Lecture 05 and 06: Pipeline:
Basic/Intermediate Concepts
and Implementation

CSCE 513 Computer Architecture

Department of Computer Science and
Engineering

Yonghong Yan
yanyh@cse.sc.edu
https:/ /passlab.github.io/ CSCE513

Contents

1. Pipelining Introduction
2. The Major Hurdle of Pipelining — Pipeline Hazards
3. RISC-V Implementation

Reading:
Textbook: Appendix C

RISC-V Sodor core

» Chisel: https://github.com/freechipsproject/chisel3/wiki/Short-Users-
Guide-to-Chisel

» httpsi/github.com/ucb-bar/riscv-sodor

Pipelining: Its Natural!

B Laundry Example

[Ann, Brian, Cathy, Dave

(WBICOMm)

each have one load of clothes = .

to wash, dry, and fold 30 minutes
Washer takes 30 minutes
Dryer takes 40 minutes S
“Folder” takes 20 minutes > 40 minutes

m One load: 90 minutes .

qF 20 minutes

Sequential Laundry
6 PM 7 8 9 10 11 Midnight

I » Time

30 |40 |20'30'40 |20'30'40 |20'30'40 20
N =L
JlSPa7
© = al

| (D BElaE:

[Sequential laundry takes 6 hours for 4 loads
= If they learned pipelining, how long would laundry take?

SR ZIE I

®,

= o o =

Pipelined Laundry Start Work ASAP

6 PM
|

7

8

9

10 11 Midnight

|
30 40 40 40 40 20

o

%=

e D

®,

©
LD

= 0o o =

» Time

- 7- Important to note
_ [Each laundry still takes 90 minutes.
= 1 B Improvement are for 4 load
OUFf throughput.
—— . Van ®
= i
—— Ve ®
= Al

B Pipelined laundry takes 3.5 hours for 4 loads
6/3.5=1.7 time speedup compared to sequential laundry

Mapping Laundry Pipeline to Computer Pipeline

Components of a Computer

Memor Input
Processor y « "
Enable?
Control Read/erte>
Program
[y
Program Counter (PC) Address BYteS
1 —p
RCngterS Write Data
>
Arithmetic & Logic Unit ReadData Data Output
(ALU) >

\ J
Y \ J

Processor-Memory Interface I[/O-Memory Interfaces

CPU and Datapath vs Control

-

7))
- G e e B \ ALU w5
= &) L
50 I O © £
2 [08
+4 Imm
A
iy d
X $0PCO e, funct

[

Controller

J

[Datapath: Storage, FU, interconnect sufficient to perform the desired

functions

= Controller: State machine to orchestrate operation on the data path

Based on desired function and signals

The Basics of a RISC Instruction Set (1/2)

= RISC-V

¢ 32 registers, and RO = 0;

¢ Three classes of instructions

» ALU instruction: add (DADD), subtract (DSUB), and logical operations
(such as AND or OR);

» Load and store instructions:

» Branches and jumps:

Name Comments
(Field Size) 7 bits
R-type funct7 rs2 rsi funct3 rd opcode Arithmetic instruction format
I-type immediate[11:0] rsl funct3 rd opcode Loads & immediate arithmetic
S-type immed[11:5] rs2 rsi funct3 | immed[4:0] opcode Stores
SB-type immed[12,10:5] rs2 rsi funct3 [immed[4:1,11] opcode Conditional branch format
UJ-type immediate[20,10:1,11,19:12] rd opcode Unconditional jump format
Utype immediate[31:12] rd opcode Upper immediate format

The Basics of a RISC Instruction Set (2/2)

. 1 .file "sum.c"
= RISC (Reduced Instruction Set 2 text
— - — 3 .align
Computer) or load-store 4 .globl sun |
— . 5 .type sum, @function
architecture:
All operations on data apply to datain e Loty
1 1 1 10 Sw a0,-36(s0)
register and typlca.Hy change. the entire o AT e
register (32 or 64 bits per register). 12 fsw fa2,-40(s0)
13 SW zero,-24(s0)
The only operations that affect memory ! o zero,~20(s0)
are load and store operation. 16 .L3:
. . . 7 lw a5,-20(s0)
The instruction formats are few in e 1L eas,e
. . . . a4,-48(s
number with all instructions typically / 20 add a5,a4,a5
. . 21 flw fa4,0(ab)
being one size. 22 flu fa5,-40(s0)
23 fmul.s fab5,fa4,fab
24 flw fad,-24(s0)
: :)
T These simple three properties lead to &GQ o [add.s ‘;:g'fa“z:g?
. . o (o . . < ’
dramatic simplifications in the & 27 W a5,-20(s0)
) 1 . £ vipelin o 28 addw a5, a5,
1mplementation of pipelining. & 29 Sw a5,-20(s0)
S 30 .L2:
R 31 w a4,-20(s0)
32 w a5,-36(s0)

33 blt a4,a5,.L3

RISC Instruction Set

El Every instruction to be implemented in at most 5 clock
cycles/stages

Instruction fetch cycle (IF): send PC to memory, fetch the current

instruction from memory, and update PC to the next sequential PC
by adding 4 to the PC.

