
Lecture 05 and 06: Pipeline:
Basic/Intermediate Concepts

and Implementation

CSCE 513 Computer Architecture
Department of Computer Science and

Engineering
Yonghong Yan

yanyh@cse.sc.edu
https://passlab.github.io/CSCE513

1

Contents

1. Pipelining Introduction
2. The Major Hurdle of Pipelining—Pipeline Hazards
3. RISC-V Implementation

Reading:
u Textbook: Appendix C
u RISC-V Sodor core

» Chisel: https://github.com/freechipsproject/chisel3/wiki/Short-Users-
Guide-to-Chisel

» https://github.com/ucb-bar/riscv-sodor

2

Pipelining: Its Natural!
© Laundry Example

© Ann, Brian, Cathy, Dave
each have one load of clothes
to wash, dry, and fold
u Washer takes 30 minutes
u Dryer takes 40 minutes
u “Folder” takes 20 minutes

© One load: 90 minutes

A B C D

30 minutes

40 minutes

20 minutes

3

Sequential Laundry

© Sequential laundry takes 6 hours for 4 loads
© If they learned pipelining, how long would laundry take?

A

B

C

D

30 40 20 30 40 20 30 40 20 30 40 20

6 PM 7 8 9 10 11 Midnight

T
a
s
k

O
r
d
e
r

Time

4

Pipelined Laundry Start Work ASAP

© Pipelined laundry takes 3.5 hours for 4 loads
u 6/3.5=1.7 time speedup compared to sequential laundry

A

B

C

D

6 PM 7 8 9 10 11 Midnight

T
a
s
k

O
r
d
e
r

Time

30 40 40 40 40 20

Important to note
© Each laundry still takes 90 minutes.
© Improvement are for 4 load

throughput.

5

Processor
Control

Datapath

Mapping Laundry Pipeline to Computer Pipeline

Program Counter (PC)

Registers

Arithmetic & Logic Unit
(ALU)

Memory Input

Output

Bytes

Enable?
Read/Write

Address

Write Data

ReadData

Processor-Memory Interface I/O-Memory Interfaces

Program

Data

Components of a Computer

6

CPU and Datapath vs Control

© Datapath: Storage, FU, interconnect sufficient to perform the desired
functions

© Controller: State machine to orchestrate operation on the data path
u Based on desired function and signals

7

The Basics of a RISC Instruction Set (1/2)
© RISC-V

u 32 registers, and R0 = 0;
u Three classes of instructions

» ALU instruction: add (DADD), subtract (DSUB), and logical operations
(such as AND or OR);

» Load and store instructions:
» Branches and jumps:

8

The Basics of a RISC Instruction Set (2/2)

© RISC (Reduced Instruction Set
Computer) or load-store
architecture:
u All operations on data apply to data in

register and typically change the entire
register (32 or 64 bits per register).

u The only operations that affect memory
are load and store operation.

u The instruction formats are few in
number with all instructions typically
being one size.

† These simple three properties lead to
dramatic simplifications in the
implementation of pipelining.

9

RISC Instruction Set
© Every instruction to be implemented in at most 5 clock

cycles/stages
u Instruction fetch cycle (IF): send PC to memory, fetch the current

instruction from memory, and update PC to the next sequential PC
by adding 4 to the PC.

u Instruction decode/register fetch cycle (ID): decode the instruction,
read the registers corresponding to register source specifiers from
the register file.

u Execution/effective address cycle (EX): perform memory address
calculation for Load/Store, Register-Register ALU instruction and
Register-Immediate ALU instruction.

u Memory access (MEM): Perform memory access for load/store
instructions.

u Write-back cycle (WB): Write back results to the destination
operands for Register-Register ALU instruction or Load instruction.

10

5 Stages of A Typical RISC ISA Pipeline

Memory
Access

Write
Back

Instruction
Fetch

Instr. Decode
Reg. Fetch

Execute
Addr. Calc

L
M
D

A
LU

M
U

X

M
em

ory

Reg File

M
U

X
M

U
X

D
ata

M
em

ory

M
U

X

Sign
Extend

4

A
dder Zero?

Next SEQ PC

A
ddress

Next PC

WB Data

Inst

RD

RS1

RS2

Imm

11

Classic 5-Stage Pipeline for a RISC
© In each cycle, hardware initiates a new instruction and

executes some part of five different instructions:
u Simple
u However, be ensure that the overlap of instructions in the pipeline

cannot cause a conflict (also called Hazard).

