Lecture 04 RISC-V ISA

CSCE 513 Computer Architecture

Department of Computer Science and Engineering
Yonghong Yan
yanyh@cse.sc.edu
https://passlab.github.io/CSCE513

Acknowledgement

* Slides adapted from

— Computer Science 152: Computer Architecture and
Engineering, Spring 2016 by Dr. George Michelogiannakis from
UCB

* Reference contents
— CAQAAS
— COD textbook, chapter 2

Review: ISA Principles -- Iron-code Summary

Section A.2—Use general-purpose registers with a load-store architecture.

Section A.3—Support these addressing modes: displacement (with an address offset
size of 12 to 16 bits), immediate (size 8 to 16 bits), and register indirect.

Section A.4—Support these data sizes and types: 8-, 16-, 32-, and 64-bit integers and
64-bit IEEE 754 floating-point numbers.
— Now we see 16-bit FP for deep learning in GPU
* http://www.nextplatform.com/2016/09/13/nvidia-pushes-deep-learning-inference-
new-pascal-gpus/

Section A.5—Support these simple instructions, since they will dominate the number
of instructions executed: load, store, add, subtract, move register- register, and shift.

Section A.6—Compare equal, compare not equal, compare less, branch (with a PC-
relative address at least 8 bits long), jump, call, and return.

Section A.7—Use fixed instruction encoding if interested in performance, and use
variable instruction encoding if interested in code size.

Section A.8—Provide at least 16 general-purpose registers, be sure all addressing
modes apply to all data transfer instructions, and aim for a minimalist IS

— Often use separate floating-point registers.

— The justification is to increase the total number of registers without raising problems in
the instruction format or in the speed of the general-purpose register file. This
compromise, however, is not orthogonal.

What is RISC-V

* RISC-V (pronounced "risk-five”) is a ISA standard

— An open source implementation of a reduced instruction set computing (RISC)
based instruction set architecture (ISA)

— There was RISC-I, II, lll, IV before

Most ISAs: X86, ARM, Power, MIPS, SPARC
— Commercially protected by patents
— Preventing practical efforts to reproduce the computer systems.

RISC-V is open
— Permitting any person or group to construct compatible computers
— Use associated software

Originated in 2010 by researchers at UC Berkeley

— Krste Asanovi¢, David Patterson and students
P RISC

2017 version 2 of the userspace ISA is fixed
— User-Level ISA Specification v2.2
— Draft Compressed ISA Specification v1.79 https://riscv.org/

— Draft Privileged ISA Specification v1.10 https://en.wikipedia.org/wiki/RISC-V

Goals in Defining RISC-V

A completely open ISA that is freely available to academia and industry

A real ISA suitable for direct native hardware implementation, not just
simulation or binary translation

An ISA that avoids "over-architecting" for

— a particular microarchitecture style (e.g., microcoded, in-order, decoupled, out-of-
order) or

— implementation technology (e.g., full-custom, ASIC, FPGA), but which allows
efficient implementation in any of these

RISC-V ISA includes

— A small base integer ISA, usable by itself as a base for customized accelerators or
for educational purposes, and

— Optional standard extensions, to support general-purpose software development
— Optional customer extensions

Support for the revised 2008 IEEE-754 floating-point standard

RISC-V ISA Principles

* Generally kept very simple and extendable

* Separated into multiple specifications
— User-Level ISA spec (compute instructions)
— Compressed ISA spec (16-bit instructions)
— Privileged ISA spec (supervisor-mode instructions)
— More ...

* |SA support is given by RV + word-width + extensions
supported

— E.g. RV32l means 32-bit RISC-V with support for the I(nteger)
Instruction set

User Level ISA

* Defines the normal instructions needed for computation
— A mandatory Base integer ISA

* |: Integer instructions:
— ALU
— Branches/jumps
— Loads/stores

— Standard Extensions

M: Integer Multiplication and Division
A: Atomic Instructions

F: Single-Precision Floating-Point

D: Double-Precision Floating-Point

C: Compressed Instructions (16 bit)