Instruction decode/register fetch cycle (ID): decode the instruction,
read the registers corresponding to register source specifiers from
the register file.

Execution/ effective address cycle (EX): perform memory address
calculation for Load/Store, Register-Register ALU instruction and
Register-Immediate ALU instruction.

Memory access (MEM): Perform memory access for load/store
instructions.

Write-back cycle (WB): Write back results to the destination
operands for Register-Register ALU instruction or Load instruction.

10

b Stages of A Typical RISC ISA Pipeline

Instruction Instr. Decode Execute Memory Write
Fetch i Reg. Fetch ! Addr. Cdlc Access i Back

Next PC N
:’ Nextseare || -

ﬁ

WB Data

11

Classic 5-Stage Pipeline for a RISC

B In each cycle, hardware initiates a new instruction and
executes some part of five different instructions:
Simple
However, be ensure that the overlap of instructions in the pipeline
cannot cause a conflict (also called Hazard).

Clock number

Instruction number 1 2 3 4 5 6 7 8 9
Instruction i IF ID EX MEM WB

Instruction i+1 IF ID EX MEM WB

Instruction i+2 IF ID EX MEM WB

Instruction i+3 IF ID EX MEM WB
Instruction i+4 IF ID EX MEM WB

12

Computer Pipelines

= Pipeline properties
Execute billions of instructions, so throughput is what matters.
Pipelining doesn’t help latency of single instruction
» It helps throughput of entire workload;
Pipeline rate limited by slowest pipeline stage;
Multiple tasks operating simultaneously;
Potential speedup = number pipe stages;
Unbalanced lengths of pipe stages reduces speedup;
Time to “fill” pipeline and time to “drain” it reduces speedup.

[The time per instruction on the pipelined processor in ideal
conditions is equal to:

Time per instruction on unpipelined machine

Number of pipe stage

T However, the stages may not be perfectly balanced.

T Pipelining yields a reduction in the average execution time per
instruction. 13

Making RISC Pipelining Real

[Function units used in different cycles

Hence we can overlap the execution of multiple instructions

B Important things to make it real
Separate instruction and data memories, e.g. I-cache and D-cache,
banking
» Eliminate a conflict for accessing a single memory.
Register file is used in two stages (two R and one W every cycle)

» Read from register in ID (second half of CC), and write to register in
WB (first half of CC).

PC

» Increment and store PC every clock, and done it during the IF stage.

» A branch does not change the PC until the ID stage (have an adder to
compute the potential branch target).

Staging data between pipeline stages
» Pipeline register

14

Pipeline Datapath

B One register files used in ID and WB stage

Read from register in ID (second half of CC), and write to register
in WB (first half of CC) in one cycle

[Separate IM and DM: I-cache and D-cache

Time (in clock cycles)

cci i cc2 - cCc3 | cC4 | CC5 . CC6 | CC7 . CC8 | CC9

Program execution order (in instructions)

Figure C.2 The pipeline can be thought of as a series of data paths shifted in time. This shows the overlap among
the parts of the data path, with clock cycle 5 (CC 5) showing the steady-state situation. Because the register file is
used as a source in the ID stage and as a destination in the WB stage, it appears twice. We show that it is read in one
part of the staae and written in another bv usina a solid line. on the riaht or left. respectivelv. and a dashed line on

15

Pipeline Registers: Staging Data between Pipeline
Stages

= Edge-triggered property of register is critical

CC1 CCe6

One Clock
“Period”

IM i '— Reg 16

Main Operations in Each Pipeline Stage

Instruction Instr. Decode Execute Memory i Write
Fetch : Reg. Fetch Addr. Calc Access : Back

Next PC

Next SEQ PC ext SEQPC.

IF: IR <= mem[PC];
PC <= PC + 4

WB Data

ID: A <= Reg[IR,]’
B <= Reg[IR,,,]

EX: rslt <= A oOpp,, B :

| Pipeline Register§ for Data Stagingsbetween Pipelfne Stages
Named as: IF/ID, ID/EX, EX/MEM, and MEM/WB

MEM: WB <= rslt

WB: Reg[IR,] <= WB -

Detailed Operations in Pipeline Stage

IF IF/ID.IR €< MEM[PC]; IF/ID.NPC & PC+4
PC < if (EX/MEM.opcode=branch) & EX/MEM.cond)
{EX/MEM.ALUoutput} else {PC + 4}

ID ID/EX.A € Regs[IF/ID.IR[Rs|]]; ID/EX.B < Regs[IF/ID.IR[Rs2]]
ID/EX.NPC € IF/ID.NPC; ID/EX.Imm € extend(IF/ID.IR[Imm]); ID/EX.Rw € IF/ID.IR[Rs2 or Rd]

ALU Instruction Load / Store Branch
EX EX/MEM.ALUoutput < EX/MEM.ALUoutput < EX/MEM.ALUoutput €
ID/EX.A func ID/EX.B, or ID/EX.A + ID/EX.Imm ID/EX.NPC + (ID/EX.Imm << 2)
EX/MEM.ALUoutput < EX/MEM.cond € br condition
ID/EX.A op ID/EX.Imm EX/MEM.B < ID/EX.B
MEM MEM/WB.ALUoutput <& MEM/WB.LMD <
EX/MEM.ALUoutput MEM[EX/MEM.ALUoutput]
or
MEM[EX/MEM.ALUoutp

Branch requires 3 cycles;

ut] € EX/MEM.B 1
Store requires 4 cycles, and

WB Regs[MEM/WBRw] < For load only: all other instructions require
MEM/WB.ALUOutput Regs[MEM/WB.Rw] < 1
MEM/WB.LMD S cycles.