Clock number

Instruction number 1 2 3 4 5 6 7 8 9

Instruction i IF ID EX MEM WB

Instruction i+1 IF ID EX MEM WB

Instruction i+2 IF ID EX MEM WB

Instruction i+3 IF ID EX MEM WB

Instruction i+4 IF ID EX MEM WB

12

Computer Pipelines
© Pipeline properties

u Execute billions of instructions, so throughput is what matters.
u Pipelining doesn’t help latency of single instruction

» It helps throughput of entire workload;
u Pipeline rate limited by slowest pipeline stage;
u Multiple tasks operating simultaneously;
u Potential speedup = number pipe stages;
u Unbalanced lengths of pipe stages reduces speedup;
u Time to “fill” pipeline and time to “drain” it reduces speedup.

© The time per instruction on the pipelined processor in ideal
conditions is equal to:

stage pipe ofNumber
machine dunpipelineon n instructioper Time

† However, the stages may not be perfectly balanced.
† Pipelining yields a reduction in the average execution time per

instruction. 13

Making RISC Pipelining Real
© Function units used in different cycles

u Hence we can overlap the execution of multiple instructions
© Important things to make it real

u Separate instruction and data memories, e.g. I-cache and D-cache,
banking

» Eliminate a conflict for accessing a single memory.
u Register file is used in two stages (two R and one W every cycle)

» Read from register in ID (second half of CC), and write to register in
WB (first half of CC).

u PC
» Increment and store PC every clock, and done it during the IF stage.
» A branch does not change the PC until the ID stage (have an adder to

compute the potential branch target).
u Staging data between pipeline stages

» Pipeline register

14

Pipeline Datapath
© One register files used in ID and WB stage

u Read from register in ID (second half of CC), and write to register
in WB (first half of CC) in one cycle

© Separate IM and DM: I-cache and D-cache

15

Pipeline Registers: Staging Data between Pipeline
Stages

© Edge-triggered property of register is critical

16

Main Operations in Each Pipeline Stage
Memory
Access

Write
Back

Instruction
Fetch

Instr. Decode
Reg. Fetch

Execute
Addr. Calc

A
LU

M
em

ory

Reg File

M
U

X
M

U
X

D
ata

M
em

ory

M
U

X

Sign
Extend

Zero?

IF/ID

ID
/EX

M
EM

/W
B

EX
/M

EM

4

A
dder

Next SEQ PC Next SEQ PC

rd rd rd W
B

D
at

a

Next PC

A
ddress

RS1

RS2

Imm

M
U

X

IF: IR <= mem[PC];
PC <= PC + 4

ID: A <= Reg[IRrs1];
B <= Reg[IRrs2]

EX: rslt <= A opIRop B

WB: Reg[IRrd] <= WB

MEM: WB <= rslt Pipeline Registers for Data Staging between Pipeline Stages
Named as: IF/ID, ID/EX, EX/MEM, and MEM/WB

17

A

B

rslt

Detailed Operations in Pipeline Stage
Stage Any Instruction

IF IF/ID.IR ß MEM[PC]; IF/ID.NPC ß PC+4
PC ß if ((EX/MEM.opcode=branch) & EX/MEM.cond)
{EX/MEM.ALUoutput} else {PC + 4}

ID ID/EX.A ß Regs[IF/ID.IR[Rs1]]; ID/EX.B ß Regs[IF/ID.IR[Rs2]]
ID/EX.NPC ß IF/ID.NPC; ID/EX.Imm ß extend(IF/ID.IR[Imm]); ID/EX.Rw ß IF/ID.IR[Rs2 or Rd]

ALU Instruction Load / Store Branch

EX EX/MEM.ALUoutput ß
ID/EX.A func ID/EX.B, or
EX/MEM.ALUoutput ß
ID/EX.A op ID/EX.Imm

EX/MEM.ALUoutput ß
ID/EX.A + ID/EX.Imm

EX/MEM.B ß ID/EX.B

EX/MEM.ALUoutput ß
ID/EX.NPC + (ID/EX.Imm << 2)
EX/MEM.cond ß br condition

MEM MEM/WB.ALUoutput ß
EX/MEM.ALUoutput

MEM/WB.LMD ß
MEM[EX/MEM.ALUoutput]
or
MEM[EX/MEM.ALUoutp
ut] ß EX/MEM.B

WB Regs[MEM/WB.Rw] ß
MEM/WB.ALUOutput

For load only:
Regs[MEM/WB.Rw] ß
MEM/WB.LMD

18

Branch requires 3 cycles;
Store requires 4 cycles, and
all other instructions require
5 cycles.

