) 108: IF4 - - - -
(I5) 304: ADD IF5 ID5 EX5 ME5 WB5

Resource
Usage

- Þ pipeline bubble

Use	Simpler	Branches:	E.g.	Only	Compare	One	
Register	Against	Zero	in	ID	Stage

35

time
t0 t1 t2 t3 t4 t5 t6 t7

IF I1 I2 I3 I4 I5
ID I1 I2 - I4 I5
EX I1 I2 - I4 I5
ME I1 I2 - I4 I5
WB I1 I2 - I4 I5

time
t0 t1 t2 t3 t4 t5 t6 t7

(I1) 096: ADD IF1 ID1 EX1 ME1 WB1
(I2) 100: BEQZ +200 IF2 ID2 EX2 ME2 WB2
(I3) 104: ADD IF3 - - - -
(I4) 300: ADD IF4 ID4 EX4 ME4 WB4

Resource
Usage

- Þ pipeline bubble

Pipelined	MIPS	Datapath

A
dder

IF/ID

Memory
Access

Write
Back

Instruction
Fetch

Instr. Decode
Reg. Fetch

Execute
Addr. Calc

A
LU

M
em

ory

Reg File

M
U

X

D
ata

M
em

ory

M
U

X

Sign
Extend

Zero?

M
EM

/W
B

EX
/M

EM

4

A
dder

Next
SEQ PC

RD RD RD

Next PC

A
ddress

RS1

RS2

Imm

M
U

X

ID
/EX

(I1) 096: ADD
(I2) 100: BEQZ +200
(I3) 104: ADD
(I4) 300: ADD

36

Control	Hazard	Delay	Summary

• JAL:	unconditional	jump	to	PC+immediate
– 1	cycle	delay	of	pipeline
• JALR:	indirect	jump	to	rs1+immediate
– 1	cycle	delay
• Branch:	if	(rs1	conds rs2),	branch	to	PC+immediate
– 2	cycles	delay
– 1	cycle	delay	for	simpler	branch	(BEQZ)	with	pipeline	

improvement

37

Reducing	Control	Flow	Penalty	

• Software	solutions
– Eliminate	branches	- loop	unrolling
• Increases	the	run	length	

– Reduce	resolution	time	- instruction	scheduling
• Compute	the	branch	condition	as	early	as	possible	(of	
limited	value	because	branches	often	in	critical	path	through	
code)

• Hardware	solutions
– Find	something	else	to	do	- delay	slots
• Replaces	pipeline	bubbles	with	useful	work	(requires	
software	cooperation)

– Speculate	- branch	prediction
• Speculative	execution	of	instructions	beyond	the	branch

38

Additional	Materials	– Branch	
Prediction

39

Branch	Prediction

• Motivation
– Branch	penalties	limit	performance	of	deeply	pipelined	processors
– Modern	branch	predictors	have	high	accuracy
– (>95%)	and	can	reduce	branch	penalties	significantly

• Required	hardware	support:
– Prediction	structures:	
• Branch	history	tables,	branch	target	buffers,	etc.

• Mispredict recovery	mechanisms:
– Keep	result	computation	separate	from	commit
– Kill	instructions	following	branch	in	pipeline
– Restore	state	to	that	following	branch

40

Static	Branch	Prediction

41

Overall	probability	a	branch	is	taken	is	~60-70%	but:

ISA	can	attach	preferred	direction	semantics	to	branches,	e.g.,	
Motorola	MC88110

bne0 (preferred		taken) beq0 (not	taken)

backward
90%

forward
50%

What	C++	statement
does	this	look	like

What	C++	statement
does	this	look	like

Dynamic	Branch	Prediction
learning	based	on	past	behavior

• Temporal	correlation	(time)
– If	I	tell	you	that	a	certain	branch	was	taken	last	time,	does	
this	help?

– The	way	a	branch	resolves	may	be	a	good	predictor	of	the	way	
it	will	resolve	at	the	next	execution

• Spatial	correlation	(space)
– Several	branches	may	resolve	in	a	highly	correlated	manner
– For	instance,	a	preferred	path	of	execution

42

Dynamic	Branch	Prediction

• 1-bit	prediction	scheme
– Low-portion	address	as	address	for	a	one-bit	flag	for	Taken	or	

NotTaken historically
– Simple
• 2-bit	prediction
– Miss	twice	to	change

43

Branch	Prediction	Bits

• Assume	2	BP	bits	per	instruction
• Change	the	prediction	after	two	consecutive	mistakes!

44

¬take
wrongtaken

¬	taken

taken

taken

taken
¬take
right

take
right

take
wrong

¬	taken

¬	taken¬	taken

BP	state:
(predict take/¬take)	x	(last	prediction right/wrong)

Branch	History	Table

45

4K-entry	BHT,	2	bits/entry,	~80-90%	correct	predictions

0 0Fetch	PC

Branch? Target	PC

+

I-Cache

Opcode offset
Instruction

k
BHT	Index

2k-entry
BHT,
2	bits/entry

Taken/¬Taken?