* G = IMAFD: Integer base + four standard extensions
— Optional extensions

RISC-V ISA

* Both 32-bit and 64-bit
address space variants

— RV32 and RV64

* Easy to subset/extend
for education/research

— RV32IM, RV32IMA,
RV32IMAFD, RV32G

* SPEC on the website
— WWW.riscv.org

Name of base
or extension

Functionality

RV32I

Base 32-bit integer instruction set with 32 registers

RV32E

Base 32-bit instruction set but with only 16 registers; intended for
very low-end embedded applications

RV641

Base 64-bit instruction set; all registers are 64-bits, and instructions
to move 64-bit from/to the registers (LD and SD) are added

Adds integer multiply and divide instructions

Adds atomic instructions needed for concurrent processing; see
Chapter 5

Adds single precision (32-bit) IEEE floating point, includes 32 32-
bit floating point registers, instructions to load and store those
registers and operate on them

D

Extends floating point to double precision, 64-bit, making the
registers 64-bits, adding instructions to load, store, and operate on
the registers

Further extends floating point to add support for quad precision,
adding 128-bit operations

Adds support for 64- and 128-bit decimal floating point for the
IEEE standard

Defines a compressed version of the instruction set intended for
small-memory-sized embedded applications. Defines 16-bit
versions of common RV32I instructions

A future extension to support vector operations (see Chapter 4)

A future extension to support operations on bit fields

A future extension to support transactional memory

| W<

An extension to support packed SIMD instructions: see Chapter 4

RV128I

A future base instruction set providing a 128-bit address space

RV32/64 Processor State

Program counter (pc)

32 32/64-bit integer registers
(x0-x31)
— X0 always containsa 0
— x1 to hold the return address on a

call.
32 floating-point (FP) registers
(fO-f31)

— Each can contain a single- or
double-precision FP value (32-bit
or 64-bit IEEE FP)

FP status register (fsr), used
for FP rounding mode &
exception reporting

XLEN-1

0 FLEN-1

x0 / zero

f0

x1

f1

x2

2

x3

£3

x4

f4

x5

£5

x6

f6

x7

£7

x8

£8

x9

9

x10

£10

x11

f11

x12

12

x13

13

x14

f14

x15

£15

x16

f16

x17

£17

x18

£18

x19

£19

x20

£20

x21

f21

x22

£22

x23

£23

x24

£24

x25

£25

x26

£26

x27

£27

x28

£28

x29

£29

x30

£30

x31

£31

XLEN-1

XLEN

FLEN

pc | |

fcsr

XLEN

32

RV64G In
One Table

Instruction type/opcode

Instruction meaning

Data transfers

Move data between registers and memory, or between the integer and FP;
only memory address mode is 12-bit displacement + contents of a GPR

1b, Tbu, sb Load byte, load byte unsigned, store byte (to/from integer registers)

1h, Thu, sh Load half word, load half word unsigned, store half word (to/from integer
registers)

Tw, Twu, sw Load word, store word (to/from integer registers)

1d, sd Load doubleword, store doubleword

Arithmetic/logical Operations on data in GPRs. Word versions ignore upper 32 bits

add, addi, addw, addiw, sub,
subi, subw, subiw

s1t, sltu, s1ti, sltiu
and, or, xor, andi, ori, xori
Tui

auipc

s11, srl, sra, s11i, srl1i,
srai, sllw,s11iw, srili,
srliw, srai, sraiw

mul, mulw, mulh, mulhsu,
mulhu, div,divw, divu, rem,
remu, remw, remuw

Add and subtract, with both word and immediate versions

set-less-than with signed and unsigned, and immediate
and, or, xor, both register-register and register-immediate

Load upper immediate: loads bits 31..12 of a register with the immediate
value. Upper 32 bits are set to 0

Sums an immediate and the upper 20-bits of the PC into a register; used for
building a branch to any 32-bit address

Shifts: logical shift left and right and arithmetic shift right, both immediate
and word versions (word versions leave the upper 32 bit untouched)

Integer multiply, divide, and remainder, signed and unsigned with support for
64-bit products in two instructions. Also word versions

Control
beq, bne, bl1t, bge, bltu, bgeu

jal,jalr

Conditional branches and jumps; PC-relative or through register

Branch based on compare of two registers, equal, not equal, less than, greater
or equal, signed and unsigned