Pipelining Performance (1/2)
© Pipelining increases throughput, not reduce the execution

time of an individual instruction.
u In face, slightly increases the execution time (an instruction) due to

overhead in the control of the pipeline.
u Practical depth of a pipeline is limited by increasing execution time.

© Pipeline overhead
u Unbalanced pipeline stage

» branch: 3 cycles; store: 4 cycles and else: 5 cycles
u Pipeline stage overhead;
u Pipeline register delay;
u Clock skew

» Same sourced clock signal arrives at different components at different
time

19

© Instructions per program depends on source code,
compiler technology, and ISA

© Cycles per instructions (CPI) depends on ISA and
µarchitecture

© Time per cycle depends upon the µarchitecture and
base technology

Processor Performance

CPU Time = Instructions
Program

* Cycles
Instruction

*Time
Cycle

20

CPI with Different Instructions, Unpipelined

21

Total clock cycles = 7+5+10 = 22
Total instructions = 3
CPI = 22/3 = 7.33

CPI is always an average over a large
number of instructions

Inst	3

7	cycles

Inst	1 Inst	2

5	cycles 10	cycles

Time

å
=

´=
n

1i
ii)Count nInstructio(CPICycles Clock

For Questions A.3 in Assignment #1
© 60% branch instructions are taken

22

å
=

´=
n

1i
ii)Count nInstructio(CPICycles Clock

CPI for Standard Pipeline CPU
© CPI = 1

© Speedup: Unpipelined/pipelined = # pipelined stages
© Thus pipelined time in general:

23

stage pipe ofNumber
machine dunpipelineon n instructioper Time

Pipeline Performance (2/2)

24

Pipeline Hazards

©Hazards prevent the next instruction in the
instruction steam from executing during its
designated clock cycle
u Structural hazards: resource conflict, e.g. using the

same unit
u Data hazards: an instruction depends on the results of

a previous instruction
u Control hazards: arise from the pipelining of branches

and other instructions that change the PC.

©Hazards in pipelines can make it necessary to stall
the pipeline.
u Stall will reduce pipeline performance. 25

Performance with Pipeline Stall (1/2)

pipelined cycleClock
dunpipeline cycleClock

pipelined CPI
dunpipeline CPI

pipelined cycleClock pipelined CPI
dunpipeline cycleClock dunpipeline CPI

pipelined n timeinstructio Average
dunpipeline n timeinstructio Averagepipelining from Speedup

´=

´
´

=

=

ninstructioper cyclesclock stall Pipelined1
ninstructioper cyclesclock stall PipelineCPI Idealpipelined CPI

+=
+=

26

Performance with Pipeline Stall (2/2)

Speedup from pipelining = 1
1+Pipeline stall cycles per instruction

×
Clock cycle unpipelined

Clock cycle pipelined

 = 1
1+Pipeline stall cycles per instruction

×Pipeline depth

Pipelining speedup is proportional to the
pipeline depth and 1/(1+ stall cycles)

27

Structure Hazards

©Structure Hazards
u If some combination of instructions cannot be

accommodated because of resource conflict:
» Resources: functional units, register, memory, etc.

u Occur when
» Some functional unit is not fully pipelined, or
» No enough duplicated resources.

u One example, both IF and MEM stages need to access
memory

28

One Memory PortàStructural Hazards

I
n
s
t
r.

O
r
d
e
r

Time (clock cycles)

Load

Instr 1

Instr 2

Instr 3

Instr 4

Reg A
LU DMemIfetch Reg

Reg A
LU DMemIfetch Reg

Reg A
LU DMemIfetch Reg

Reg A
LU DMemIfetch Reg

Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 6 Cycle 7Cycle 5

Reg A
LU DMemIfetch Reg

29

One Memory Port/Structural Hazards

I
n
s
t
r.