18

Pipelining Performance (1/2)

E Pipelining increases throughput, not reduce the execution
time of an individual instruction.

In face, slightly increases the execution time (an instruction) due to
overhead in the control of the pipeline.

Practical depth of a pipeline is limited by increasing execution time.

[Pipeline overhead
Unbalanced pipeline stage
» branch: 3 cycles; store: 4 cycles and else: 5 cycles
Pipeline stage overhead;
Pipeline register delay;
Clock skew

» Same sourced clock signal arrives at different components at different
time

19

Processor Performance

Instructions |

CPU Time =

Program

[Instructions per program depends on source code,
compiler technology, and ISA

m Cycles per instructions (CPI) depends on ISA and
uarchitecture

[Time per cycle depends upon the parchitecture and
base technology

20

CPI with Different Instructions, Unpipelined

Clock Cycles= > (CPI xInstruction Count,)
i=1

7 cycles 5 cycles 10 cycles
A A A
[Inst 1 Yionst2 Y Inst 3)

Total clock cycles = 7+5+10 = 22
Total instructions = 3
CP1=22/3=7.33

CPl is always an average over a large

number of instructions
21

For Questions A.3 in Assighment

m 60% branch instructions are taken

Instruction Clock cycles
All ALU operations 1.0
Loads 3.5
Stores 2.8
Branches

I Taken 4.0 I
" Not taken 20
Jumps 2.4

Average the instruction frequencies of gobmk and mcf to obtain the
instruction mix. You may assume that all other instructions (for
instructions not accounted for by the types in Table A.29)
require 3.0 clock cycles each.

Clock Cycles=) (CPI, xInstruction Count,)
i=1

22

CPI for Standard Pipeline CPU

|E| CPI = 1 Instr. No. Pipeline Stage
1 IF | ID | EX [MEM| WB
2 IF | ID | EX [MEM| WB
3 IF | ID | EX [MEM| WB
4 IF | ID [EX [MEM
5 IF | ID | EX
Clock |2]2|3fa|5]|6|7

[Speedup: Unpipelined /pipelined = # pipelined stages
[Thus pipelined time in general:

Time per instruction on unpipelined machine

Number of pipe stage

Pipeline Performance (2/2)

- Example Consider the unpipelined processor in the previous section. Assume that it has a
B 0.5 ns clock cycle) and that it uses four cycles for ALU oper-
ations and branches and five cycles for memory operations. Assume that the rel-
ative frequencies of these operations are 40%, 20%, and 40%, respectively.
Suppose that due to clock skew and setup, pipelining the processor adds 0.1 ns
of overhead to the clock. Ignoring any latency impact, how much speedup in
the instruction execution rate will we gain from a pipeline?

Answer The average instruction execution time on the unpipelined processor is
Average instruction execution time = Clock cycle x Average CPI
= 0.5ns X [(40% +20%) x 4 +40% x 5]
=0.5nsx4.4
=2.2ns

In the pipelined implementation, the clock must run at the speed of the slowest
stage plus overhead, which will be 0.5+ 0.1 or 0.6 ns; this is the average instruction
execution time. Thus, the speedup from pipelining is

Average instruction time unpipelined
Average instruction time pipelined

2.2 ns
— =3.7ti
0.6 ns mes 24

Speedup from pipelining =

Pipeline Hazards

Hazards prevent the next instruction in the
instruction steam from executing during its
designated clock cycle

Structural hazards: resource conflict, e.g. using the
same unit

Data hazards: an instruction depends on the results of
a previous instruction

Control hazards: arise from the pipelining of branches
and other instructions that change the PC.

Hazards in pipelines can make it necessary to stall
the pipeline.

Stall will reduce pipeline performance. .

Performance with Pipeline Stall (1/2)

Average instruction time unpipelined

Speedup from pipelining =
P P PP S Average instruction time pipelined

_ CPI unpipelined x Clock cycle unpipelined

CPI pipelined x Clock cycle pipelined
_ CPI unpipelined y Clock cycleunpipelined

CPI pipelined Clock cyclepipelined

CPI pipelined = Ideal CPI + Pipeline stall clock cycles per instruction

=1+ Pipelined stall clock cycles per instruction

26

Performance with Pipeline Stall (2/2)

L 1 Clock cycle unpipelined
Speedup from pipelining = ——— . — X —
1 + Pipeline stall cycles per instruction ~ Clock cycle pipelined

1

- . — x Pipeline depth
1 + Pipeline stall cycles per instruction

Pipelining speedup is proportional to the
pipeline depth and 1/(1+ stall cycles)

27

Structure Hazards

Structure Hazards

If some combination of instructions cannot be
accommodated because of resource conflict:

» Resources: functional units, register, memory, etc.
Occur when

» Some functional unit is not fully pipelined, or

» No enough duplicated resources.