Jump and link address relative to a register or the PC

Floating point
flw, f1d, fsw, fsd

fadd, fsub, fmult, fiv, fsqrt,
fmadd, fmsub, fnmadd, fnmsub,
fmin, fmax, fsgn, fsgnj, fsjnx

feq, flt, fle
fmv.x.*, fmv.*.x

fecvt.*.1, fecvt.1.*, fcvt.*.
Tu, fevt.lu.*, fcvt.*.w, fcvt.
w.* fcvt.*.wu, fcvt.wu.*

All FP operation appear in double precision (.d) and single (.s)
Load, store, word (single precision), doubleword (double precision)

Add, subtract, multiply, divide, square root, multiply-add, multiply-subtract,
negate multiply-add, negate multiply-subtract, maximum, minimum, and
instructions to replace the sign bit. For single precision, the opcode is
followed by: .s, for double precision: .d. Thus fadd.s, fadd.d

Compare two floating point registers; result is O or 1 stored into a GPR
Move between the FP register abd GPR, “*” is s or d

Converts between a FP register and integer register, where “*” is S or D for
single or double precision. Signed and unsigned versions and word,
doubleword versions

Figure A.28 A list of the vast majority of instructions in RV64G. This list can also be found on the back inside cover.
This table omits system instructions, synchronization and atomic instructions, configuration instructions, instructions
to reset and access performance counters, about 10 instructions in total.

Load/Store Instructions

Example instruction

Instruction name

Meaning

1d x1,80(x2) Load doubleword Regs[x1]«+Mem[80+Regs[x2]]

Tw x1,60(x2) Load word Regs[x1]+«g Mem[60+Regs[x2]11,) 3% #Ht
Mem[60+Regs[x21]]

Twu x1,60(x2) Load word unsigned Regs[x1] g4 0°* #Hf Mem[60+Regs[x21]

b x1,40(x3) Load byte Regs[x1]«es (Mem[40+Regs[x311)°° 1
Mem[40+Regs[x31]

1bu x1,40(x3) Load byte unsigned Regs[x1] g4 0% #HF Mem[40+Regs[x31]

Th x1,40(x3) Load half word Regs[x1]«es (Mem[40+Regs[x3]110)*8 1
Mem[40+Regs[x31]

flw f0,50(x3) Load FP single Regs[f0]«g4s Mem[50+Regs[x31] #HF 032

f1d f0,50(x2) Load FP double Regs[f0] <4 Mem[50+Regs[x2]]

sd x2,400(x3)

Store double

Mem[400+Regs[x3]]« e Regs[x2]

sw x3,500(x4) Store word Mem[500+Regs[x4]]«3, Regs[x3132. 63
fsw f0,40(x3) Store FP single Mem[40+Regs[x3]]+«3, Regs[f0ly. 33
fsd f0,40(x3) Store FP double Mem[40+Regs[x3]] ¢4 Regs[f0]

sh x3,502(x2) Store half Mem[502+Regs[x2]]+«16 Regs[x31ss. .63
sb x2,41(x3) Store byte Mem[41+Regs[x3]]+«g Regs[x2]se 63

Figure A.25 The load and store instructions in RISC-V. Loads shorter than 64 bits are available in both sign-
extended and zero-extended forms. All memory references use a single addressing mode. Of course, both loads
and stores are available for all the data types shown. Because RV64G supports double precision floating point, all
single precision floating point loads must be aligned in the FP register, which are 64-bits wide.

ALU Instructions

Example

instrucmtion Instruction name Meaning

add x1,x2,x3 Add Regs[x1]«Regs[x2]+Regs[x3]

addi x1,x2,3 Add immediate Regs[x1]«Regs[x2]1+3
unsigned

Tui x1,42 Load upper Regs[x1]« 04 24HF0 2
immediate

s11 x1,x2,5 Shift left logical Regs[x1]«+Regs[x2]<<5

st x1,x2,x3 Set less than if (Regs[x2]<Regs[x3])

Regs[xl]«<1else Regs[x1]«<0

Figure A.26 The basic ALU instructions in RISC-V are available both with register-
register operands and with one immediate operand. LUl uses the U-format that
employs the rs1 field as part of the immediate, yielding a 20-bit immediate.