O
r
d
e
r

Time (clock cycles)

Load

Instr 1

Instr 2

Stall

Instr 3

Reg A
LU DMemIfetch Reg

Reg A
LU DMemIfetch Reg

Reg A
LU DMemIfetch Reg

Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 6 Cycle 7Cycle 5

Reg A
LU DMemIfetch Reg

Bubble Bubble Bubble BubbleBubble

How do you “bubble” the pipe? à No-Op
30

Summary of Structure Hazard
© To address structure hazard, have separate memory access

for instructions.
u Splitting the cache into separate instruction and data caches, or
u Use a set of buffers, e.g. instruction buffers, to hold instruction;

© However, it will increase cost
u Ex1: pipelining function units or duplicated resources is a high cost;
u Ex2: require twice bandwidth and often have higher bandwidth at

the pins to support both an instruction and a data cache access
every cycle;

u Ex3: a floating-point multiplier consumes lots of gates.

† If the structure hazard is rare, it may not
be worth the cost to avoid it.

31

Data Hazards
© Pipelining enables overlapping execution of multiple

instructions à Instruction Level Parallelism
© Data Hazards

u Occur when the pipeline changes the order of read/write accesses
to operands so that the order differs from the order seen by
sequentially executing instructions on an unpipelined processor.

ADD R1, R2, R3
SUB R4, R1, R5
AND R6, R1, R7
OR R8, R1, R9
XOR R10, R1, R11

32

Data Hazard on R1

I
n
s
t
r.

O
r
d
e
r

ADD R1,R2,R3

SUB R4,R1,R5

AND R6,R1,R7

OR R8,R1,R9

XOR R10,R1,R11

Reg A
LU DMemIfetch Reg

Reg A
LU DMemIfetch Reg

Reg A
LU DMemIfetch Reg

Reg A
LU DMemIfetch Reg

Reg A
LU DMemIfetch Reg

Time (clock cycles)

IF ID/RF EX MEM WB

33

Read old value of R1

Read new R1 because of
edge-triggered register

Read new R1
because it can.

❌

Bubble Bubble Bubble BubbleBubble

Bubble Bubble Bubble BubbleBubble

Solution #1: Insert stalls

I
n
s
t
r.

O
r
d
e
r

ADD R1,R2,R3

SUB R4,R1,R5

AND R6,R1,R7

OR R8,R1,R9

XOR R10,R1,R11

Reg A
LU DMemIfetch Reg

Reg A
LU DMemIfetch Reg

Reg A
LU DMemIfetch Reg

Reg A
LU DMemIfetch Reg

Reg A
LU DMemIfetch

Time (clock cycles)
IF ID/RF EX MEM WB

Stall

Stall

34

Two cycles delay!

#2: Forwarding (aka bypassing) to Avoid
Data Hazard

Time (clock cycles)

I
n
s
t

r.

O
r
d
e
r

ADD R1,R2,R3

SUB R4,R1,R5

AND R6,R1,R7

OR R8,R1,R9

XOR R10,R1,R11

Reg A
LU DMemIfetch Reg

Reg A
LU DMemIfetch Reg

Reg A
LU DMemIfetch Reg

Reg A
LU DMemIfetch Reg

Reg A
LU DMemIfetch Reg

Pipeline register: Staging
data along the pipeline

35

No cycle delay!

Three Generic Data Hazards (1/3)

©Read After Write (RAW)
u InstrJ tries to READ operand AFTER InstrI WRITES it

©Caused by a “true dependence” (in compiler
nomenclature). This hazard results from an actual
need for communication.
u SUB needs value produced by ADD

©Nature of the computation and we cannot avoid.

I: ADD R1,R2,R3
J: SUB R4,R1,R3

36

Three Generic Data Hazards (2/3)

©Write After Read (WAR)
u InstrJ WRITEs operand AFTER InstrI READs it

©Called an “anti-dependence” by compiler writers.
This results from reuse of the name “R1”, not the
value stored in R1.

©Can’t happen in 5-stage pipeline because:
u All instructions take 5 stages, and
u Reads are always in stage 2, and
u Writes are always in stage 5

I: SUB R4,R1,R3
J: ADD R1,R2,R3
K: MUL R6,R1,R7

37

Three Generic Data Hazards (3/3)

©Write After Write (WAW)
u InstrJ WRITEs operand AFTER InstrI WRITEs it.