One example, both IF and MEM stages need to access
memory

28

S a0 H

One Memory Port->Structural Hazards

Time (clock cycles)

Load

Ifetch

Instr

Instr

Instr

Instr

s 0®OoO a0

F

Cycle 1§Cycle 2 §Cycle 3§Cycle 4§Cycle 5 Cycle 6§Cycle 7 '

§ Ifetch

29

S 4+0unsH

SO a0

One Memory Port/Structural Hazards

Time (clock cycles)

Cycle 1§Cycle 2 §Cycle 3 Cycle 4§Cycle 5 Cycle 6§Cycle 7 '

Load Ifefch1: :
: § \,
Instr 1 § b¢§§
o Q@
Instr 2 Ifetch : O*
Stall
Instr 3

How do you “bubble” the pifse? - l:\lo-Op E

30

Summary of Structure Hazard

[To address structure hazard, have separate memory access
for instructions.
Splitting the cache into separate instruction and data caches, or
Use a set of buffers, e.g. instruction buffers, to hold instruction;

m However, it will increase cost
Ex1: pipelining function units or duplicated resources is a high cost;

Ex2: require twice bandwidth and often have higher bandwidth at
the pins to support both an instruction and a data cache access
every cycle;

Ex3: a floating-point multiplier consumes lots of gates.

T If the structure hazard is rare, it may not
be worth the cost to avoid it.

31

Data Hazards

[Pipelining enables overlapping execution of multiple
instructions = Instruction Level Parallelism

@ Data Hazards

Occur when the pipeline changes the order of read/write accesses
to operands so that the order differs from the order seen by
sequentially executing instructions on an unpipelined processor.

ADD R1, R2, R3
SUB R4, R1, R5
AND R6, R1, R7
OR R8, R1, R9
XOR R10, R1, R11

32

Data Hazard on R1

Time (clock cycles)

IF ID/RF EX MEM WB

I ADD Rl,RZ,RB [fetch R ?(t DMem
n
S
t|suB R4, RI,RS RN E
r.
0| AND R6,R1,R7 ==k Men
rl: Read old value of R1E
gt S
Read R1b f Efetch R ;(n DMem
e |OR R8,R1,RY Feadnewibecavse off
r
| XOR R10,R1,R11 ReadnewRf1

because it can.

33

Solution

Time (clock cycles

1: Insert stalls

S 40 s+

s oo 0O

IF

ADD R1,R2,R3 ffet

Stall

Stall

SUB R4,R1,R5

AND R6,R1,R7

OR R8,R1,R9

XOR R10,R1,R11

ID/RF EX

s

T
o

s

MEM WB

E'

o
=

Ef etch

Two cycles delay!

W

Fa‘ e
E\\ ‘

Ffe'rci

=
=
EEE

e
e

PDMem

-+ un 3 H

soma=sO0O

XOR R10,R1,R11

2: Forwarding (aka bypassing) to Avoid
Data Hazard

Pipeline register: Staging
Time (clock cycles) / data along the pipeline

a No cycle delay!

SUB R4,R1,R5 e | % |DE ‘H

- llﬁ 1IEI
A EHE
HEHEHE

35

ADD R1,R2,R3 frecf|Ix |r§

DMem

AND R6,R1,R7

OR RS8,R1,R9

Three Generic Data Hazards (1/3)

Read After Write (RAW)
Instr; tries to READ operand AFTER Instr; WRITES it

I: ADD R1,R2,R3
J: SUB R4,R1,R3

Caused by a “true dependence” (in compiler
nomenclature). This hazard results from an actual
need for communication.

SUB needs value produced by ADD
Nature of the computation and we cannot avoid.

36

Three Generic Data Hazards (2/3)

Write After Read (WAR)
Instr; WRITEs operand AFTER Instr; READs it

CI: SUB R4,R1,R3
J: ADD R1,R2,R3
K: MUL R6,R1,R7
Called an “anti-dependence” by compiler writers.
This results from reuse of the name “R1”, not the

value stored in R1.
Can’t happen in 5-stage pipeline because:
All instructions take 5 stages, and
Reads are always in stage 2, and
Writes are always in stage 5 .