12

Control Flow Instructions

Example instruction Instruction name Meaning

jal x1,offset Jump and link Regs[x1]«PC+4; PC+—PC+ (offset<<1)

jalr x1,x2,0ffset Jump and link register =~ Regs[x1]«PC+4; PC«Regs[x2]+offset

beq x3,x4,offset Branch equal zero if (Regs[x3]==Regs[x4]) PC—PC+ (offset<<1)
bgt x3,x4,name Branch not equal zero if (Regs[x3]1>Regs[x4]) PC—PC+ (offset<<1)

Figure A.27 Typical control flow instructions in RISC-V. All control instructions, except jumps to an address in a
register, are PC-relative.

13

RISC-V Dynamic Instruction Mix for SPECint2006

Program Loads Stores Branches Jumps ALU operations
astar 28% 6% 18% 2% 46%
bzip 20% 7% 11% 1% 54%
gce 17% 23% 20% 4% 36%
gobmk 21% 12% 14% 2% 50%
h264ref 33% 14% 5% 2% 45%
hmmer 28% 9% 17% 0% 46%
libquantum 16% 6% 29% 0% 48%
mcf 35% 11% 24% 1% 29%
omnetpp 23% 15% 17% 7% 31%
perlbench 25% 14% 15% 7% 39%
sjeng 19% 7% 15% 3% 56%
xalancbmk 30% 8% 27% 3% 31%

Figure A.29 RISC-V dynamic instruction mix for the SPECint2006 programs. Omnetpp includes 7% of the instruc-
tions that are floating point loads, stores, operations, or compares; no other program includes even 1% of other
instruction types. A change in gcc in SPECint2006, creates an anomaly in behavior. Typical integer programs have
load frequencies that are 1/5 to 3x the store frequency. In gcc, the store frequency is actually higher than the load
frequency! This arises because a large fraction of the execution time is spent in a loop that clears memory by storing
x0 (not where a compiler like gcc would usually spend most of its execution timel). A store instruction that stores a
register pair, which some other RISC ISAs have included, would address this issue.

14

RISC-V Hybrid Instruction Encoding

°* 16, 32, 48, 64 ... bits length encoding

® Base instruction set (RV32) always has fixed 32-bit
instructions lowest two bits =11,

* All branches and jumps have targets at 16-bit granularity
(even in base ISA where all instructions are fixed 32 bits

XXXXXXXXXXXXXXaa

16-bit (aa # 11)

XXXXXXXXXXXXXXXX

XXXXXXXXXXxbbbl1l

32-bit (bbb £ 111)]

¢ - 1 XXXX

XXXXXXXXXXXXXXXX

xxxxxxxxxx011111

¢ s 1 XXXX

XXXXXXXXXXXXXXXX

xxxxxxxxx0111111

¢ s 1 XXXX

XXXXXXXXXXXXXXXX

xnnnxxxxx1111111

¢ s 1 XXXX

XXXXXXXXXXXXXXXX

x111xxxxx1111111

Byte Address: base+4

base+2

base

48-bit
64-bit
(80+16*nnn)-bit, nnn#111

Reserved for >192-bits

Four Core RISC-V Instruction Formats

https://github.com/riscv/riscv-opcodes/blob/master/opcodes

ﬁf:ldl?lonalocl).pcode Additional opcode bits 7-bit opcode field
its/immediate (but low 2 bits =11,)
Reg. Source 2 Reg. Source 1 Destination Reg.

31 \ 25 24 \l' 20 19 \l' 1514 W 12 11 l' 76 \ 0
funct7 rs2 rsl funct3 rd opcode R-type
imm|11:0] rsl funct3 rd opcode [-type
imm|11:5] rs2 rsl funct3 | imm[4:0] opcode S-type
imm|[31:12] rd opcode U-type

Aligned on a four-byte boundary in memory. There are variants!
Sign bit of immediates always on bit 31 of instruction. Register

fields never move. 6

Additional opcode
bits/immediate

Reg. Source 2 Reg. Source 1

25 24 ZZIl 20 19 l 15

With Variants

Additional opcode bits

7-bit opcode field
(but low 2 bits =11,)

Destination Reg.