©This hazard also results from the reuse of name R1
u Hazard when writes occur in the wrong order

©Can’t happen in our basic 5-stage pipeline:
u All writes are ordered and take place in stage 5

©WAR and WAW hazards occur in complex
pipelines

©Read After Read – RAR is NOT a hazard

I: SUB R1,R4,R3
J: ADD R1,R2,R3
K: MUL R6,R1,R7

38

Double/Triple Data Hazards

©Consider the sequence:
ADD R1,R1,R2
SUB R1,R1,R3
AND R1,R1,r4

©Hazards occur
u ADD à SUB: RAW and WAW on R1
u SUB à SUB: WAR on R1
u SUB à AND: RAW on R1
u …

39

RAW Hazards with Load/Store
© lw R2, 20(R1): load a word from memory @ [R1]+20 into R2

u ID/RF: Read register R1: [R1] (rs1 register)
u EX: Calculate effective address: [R1] + 20
u MEM: Memory read from [R1]+20

» Data is available in MEM|WB
» Unlike ALU: data is available in EX|MEM

u WB: data write back to R2 (rd register)
© sw R4,12(R1): store a word in R4 in the memory @ [R1]+12

u ID/RF: Read register R1 and R4 (rs1 and rs2 register, no rd register)
» R1 is needed in EX, and R4 is needed in MEM

u EX: Calculate effective address: [R1] + 12
u MEM: Memory write to [R1]+12

» Need R4 to be available
» Unlike ALU, data needs to be available in ID|EX

u No need WB
40

Reg A
LU DMemIfetch Reg

IF ID/RF EX MEM WB

Load Delay (LoadàEXE-Use RAW Hazard)

© Not all RAW data hazards can be forwarded
u Load has a delay that cannot be eliminated by forwarding
u lw R2, 20(R1): load data from memory [R1]+20 into R2

© In the example shown below …
u Unlike ALU intrus, LW does not have data until CC4 end
u AND wants data at beginning of CC4 - NOT possible

DM

Time
(cycles)

P
r
o
g
r
a
m

O
r
d
e
r

CC2

AND R4,R2,R5

Reg

IF

CC3

OR R6,R3,R2

ALU

Reg

IF

CC6

Reg

DM

ALU

CC7

Reg

DM

CC8

Reg

LW R2,20(R1) IF

CC1 CC4

ADD R7,R2,R2

ALU

Reg

IF

CC5

Reg

DM

ALU

Reg

Even, load can forward
data to second next
instruction, OR

41

❌

©Freeze the PC and the IF/ID registers
u No new instruction is fetched and instruction after load is stalled

©Allow the Load in ID/EX register to proceed
© Introduce a bubble into the ID/EX register
©Load can forward data after stalling next instruction

bubble

DM

Time
(cycles)

P
r
o
g
r
a
m

O
r
d
e
r

CC2

Reg

CC3

OR R6,R3,R2

ALU

IM

CC6 CC7 CC8

LW R2,20(R1) IF

CC1 CC4

Reg

CC5

Reg

DM RegALU

AND R4,R2,R5 IF Reg RegALU DM

Solution: Stall the Pipeline for One Cycle

42

One cycle delay!

Forwarding CAN Avoid Delay in Loadà
MEM-USE RAW Hazard

© Load a word from memory to R2 and then store R2 to a different memory
location. R2 is rd for LW and Rs2 for SW.

© Because Store only needs the Rs2 data in the MEM stage, not in the EX stage
as for ALU instructions: Only Store is this special!

DM

Time
(cycles)

P
r
o
g
r
a
m

O
r
d
e
r

CC2

SW R2,16(R4)

Reg

IF

CC3

OR R6,R3,R2

ALU

Reg

IF

CC6

Reg

DM

ALU

CC7

Reg

DM

CC8

Reg

LW R2,20(R1) IF

CC1 CC4

ADD R7,R2,R2

ALU

Reg

IF

CC5

Reg

DM

ALU

Reg

43

SW R2,16(R4)
LW R2,20(R1)

No cycle delay!

©The same as LoadàEXE-Use by ALU
u R2 is Rs1 for SW

© Introduce a bubble into the ID/EX register

bubble

DM

Time
(cycles)

P
r
o
g
r
a
m

O
r
d
e
r

CC2

Reg

CC3

OR R6,R3,R2

ALU

IM

CC6 CC7 CC8

LW R2,20(R1) IF

CC1 CC4

Reg

CC5

Reg

DM RegALU

SW R4,32(R2) IF Reg RegALU DM

LoadàEXE-Use RAW Hazard by Store

44

SW R4,32(R2)
LW R2,20(R1)

One cycle delay!