Three Generic Data Hazards (3/3)

1] Write After Write (WAW)

Instr; WRITEs operand AFTER Instr; WRITEs it.
I: SUB R1,R4,R3
J: ADD R1,R2,R3
K: MUL R6,R1,R7

5] This hazard also results from the reuse of name R1

Hazard when writes occur in the wrong order

5] Can’t happen in our basic 5-stage pipeline:

All writes are ordered and take place in stage 5

5l WAR and WAW hazards occur in complex

pipelines

8] Read After Read - RAR is NOT a hazard

38

Double/ Triple Data Hazards

Consider the sequence:

ADD R1,R1,R2
SUB R1,R1,R3
AND R1,R1,r4

Hazards occur
ADD - SUB: RAW and WAW on R1
SUB - SUB: WAR on R1
SUB = AND: RAW on R1

39

RAW Hazards with Load /Store

= Iw R2, 20(R1): load a word from memory @ [R1]+20 into R2

ID/RF: Read register R1: [R1] (rs] register)

IF ID/RF EX MEM WB
EX: Calculate effective address: [R1] + 20

MEM: Memory read from [R1]+20 rfem:I: Reg 'E DMeml Reg
» Data is available in MEM | WB

» Unlike ALU: data is available in EX| MEM
WB: data write back to R2 (rd register)

= sw R4,12(R1): store a word in R4 in the memory @ [R1]+12

ID/RF: Read register R1 and R4 (rs1 and rs2 register, no rd register)
» R1is needed in EX, and R4 is needed in MEM

EX: Calculate effective address: [R1] + 12

MEM: Memory write to [R1]+12
» Need R4 to be available
» Unlike ALU, data needs to be available in ID | EX

No need WB
40

Load Delay (Load2>EXE-Use RAW Hazard)

= Not all RAW data hazards can be forwarded

Load has a delay that cannot be eliminated by forwarding
Iw R2, 20(R1): load data from memory [R1]+20 into R2

E In the example shown below ...

Unlike ALU intrus, LW does not have data until CC4 end
AND wants data at beginning of CC4 - NOT possible

Time

——CCl+-CC2—-CC3+CC4-+-CC5+CC6+CCT7—+—CC8—+—
(cycles) ! ! ! ! ! ! ! !

Even, load can forward
| data to second next
- 1 | instruction, OR

LW R2,20(R1)

AND R4,R2,R5

OR R6,R3,R2

ADD R7,R2,R2

<— Program Order

41

Solution: Stall the Pipeline for One Cycle

5 Freeze the PC and the IF/ID registers

No new instruction is fetched and instruction after load is stalled

5] Allow the Load in ID/EX register to proceed

5] Introduce a bubble into the ID/EX register

5] [.oad can forward data after stalling next instruction

Time

——CCl1—+—CC2—+—CC3—+—CC4—CC5—CC6—CC7—CC8——>
(cycles) | | | | | : : :

LW R2,20 (R1)

Qne ci:ycle: delay!

;-I[;;]IJQg i

AND R4 ,R2,R5

OR R6,R3,R2

<«— Program Order 4'-

42

Forwarding CAN Avoid Delay in Load->
MEM-USE RAW Hazard

LW R2,20(R1)
SW R2,16 (R4)

B Load a word from memory to R2 and then store R2 to a ditferent memory

location. R2 is rd for LW and Rs2 for SW.

[m Because Store only needs the Rs2 data in the MEM stage, not in the EX stag
as for ALU instructions: Only Store is this special!

<+<— Program Order

Time
(cycles)

LW R2,20(R1)

SW R2,16 (R4)

OR R6,R3,R2

ADD R7,R2,R2

| IF

——CCl1+~CC2+CC3+CC4+CC5+CC6—+CCT7+CC8+—>

Fafe)

No cycle delay!

43

Load—2>EXE-Use RAW Hazard by Store

The same as Load2>EXE-Use by ALU

R2 is Rs1 for SW

LW R2,20 (R1)
SW R4,32 (R2)

Introduce a bubble into the ID/EX register

Time
(cycles)

——CC1-+CC2—+CC3+CC4-+CC5-+CC6-+CCT—+CC8—+>

LW R2,20(R1) I‘Reg s | One cycle delay!

SW R4,32(R2) IF .UI‘;!IReg |
] R o
‘Reg LU-gr| DM -g-Reg; |

OR R6,R3,R2

<«— Program Order 4|-

44

Summary 1/2: RAW Hazards and NO-
Forwarding

[Stages for Input (Rsl and Rs2) and Output (Rd):
ALU and LD need Rs when entering EX

Store needs Rsl at EX for calculating EA and then Rs2 at MEM
for storing data

ALU instructions produce Rd at the end of EX stage
LD produce Rd at the end of MEM stage e

= If NO forwarding (interlocking):

2 cycles bubble delay for any RAW hazard
» Input and Output have to go through register file

45

Summary 2/2: RAW Hazards and
Forwarding

m Stages for Input (Rs1 and Rs2) and Output (Rd):
ALU and LD need Rs when entering EX

Store needs Rs1 at EX for calculating EA and then Rs2 at MEM for storing data

ALU instructions produce Rd at the end of EX stage
LD produce Rd at the end of MEM stage

= If NO Forwarding (interlocking): 2 cycles delay

= Full forwarding (Full Bypassing):