uV 12 1 ‘l’s

31 30Y 7 6 VYo

funct? rs2 rsl funct3 rd opcode | R-type

imm[11] | imm|[10:5] |imm[4:1] | imm|0] rsl funct3 rd opcode | I-type
(— . . . T h

imm[11] | imm[10:5] rs2 rsl funct3 | imm[4:1] | imm|0] | opcode | S-type
Limm[l‘Z] imm |10:5| rs2 rsl funct3 | imm[4:1] | imm[11] | opcode SB-typeJ
(= . - .)

imm|31] imm [30:20] imm|[19:15] | imm|14:12) rd opcode | U-type
Li1111u[20] imm[10:5] [imm(4:1] [imm|[11] | imm[19:15] | imm|[14:12] rd opcode U.]-typeJ

Based on the handling of the immediates

17

RISC-V Encoding Summary

Name Field Comments
(Field Size) 7 bits 5 bits 5 bits 3 bits 5 bits
R-type funct7 rs2 rsi funct3 rd opcode Arithmetic instruction format
I-type immediate[11:0] rsl funct3 rd opcode Loads & immediate arithmetic
S-type immed[11:5] rs2 rsi funct3 | immed[4:0] opcode Stores
SB-type immed[12,10:5] rs2 rsi funct3 |immed[4:1,11] opcode Conditional branch format
UJ-type immediate[20,10:1,11,19:12] rd opcode Unconditional jump format
Utype immediate[31:12] rd opcode Upper immediate format

Immediate Encoding Variants

* 32-bit Immediate produced by each base instruction format
— Instruction bit: inst[y]

31 30 20 19 12 11 10 5 4 1 0
— inst[31] — inst[30:25] | inst[24:21] | inst[20] | I-immediate
— inst[31] — inst[30:25] | inst[11:8] | inst[7] | S-immediate
— inst[31] — inst[7] |inst[30:25] | inst[11:8] 0 B-immediate
inst[31] inst[30:20] inst[19:12] — 0 — U-immediate
— inst[31] — inst[19:12] | inst[20] | inst[30:25] | inst[24:21] 0 J-immediate

19

RISC-V Addressing Summary

1. Immediate addressing

immediate | rs1 |funct3| rd | op
2. Register addressing
funct7| rs2 | rs1 |funct3| rd | op Registers
| > Register
3. Base addressing, i.e., displacement addressing
immediate | rs1 |funct3| rd | op Memory
Register @—v [Byte | Halfword Word Doubleword
I }
4. PC-relative addressing
imm | rs2 | rs1 |funct3[imm| op Memory
| I
PC Word

O—

R-Format Encoding Example

funct7 rs2 - funct3 - opcode
7 bits 5 bits 5 bits 3 bits 5 bits 7 bits
add x6, x10,
0000000 | 00110 - 000 - 0110011

0000 0000 0110 0101 0000 0011 0011 0011, =
0065033344

RISC-V I-Format Instructions

immediate rs1 funct3 rd opcode
12 bits 5 bits 3 bits 5 bits 7 bits

* |mmediate arithmetic and load instructions

— rsl: source or base address register number

— immediate: constant operand, or offset added to base address
e 2s-complement, sign extended

* Design Principle: Good design demands good compromises

— Different formats complicate decoding, but allow 32-bit instructions
uniformly

— Keep formats as similar as possible

RISC-V S-Format Instructions

imm[11:3]

rs2

rs1

funct3

imm|[4:0]

opcode

7 bits

5 bits

5 bits

3 bits

5 bits

7 bits

Different immediate format for store instructions

rsl: base address register number

rs2: source operand register number

immediate: offset added to base address
* Split so that rs1 and rs2 fields always in the same place

Integer Computational Instructions (ALU)

* |-type (Immediate), all immediates in all instructions are sign
extended
— ADDI: adds sign extended 12-bit immediate to rsl
— SLTI(U): set less than immediate

— ANDI/ORI/XORI: Logical operations |-type instructions end with |
— SLLI/SRLI/SRAL: Shifts by constants

31 20 19 15 14 12 11 76 0
imm|[11:0] rsl funct3 rd opcode
12 5 3 d 7
[-immediate[11:0] SIC ADDI/SLTI[U] dest OP-IMM
[-immediate[11:0] SIC ANDI/ORI/XORI dest OP-IMM
31 25 24 20 19 15 14 12 11 76 0
imm|[11:5] imm[4:0] rsl funct3 rd opcode
7 5 5 3 5 7
0000000 shamt[4:0] src SLLI dest OP-IMM
0000000 shamt[4:0] src SRLI dest OP-IMM