Summary 1/2: RAW Hazards and NO-
Forwarding

© Stages for Input (Rs1 and Rs2) and Output (Rd):
u ALU and LD need Rs when entering EX
u Store needs Rs1 at EX for calculating EA and then Rs2 at MEM

for storing data
u ALU instructions produce Rd at the end of EX stage
u LD produce Rd at the end of MEM stage

© If NO forwarding (interlocking):
u 2 cycles bubble delay for any RAW hazard

» Input and Output have to go through register file

45

Summary 2/2: RAW Hazards and
Forwarding

© Stages for Input (Rs1 and Rs2) and Output (Rd):
u ALU and LD need Rs when entering EX
u Store needs Rs1 at EX for calculating EA and then Rs2 at MEM for storing data
u ALU instructions produce Rd at the end of EX stage
u LD produce Rd at the end of MEM stage

© If NO Forwarding (interlocking): 2 cycles delay

© Full forwarding (Full Bypassing):
u 0 cycle delay for RAW hazard between ALU instructions
u 1 cycle delay for LoadàEXE-Use RAW hazard

» EXE-use for both ALU and store
u 0 cycle delay for Loadà MEM-Use RAW hazard

» MEM-Use: Store

© Two instructions that has RAW data dependency
u If R and W for the shared register are in the same stage, forwarding

will incur no cycle delay
46

Compiler Scheduling
© Compilers can schedule code in a way to avoid load à ALU-

use stalls
a = b + c; d = e – f;

© Slow code: 2 stall cycles
lw r10, (r1) # r1 = addr b
lw r11, (r2) # r2 = addr c

stall
add r12, r10, r11 # b + c
sw r12, (r3) # r3 = addr a
lw r13, (r4) # r4 = addr e
lw r14, (r5) # r5 = addr f

stall
sub r15, r13, r14 # e - f
sw r15, (r6) # r6 = addr d

Fast code: No Stalls
lw r10, 0(r1)
lw r11, 0(r2)
lw r13, 0(r4)
lw r14, 0(r5)
add r12, r10, r11
sw r12, 0(r3)
sub r15, r13, r14
sw r14, 0(r6)

47

Hardware Support for Forwarding

© Forwarding happens in two
consecutive cycles

48

Detecting RAW Hazards
© Current instruction being executed in ID/EX register
© Previous instruction is in the EX/MEM register
© 2nd Previous is in the MEM/WB register

© Forwarding happens in the same cycle

49

ADD R1, R2, R3 #2nd Previous in MEM/WB

SUB R6, R4, R5 #Previous in EX/MEM

AND R7, R1, R6 #Current in ID/EX

IF ID EX MEM WB

Detecting RAW Hazards

50

ADD R1, R2, R3 #2nd Previous in MEM/WB

SUB R6, R4, R5 #Previous in EX/MEM

AND R7, R1, R6 #Current in ID/EX

IF ID EX MEM WB

Detecting RAW Hazards

© Pass register numbers along pipeline
u ID/EX.RegisterRs = register number for Rs in ID/EX (Rs1)
u ID/EX.RegisterRt = register number for Rt in ID/EX (Rs2)
u ID/EX.RegisterRd = register number for Rd in ID/EX

© RAW Data hazards when
1a. EX/MEM.RegisterRd = ID/EX.RegisterRs
1b. EX/MEM.RegisterRd = ID/EX.RegisterRt
2a. MEM/WB.RegisterRd = ID/EX.RegisterRs
2b. MEM/WB.RegisterRd = ID/EX.RegisterRt

Fwd from
EX/MEM
pipeline reg

Fwd from
MEM/WB
pipeline reg

51

ADD R1, R2, R3 #2nd Previous in MEM/WB
SUB R6, R4, R5 #Previous in EX/MEM
AND R7, R1, R6 #Current in ID/EX

Detecting the Need to Forward
© But only if forwarding instruction will write to a register!