[fetch

R

D

[fetch

[fetch

Sle

J; S{E
=

o)
<

0 cycle delay for RAW hazard between ALU instructions
1 cycle delay for Load>EXE-Use RAW hazard

» EXE-use for both ALU and store

0 cycle delay for Load> MEM-Use RAW hazard

» MEM-Use: Store

[Two instructions that has RAW data dependency

If R and W for the shared register are in the same stage, forwarding

will incur no cycle delay

46

Compiler Scheduling

= Compilers can schedule code in a way to avoid load - ALU-
use stalls

a=b+c d=e-f

[Slow code: 2 stall cycles Fast code: No Stalls
w ri10, (rl) #rl = addr b lw r10, O(rl1)
w rl1, (r2) # r2 = addr c w ri11, O(r2)
stall lw ri13, O(r4)
add ri12, r10, r11 # b + c lw ri14, O(rb)
sw ri12, (r3) # r3 = addr a add ri12, rl10, ril
w ri13, (r4) #r4 = addr e sw ri12, 0(r3)
Iw ri4, (rb) #r5 = addr f sub rl15, rl13, ri4
stall sw ri14, O(r6)

sub r15, r13, ri4 #H e - f
sw rl15, (ré) # r6 = addr d 47

Hardware Support for Forwarding

ADD R1,R2,R3 frerd

= Forwarding happens in two
consecutive cycles

SUB R4,R1,R5

HE

AND R6,R1,R7 ID/EX
\ wB EX/MEM
— Control > M » \WB MEM/WB
IF/ID L EX > M > WBI—

Registers

\/
\

xc=s

ALU—

/ Data
memory

PCl—» Instruction .
memory

~CED

IF/ID.RegisterRs Rs
IF/ID.RegisterRt Rt
IF/ID.RegisterRt Rt
T IF/ID.RegisterRd | |Rd

-

YVY Y

EX/MEM.RegisterRd

xc =S

Forwarding \. | sMEM/WB.RegisterRd

!

[Instruction

9

4 \
Y A
I—-_-ﬂ

48

Detecting RAW Hazards

B Current instruction being executed in ID/EX register
[Previous instruction is in the EX/MEM register

E 2nd Previous is in the MEM /WB register
IF ID EX MEMWB

ADD R1, R2, R3 #2"dPrevious in MEM/WB ftetcl || rsa[] '2

SUB R R4, R5 #Previous in EXMEM [fetch

[fetch

AND R7, R1l, R6 #Currentin ID/EX

E Forwarding happens in the same cycle

49

ADD R1, R2, R3 #2" Previous in MEM/WB ffet

SUB R \R4, R5 #Previousin EXMEM

AND R7, R1l, R6 #Currentin ID/EX

— Control r

ID/EX
we EX/MEM
M ~ws
EX M

IF/ID L

Registers

Instruction
memory

[Instruction

[3 |

<c=) FCx:g)

IF/ID.RegisterRs Rs
IF/ID.RegisterRt Rt
IF/ID.RegisterRt [Rt]
IF/ID.RegisterRd Rd

[fetcH

Data
memory

>

EX/MEM.RegisterRd

MEM/WB.RegisterRd —‘

unit)

[fetcH

[fetch

50

Detecting RAW Hazards

ADD R1, R2, R3 #2" Previous in MEM/WHBs-
SUB R6,\R4, R5 #Previous in EXMEM

AND R7, RIT»R6 #Current in ID/EX

[Pass register numbers along pipelin
ID/EX.RegisterRs = register number for Rs in ID/EX (Rsl)
ID/EX.RegisterRt = register number for Rt in ID/EX (Rs2)
ID/EX.RegisterRd = register number for Rd in ID/EX

m RAW Data hazards when ——y—
1la. EXYMEM.RegisterRd = ID/EX.RegisterRs |- Ry
1b. EXYMEM.RegisterRd = ID/EX.RegisterRt | il
2a. MEM/WB.RegisterRd = ID/EX.RegisterRs | [FHFT

2b. MEM/WB.RegisterRd = ID/EX.RegisterRt | [RE=ALL
pipeline reg

/

51

Detecting the Need to Forward

B But only if forwarding instruction will write to a register!
EX/MEM.RegWrite, MEM/WB.RegWrite

B And only if Rd for that instruction is not R0

EX/MEM.RegisterRd # 0
MEM/WB.RegisterRd # 0

ADD R1, R2, R3 #2" Previous in MEM/WB
SUB RG6,\R4, R5 #Previous in EXMEM

AND R7, R1l, R6 #Currentin ID/EX

IF

[fetch

[fetch

52

Forwarding Conditions

E Detecting RAW hazard with Previous Instruction

if (EXYMEM.RegWrite and (EX/MEM.RegisterRd # 0)
and (EX/MEM.RegisterRd = ID/EX.RegisterRs))
ForwardA = 01 (Forward from EX/MEM pipe stage)

if (EXYMEM.RegWrite and (EX/MEM.RegisterRd # 0)
and (EX/MEM.RegisterRd = ID/EX.RegisterRt))
ForwardB = 01 (Forward from EX/MEM pipe stage)