0100000 shamt[4:0] src SRAI dest OP-IMM

24

Integer Computational Instructions (ALU)

* |-type (Immediate), all immediates in all instructions are sign

extended

— LUI/AUIPC: load upper immediate/add upper immediate to pc

31

I-type instructions end with |

12 11

76

0
imm|[31:12] rd opcode
20 5 7
U-immediate[31:12] dest LUI
U-immediate[31:12] dest AUIPC

Writes 20-bit immediate to top of destination register.
Used to build large immediates.

12-bit immediates are signed, so have to account for sign when

building 32-bit immediates in 2-instruction sequence (LUI high-

20b, ADDI low-12b)

25

Integer Computational Instructions

* R-type (Register)
— rsl and rs2 are the source registers. rd the destination

— ADD/SUB:

— SLT, SLTU: set less than
— SRL, SLL, SRA: shift logical or arithmetic left or right

31 25 24 20 19 15 14 12 11 76 0
funct? rs2 rsl funct3 rd opcode
7 5 5 3 5 7
0000000 src2 srcl ADD/SLT/SLTU dest OP
0000000 src2 srcl AND/OR/XOR dest OP
0000000 src2 srcl SLL/SRL dest OP
0100000 src2 srcl SUB/SRA dest OP
NOP Instruction
ADDI x0, x0, 0
31 20 19 15 14 12 11 76 0
imm|[11:0] rsl funct3 rd opcode
12 5 3 5 7
0 0 ADDI 0 OP-IMM

26

Control Transfer Instructions

NO architecturally visible delay slots

* Unconditional Jumps: PC+offset target
— JAL: Jump and link, also writes PC+4 to x1, UJ-type

* Offset scaled by 1-bit left shift — can jump to 16-bit
instruction boundary (Same for branches)

— JALR: Jump and link register where Imm (12 bits) + rd1 = target

31 30 21 20 19 12 11 76 0
imm[20] imm[10:1] imm[11] | imm|[19:12] rd opcode
1 10 1 8 d 7
offset[20:1] dest JAL
31 20 19 1514 12 11 76 0
imm|[11:0] rsl funct3 rd opcode
12 5 3 5 7

offset[11:0] base 0 dest JALR

27

Control Transfer Instructions

NO architecturally visible delay slots
* Conditional Branches: SB-type and PC+offset target

12-bit signed immediate split across two fields

31 30/ 25 24 20 19 15 14 12 11 \1 8 7 6

imm[12] | imm|[10:5] rs2 rsl funct3 imm[4:1] | imm[11] opcode
1 6 S 5 3 4 1 7
offset[12,10:5] src2 srcl BEQ/BNE offset[11,4:1] BRANCH
offset[12,10:5] src2 srcl BLT[U] offset[11,4:1] BRANCH
offset[12,10:5] src2 srcl BGE|U] offset[11,4:1] BRANCH

Branches, compare two registers, PC+(immediate<<1) target
(Signed offset in multiples of two).Branches do not have delay slot

28

* Store instructions (S-type)

Loads and Stores

— MEM(rs1+imm) =rs2

* Loads (I-type)
— Rd = MEM(rs1 + imm)

31 20 19 1514 12 11 76 0
imm|[11:0] rsl funct3 rd opcode
12 5 3 S 7
offset[11:0] base width dest LOAD
31 25 24 20 19 1514 12 11 76
imm|[11:5] rs2 rsl funct3 | imm[4:0] opcode
7 5 5 3 d 7
offset[11:5] SIC base width offset[4:0] STORE

29

Specifications and Software
From riscv.org and github.com/riscv

* Specification from RISC-V website
— https://riscv.org/specifications/

® RISC-V software includes

— GNU Compiler Collection (GCC) toolchain (with GDB, the debugger)
* https://github.com/riscv/riscv-tools

— LLVM toolchain

— A simulator ("Spike")
* https://github.com/riscv/riscv-isa-sim

— Standard simulator QEMU
* https://github.com/riscv/riscv-gemu

* Operating systems support exists for Linux
— https://github.com/riscv/riscv-linux

* A JavaScript ISA simulator to run a RISC-V Linux system on a web
browser
— https://github.com/riscv/riscv-angel

30

RISC-V Implementations

* For RISC-V implementation, the UCB created Chisel, an
open-source hardware construction language that is a
specialized dialect of Scala.