u EX/MEM.RegWrite, MEM/WB.RegWrite
© And only if Rd for that instruction is not R0

u EX/MEM.RegisterRd ≠ 0
u MEM/WB.RegisterRd ≠ 0

52

ADD R1, R2, R3 #2nd Previous in MEM/WB

SUB R6, R4, R5 #Previous in EX/MEM

AND R7, R1, R6 #Current in ID/EX

IF ID EX MEM WB

Forwarding Conditions
© Detecting RAW hazard with Previous Instruction

u if (EX/MEM.RegWrite and (EX/MEM.RegisterRd ≠ 0)
and (EX/MEM.RegisterRd = ID/EX.RegisterRs))

ForwardA = 01 (Forward from EX/MEM pipe stage)
u if (EX/MEM.RegWrite and (EX/MEM.RegisterRd ≠ 0)

and (EX/MEM.RegisterRd = ID/EX.RegisterRt))
ForwardB = 01 (Forward from EX/MEM pipe stage)

53

Forwarding Conditions
© Detecting RAW hazard with Second Previous

u if (MEM/WB.RegWrite and (MEM/WB.RegisterRd ≠ 0)
and (MEM/WB.RegisterRd = ID/EX.RegisterRs))

ForwardA = 10 (Forward from MEM/WB pipe stage)
u if (MEM/WB.RegWrite and (MEM/WB.RegisterRd ≠ 0)

and (MEM/WB.RegisterRd = ID/EX.RegisterRt))
ForwardB = 10 (Forward from MEM/WB pipe stage)

54

Control Signals During Forwarding:
Those Light Blue lines

55

ADD R1, R2, R3 #2nd Previous in MEM/WB

SUB R6, R4, R5 #Previous in EX/MEM

AND R7, R1, R6 #Current in ID/EX

Control Hazard on Branches: Three Stage Stall

10: BEQ R1,R3,36

14: AND R2,R3,R5

18: OR R6,R1,R7

22: ADD R8,R1,R9
………

46: XOR R10,R1,R11

Reg A
LU DMemIfetch Reg

Reg A
LU DMemIfetch Reg

Reg A
LU DMemIfetch Reg

Reg A
LU DMemIfetch Reg

Reg A
LU DMemIfetch Reg

What do you do with the 3 instructions in between?

How do you do it?

Where is the “commit”?
56

BEQ: If ([R1] == [R3]) Branch to PC + 36

Branch/Control Hazards
© Branch instructions can cause great performance loss
© Branch instructions need two things:

u Branch Result Taken or Not Taken
u Branch Target

» PC + 4 If Branch is NOT taken
» PC + 4 + 4 × imm If Branch is Taken

© For our pipeline: 3-cycle branch delay
u PC is updated 3 cycles after fetching branch instruction
u Branch target address is calculated in the ALU stage
u Branch result is also computed in the ALU stage
u What to do with the next 3 instructions after branch?

57

Branch Stall Impact

©CPI = 1 if without branch stalls, and 30% branch
© If stalling 3 cycles per branch

u => new CPI = 1+0.3×3 = 1.9

©Two-part solution:
u Determine branch taken or not sooner, and
u Compute taken branch address earlier

©MIPS Solution:
u Move branch test to ID stage (second stage)
u Adder to calculate new PC in ID stage
u Branch delay is reduced from 3 to just 1 clock cycle

58

Pipelined MIPS Datapath

A
dder

IF/ID

Memory
Access

Write
Back

Instruction
Fetch

Instr. Decode
Reg. Fetch

Execute
Addr. Calc

A
LU

M
em

ory

Reg File

M
U

X

D
ata

M
em

ory

M
U

X

Sign
Extend

Zero?

M
EM

/W
B

EX
/M

EM
4

A
dder

Next
SEQ PC

RD RD RD W
B

D
at

a

Next PC

A
ddress

RS1

RS2

Imm
M

U
X

ID
/EX

59

Four Branch Hazard Alternatives

©#1: Stall until branch direction is clear
©#2: Predict Branch Not Taken

u Execute successor instructions in sequence
u “Squash” instructions in pipeline if branch actually taken
u Advantage of late pipeline state update
u 47% MIPS branches not taken on average
u PC+4 already calculated, so use it to get next instruction

©#3: Predict Branch Taken
u 53% MIPS branches taken on average
u But haven’t calculated branch target address in MIPS

» MIPS still incurs 1 cycle branch penalty
» Other machines: branch target known before outcome

60

Four Branch Hazard Alternatives

©#4: Delayed Branch
u Define branch to take place AFTER a following

instruction

branch instruction
sequential successor1
sequential successor2
........
sequential successorn

branch target if taken

u 1 slot delay allows proper decision and branch target
address in 5 stage pipeline