’—»%
— Control M
IF/ID L EX

53

Forwarding Conditions

B Detecting RAW hazard with Second Previous

if (MEM/WB.RegWrite and (MEM/WB.RegisterRd # 0)
and (MEM/WB.RegisterRd = ID/EX.RegisterRs))
ForwardA =10 (Forward from MEM/WB pipe stage)

if (MEM/WB.RegWrite and (MEM/WB.RegisterRd # 0)
and (MEM/WB.RegisterRd = ID/EX.RegisterRt))
ForwardB = 10 (Forward from MEM/WB pipe stage)

LEX L»M

"’W_ EX/MEM
M |—>WB

M
u
| X
isters ALU
M
u
X

MEM/WB.RegisterRd —‘

Control Signals During Forwarding:
Those Light Blue lines

ADD R1, R2, R3 #2% Previous in MEM/WB fre{{[|* Ilﬁ e
SUB R \R4, R5 #Previous in EXMEM fatct IE >3

AND R7, R1l, R6 #Currentin ID/EX [fetel
IIEX
’—’E EX/MEM
— Control .
IF/ID L

[fetch

Registers

[Instruction

-
-
[}

3
‘21-0'
Y

IF/ID.RegisterRs

IF/ID.RegisterRt
IF/ID.RegisterRt EX/MEM.RegisterRd
IF/ID.RegisterRd o

>

MEM/WB.RegisterRd

55

Control Hazard on Branches: Three Stage Stall

BEQ: If ([R1] == [R3]) Branch to PC + 36

_—
10: BEQ R1,R3, 36 I:fm g IDE |

14: AND R2,R3,R5 Iffe*c Il% >M__"|~I-E|
18: OR R6,R1,R7 Itfe*c il IDE >Men~|-E|
22: ADD RS,R1,R9 I iE ll%

46: XOR R10,R1,R11 ==y i |}2 Meniﬂ

What do you do with the 3 instructions in between?
How do you do it?

Where is the “commit”?
56

Branch/Control Hazards

[Branch instructions can cause great performance loss
B Branch instructions need two things:

Branch Result Taken or Not Taken
Branch Target

»y PC+4 If Branch is NOT taken

y PC+4+4 X imm If Branch is Taken

= For our pipeline: 3-cycle branch delay
PC is updated 3 cycles after fetching branch instruction
Branch target address is calculated in the ALU stage
Branch result is also computed in the ALU stage
What to do with the next 3 instructions after branch?

57

Branch Stall Impact

CPI =1 if without branch stalls, and 30% branch

If stalling 3 cycles per branch
=>new CPI =1+0.3X3=1.9

Two-part solution:
Determine branch taken or not sooner, and
Compute taken branch address earlier

MIPS Solution:

Move branch test to ID stage (second stage)
Adder to calculate new PC in ID stage
Branch delay is reduced from 3 to just 1 clock cycle

58

Instruction éIns'rr'. Decode Execute Memory
: Addr. Calc i Access

Fetch

Pipelined MIPS Datapath

Next PC

4-

Write
Back

WRB Data

59

Four Branch Hazard Alternatives

#1: Stall until branch direction is clear
#2: Predict Branch Not Taken

Execute successor instructions in sequence

“Squash” instructions in pipeline if branch actually taken
Advantage of late pipeline state update

47% MIPS branches not taken on average

PC+4 already calculated, so use it to get next instruction

#3: Predict Branch Taken

53% MIPS branches taken on average

But haven't calculated branch target address in MIPS
» MIPS still incurs 1 cycle branch penalty

» Other machines: branch target known before outcome
60

Four Branch Hazard Alternatives

#4: Delayed Branch

Define branch to take place AFTER a following
instruction

branch instruction
sequential successor,
sequential successor,

sequential successor,,
branch target if taken

1 slot delay allows proper decision and branch target
address in 5 stage pipeline

61

Scheduling Branch Delay Slots

A. From before branch

B. From branch target

add $1,%2,83
if $2=0 then —

sub $4,385,36 +

add $1,$2,S83
if $1=0 then —

becomes 1

becomes l

if $2=0 then —
add $1,$2,$3

——

add $1,$2,S$3
if $1=0 then

sub $4,$5,%6

C. From fall through

add $1,%2,83
if $1=0 then —

sub $4,3$5,S6+—

becomes l

add $1,$2,S53
if $1=0 then —

sub $4,$5,56

A

A is the best choice, fills delay slot & reduces instruction count (IC)

In B, the sub instruction may need to be copied, increasing IC

In B and C, must be okay to execute sub when branch fails

Delayed Branch

= Compiler effectiveness for single branch delay slot:

Fills about 60% of branch delay slots.

About 80% of instructions executed in branch delay slots useful in
computation.

About 50% (60% x 80%) of slots usefully filled.

[Delayed branch downside: As processor go to deeper
pipelines and multiple issue, the branch delay grows and
need more than one delay slot

Delayed branching has lost popularity compared to more expensive
but more flexible dynamic approaches.