Exploiting	Spatial	Correlation
Yeh	and	Patt,	1992

46

If	first	condition	false,	second	condition	also	
false

History	register,	H,	records	the	direction	of	the	
last	N	branches	executed	by	the	processor

if (x[i] < 7) then
y += 1;

if (x[i] < 5) then
c -= 4;

Two-Level	Branch	Predictor

47

Pentium	Pro	uses	the	result	from	the	last	two	branches
to	select	one	of	the	four	sets	of	BHT	bits	(~95%	correct)

0 0

kFetch	PC

Shift	in	Taken/¬Taken	
results	of	each	branch

2-bit	global	branch	history	
shift	register

Taken/¬Taken?

Speculating	Both	Directions	
• An	alternative	to	branch	prediction	is	to	execute	
both	directions	of	a	branch	speculatively
– resource	requirement	is	proportional	to	the	number	of	concurrent	

speculative	executions
– only	half	the	resources	engage	in	useful	work	when	both	directions	

of	a	branch	are	executed	speculatively
– branch	prediction	takes	less	resources	than	speculative	execution	

of	both	paths

• With	accurate	branch	prediction,	it	is	more	cost	
effective	to	dedicate	all	resources	to	the	
predicted	direction!
– What	would	you	choose	with	80%	accuracy?

48

Are	We	Missing	Something?

• Knowing	whether	a	branch	is	taken	or	not	is	great,	but	what	
else	do	we	need	to	know	about	it?

Branch	target	address

49

Branch	Target	Buffer

50

BP	bits	are	stored	with	the	predicted	target	address.

IF	stage:	If	(BP=taken)	then	nPC=target	else	nPC=PC+4
Later:	check	prediction,	if	wrong	then	kill	the	instruction	and	
update	BTB	&	BPb else	update	BPb

IMEM

PC

Branch	
Target	
Buffer	
(2k entries)

k

BPbpredicted

target BP

target

Address	Collisions	(MisPrediction)

51

What	will	be	fetched	after	the	instruction	at	1028?
BTB	prediction =
Correct	target =

=>

Assume	a	
128-entry	
BTB

BPbtarget
take236

1028		Add

132		Jump	+104

Instruction
Memory

236
1032

kill PC=236	and	fetch PC=1032

Is	this	a	common	occurrence?

BTB	is	only	for	Control	Instructions

• Is	even	branch	prediction	fast	enough	to	avoid	bubbles?
• When	do	we	index	the	BTB?
– i.e.,	what	state	is	the	branch	in,	in	order	to	avoid	bubbles?

• BTB	contains	useful	information	for	branch	and	jump	
instructions	only
=> Do	not	update	it	for	other	instructions

• For	all	other	instructions	the	next	PC	is	PC+4	!

• How	to	achieve	this	effect	without	decoding	the	instruction?

52

Branch	Target	Buffer	(BTB)

53

• Keep	both	the	branch	PC	and	target	PC	in	the	BTB	
• PC+4	is	fetched	if	match	fails
• Only	taken branches	and	jumps	held	in	BTB
• Next	PC	determined	before branch	fetched	and	decoded

2k-entry direct-mapped BTB
(can also be associative)

I-Cache PC

k

Valid

valid

Entry	PC

=

match

predicted

target

target	PC

Combining	BTB	and	BHT

• BTB	entries	are	considerably	more	expensive	than	BHT,	but	can	redirect	
fetches	at	earlier	stage	in	pipeline	and	can	accelerate	indirect	branches	(JR)

• BHT	can	hold	many	more	entries	and	is	more	accurate

54

A PC	Generation/Mux
P Instruction	Fetch	Stage	1
F Instruction	Fetch	Stage	2
B Branch	Address	Calc/Begin	Decode
I Complete	Decode
J Steer	Instructions	to	Functional	units
R Register	File	Read
E Integer	Execute

BTB

BHTBHT	in	later	
pipeline	stage	
corrects	when	
BTB	misses	a	
predicted	taken	
branch

BTB/BHT	only	updated	after	branch	resolves	in	E	stage

Uses	of	Jump	Register	(JR)

• Switch	statements	(jump	to	address	of	matching	case)

• Dynamic	function	call	(jump	to	run-time	function	address)

• Subroutine	returns	(jump	to	return	address)

55

How	well	does	BTB	work	for	each	of	these	cases?

BTB	works	well	if	same	case	used	repeatedly

BTB	works	well	if	same	function	usually	called,	(e.g.,	in	
C++	programming,	when	objects	have	same	type	in	virtual	
function	call)

BTB	works	well	if	usually	return	to	the	same	place
Þ Often	one	function	called	from	many	distinct	call	sites!

Subroutine	Return	Stack

Small	structure	to	accelerate	JR	for	subroutine	returns,	
typically	much	more	accurate	than	BTBs.

56

&fb()

&fc()

Push	call	address	when	
function	call	executed

Pop	return	address	when	
subroutine	return	decoded	

fa() { fb(); }
fb() { fc(); }
fc() { fd(); }

&fd() k	entries
(typically	k=8-16)