61

Scheduling Branch Delay Slots

u A is the best choice, fills delay slot & reduces instruction count (IC)
u In B, the sub instruction may need to be copied, increasing IC
u In B and C, must be okay to execute sub when branch fails

add $1,$2,$3
if $2=0 then

delay slot

A. From before branch B. From branch target C. From fall through

add $1,$2,$3
if $1=0 then
delay slot

add $1,$2,$3
if $1=0 then

delay slot

sub $4,$5,$6

sub $4,$5,$6

becomes becomes becomes

if $2=0 then

add $1,$2,$3
add $1,$2,$3
if $1=0 then
sub $4,$5,$6

add $1,$2,$3
if $1=0 then

sub $4,$5,$6

62

Delayed Branch
© Compiler effectiveness for single branch delay slot:

u Fills about 60% of branch delay slots.
u About 80% of instructions executed in branch delay slots useful in

computation.
u About 50% (60% x 80%) of slots usefully filled.

© Delayed branch downside: As processor go to deeper
pipelines and multiple issue, the branch delay grows and
need more than one delay slot
u Delayed branching has lost popularity compared to more expensive

but more flexible dynamic approaches.
u Growth in available transistors has made dynamic approaches

relatively cheaper.

63

Evaluating Branch Alternatives
© The effective pipeline speedup with branch penalties,

assuming an ideal CPI of 1, is

branches from cycles stall Pipeline1
depth Pipelinespeedup Pipeline

+
=

penaltyBranch frequencyBranch 1
depth Pipelinespeedup Pipeline
´+

=

penaltyBranch frequencyBranch branches from cycles stall Pipeline ´=

Because of the following:

We obtain

64

Performance on Control Hazard (1/2)
© Example 3 (pA-25): for a deeper pipeline, such as that in a MIPS R4000, it

takes at least three pipeline stages before the branch-target address is known
and an additional cycle before the branch condition is evaluated, assuming no
stalls on the registers in the conditional comparison, A three-stage delay leads
to the branch penalties for the three simplest prediction schemes listed in the
following Figure A.15. Find the effective additional to the CPI arising from
branches for this pipeline, assuming the following frequencies:

Unconditional branch 4%
Conditional branch, untaken 6%
Conditional branch, taken 10%

Branch scheme Penalty unconditional Penalty untaken Penalty taken
Flush pipeline 2 3 3
Predicted taken 2 3 2
Predicted un taken 2 0 3

Figure A.15

65

Performance on Control Hazard (2/2)
© Answer

Additions to the CPI from branch cost

Branch
scheme

Unconditional
branches

Untaken
conditional
branches

Taken
conditional
branches

All branches

Frequency of
event 4% 6% 10% 20%

Stall pipeline 0.08 0.18 0.30 0.56

Predicted
taken

0.08 0.18 0.20 0.46

Predicted
untaken

0.08 0.00 0.30 0.38

66

Branch Prediction
© Longer pipelines can’t readily determine branch outcome

early
u Stall penalty becomes unacceptable

© Predict outcome of branch
u Only stall if prediction is wrong

© In MIPS pipeline
u Can predict branches not taken
u Fetch instruction after branch, with no delay

67

MIPS with Predict Not Taken

Prediction
correct

Prediction
incorrect

68

More-Realistic Branch Prediction
©Static branch prediction

u Based on typical branch behavior
u Example: loop and if-statement branches

» Predict backward branches taken
» Predict forward branches not taken

©Dynamic branch prediction
u Hardware measures actual branch behavior

» e.g., record recent history of each branch (BPB or BHT)
u Assume future behavior will continue the trend

» When wrong, stall while re-fetching, and update history

69

Static Branch Prediction

70

Dynamic Branch Prediction
© 1-bit prediction scheme

u Low-portion address as address for a one-bit flag for Taken or
NotTaken historically

u Simple
© 2-bit prediction

u Miss twice to change

71

Contents

1. Pipelining Introduction
2. The Major Hurdle of Pipelining—Pipeline Hazards
3. RISC-V Implementation

Reading:
u Textbook: Appendix C
u RISC-V Sodor core

» Chisel: https://github.com/freechipsproject/chisel3/wiki/Short-Users-
Guide-to-Chisel

» https://github.com/ucb-bar/riscv-sodor

72