Growth in available transistors has made dynamic approaches
relatively cheaper.

63

Evaluating Branch Alternatives

[The effective pipeline speedup with branch penalties,
assuming an ideal CPI of 1, is

Pipeline depth

Pipeline speedup = —
1+ Pipeline stall cycles from branches

Because of the following:
Pipeline stall cycles from branches = Branch frequency x Branch penalty

We obtain
Pipeline depth

1+ Branch frequencyx Branch penalty

Pipeline speedup =

64

Performance on Control Hazard (1/2)

= Example 3 (pA-25): for a deeper pipeline, such as that in a MIPS R4000, it
takes at least three pipeline stages before the branch-target address 1s known
and an additional cycle before the branch condition 1s evaluated, assuming no
stalls on the registers in the conditional comparison, A three-stage delay leads
to the branch penalties for the three simplest prediction schemes listed in the
following Figure A.15. Find the effective additional to the CPI arising from
branches for this pipeline, assuming the following frequencies:

Unconditional branch 4%

Conditional branch, untaken 6%

Conditional branch, taken 10%

Figure A.15

Branch scheme Penalty unconditional Penalty untaken Penalty taken
Flush pipeline 2 3 3
Predicted taken 2 3 2
Predicted un taken 2 0 3

Performance on Control Hazard (2/2)

= Answer
Additions to the CPI from branch cost
Branch Unconditional Untak(.en Takep .
scheme branches conditional conditional All branches
branches branches
Frequency of 4% 6% 10% 20%
event
Stall pipeline 0.08 018 0.30 0.56
Predicted 0.08 0.18 0.20 0.46
taken
Predicted 0.08 0.00 0.30 0.38

untaken

Branch Prediction

B Longer pipelines can’t readily determine branch outcome
early

Stall penalty becomes unacceptable

m Predict outcome of branch

Only stall if prediction is wrong

[In MIPS pipeline

Can predict branches not taken
Fetch instruction after branch, with no delay

67

MIPS with Predict Not Taken

Prediction
correct

Prediction
1ncorrect

Program
execution
order

(in instructions)

Time

add $4, $5, $6
beq $1, $2, 40

w $3, 300($0)

Y

Program
execution
order

(in instructions)

Time

add $4, $5, $6

beq $1, $2, 40

200 400 600 800 1000 1200 1400 .
Instruction Data
fetch Reg ALU access Reg
Instruction Data
200 pS fetch Reg ALU access Reg
~<— {|nstruction Data
200 ps| fetch Reg| ALU access | 1°9
200 400 600 800 1000 1200 1400 -
Instruction Data
fetch Reg ALY access Reg
Instruction Data
200 pS fetch Reg ALU access Reg

—or $7, $8, $9

bubble/(bubble¢/ bubble/(bubble/(bubble
O O O

\

400 ps

Instruction

fetch

Reg

ALU

Data
access

Reg

68

More-Realistic Branch Prediction

Static branch prediction
Based on typical branch behavior

Example: loop and if-statement branches
» Predict backward branches taken
» Predict forward branches not taken

Dynamic branch prediction
Hardware measures actual branch behavior
» e.g., record recent history of each branch (BPB or BHT)

Assume future behavior will continue the trend
» When wrong, stall while re-fetching, and update history

69

Static Branch Prediction

25% -
22%

20% - 18%

15%
15% -

¢)
12% 11%12/0

o 10%
10% A 9%

Misprediction rate

5% 5%

L & O L N F 2 RS
00 P A
Integer Floating-point
Benchmark

Figure C.17 Misprediction rate on SPEC92 for a profile-based predictor varies

wridalv it ie nanarvallv hattar fAar tha flastina_ nAaint nracnrvrarme uwhircrlkh hauva an awvar_

70

Dynamic Branch Prediction

[1-bit prediction scheme

Low-portion address as address for a one-bit flag for Taken or

NotTaken historically
Simple

= 2-bit prediction raen
Miss twice to change / Nottaken |
Predict taken Predict taken

11 10

Taken : Not taken
/ Not taken
Predict not taken Predict not taken

01

00

Not taken

Figure C.18 The states in a 2-bit prediction scheme. By using 2 bits rather than 1, a
branch that strongly favors taken or not taken—as many branches do—wiill be mispre-
dicted less often than with a 1-bit predictor. The 2 bits are used to encode the four
states in the system. The 2-bit scheme is actually a specialization of a more general
scheme that has an n-bit saturating counter for each entry in the prediction buffer. With

an n-bit counter, the counter can take on values between 0 and 2" - 1: When the biln-
ter ic areater than ar eniial tn ane-half af ite maximiim valiie (27 — 1Y the hranch i< nre-

Contents

1. Pipelining Introduction
2. The Major Hurdle of Pipelining — Pipeline Hazards
3. RISC-V Implementation

Reading:
Textbook: Appendix C

RISC-V Sodor core

» Chisel: https://github.com/freechipsproject/chisel3/wiki/Short-Users-
Guide-to-Chisel

» httpsi/github.com/ucb-bar/riscv-sodor

72