— Chisel: Constructing Hardware In a Scala Embedded Language
— https://chisel.eecs.berkeley.edu/

* In-order Rocket core and chip generator
— https://github.com/freechipsproject/rocket-chip

®* Qut-of-order BOOM core
— https://github.com/ucb-bar/riscv-boom

®* UCB Sodor cores for education (single cycle, and 1-5 stages
pipeline)
— https://github.com/ucb-bar/riscv-sodor

31

RISC-V Implementations

* Alist from
— https://riscv.org/risc-v-cores/

* The Indian lIT-Madras is developing six RISC-V open-source
CPU designs (SHAKTI) for six distinct usages
— https://shaktiproject.bitbucket.io/index.html

* SiFive HiFive Unleashed
— First Linux RISC-V Board
* First shipment: June 2018
— https://www.sifive.com/
— https://github.com/sifive/freedom

HiFive Unleashed
THE FIRST LINUX-READY RISC-V DEVELOPMENT BOARD °

32

Additional Information

33

Calling Convention

* (C Datatypes and Alignment
— RV32 employs an ILP32 integer model, while RV64 is LP64
— Floating-point types are IEEE 754-2008 compatible
— All of the data types are keeped naturally aligned when stored in memory
— charis implicitly unsigned
— In RV64, 32-bit types, such as int, are stored in integer registers as proper sign extensions of
their 32-bit values; that is, bits 63..31 are all equal

e This restriction holds even for unsigned 32-bit types

C type Description Bytes in RV32 | Bytes in RV64
char Character value/byte 1 1
short Short integer 2 2
int Integer 4 4
long Long integer 4 8
long long Long long integer 8 8
void* Pointer 4 8
float Single-precision float 4 4
double Double-precision float 8 8
long double | Extended-precision fHoat 16 16

34

Calling Convention

RVG Calling Convention

If the arguments to a function are conceptualized as fields of a C struct, each with
pointer alignment, the argument registers are a shadow of the first eight pointer-
words of that struct

* Floating-point arguments that are part of unions or array fields of structures are passed in
integer registers

* Floating-point arguments to variadic functions (except those that are explicitly named in
the parameter list) are passed in integer registers

The portion of the conceptual struct that is not passed in argument registers is
passed on the stack

* The stack pointer sp points to the first argument not passed in a register

Arguments smaller than a pointer-word are passed in the least-significant bits of
argument registers

When primitive arguments twice the size of a pointer-word are passed on the stack,
they are naturally aligned

* When they are passed in the integer registers, they reside in an aligned even-odd register
pair, with the even register holding the least-significant bits

Arguments more than twice the size of a pointer-word are passed by reference

35

Calling Convention

* The stack grows downward and the stack pointer is always kept 16-byte aligned

* Values are returned from functions in integer registers vO and v1 and floating-point
registers fvO and fvl

Floating-point values are returned in floating-point registers only if they are primitives or
members of a struct consisting of only one or two floating-point values

Other return values that fit into two pointer-words are returned in vO and v1

Larger return values are passed entirely in memory; the caller allocates this memory
region and passes a pointer to it as an implicit first parameter to the callee

Register | ABI Name | Description Saver
x0 Zero Hard-wired zero
x1 ra Return address Caller
x2 sO/fp Saved register/frame pointer | Callee
x3-13 s1-11 Saved registers Callee
x14 sp Stack pointer Callee
x15 tp Thread pointer Callee
[1Tx16-17 | v01 Return values Caller ||
| | x18 25 | a0 7 Function arguments Caller | |
x26 30 | t0 4 Temporaries Caller
x31 gp (Global pointer
[| f0-15 £s0-15 FP saved registers Callee | |
[1£16-17 | £v0-1 FP return values Caller | |
[[1Tf1825 | fad-7 FP arguments Caller []
£26-31 | ft0-5 FP temporaries Caller

36

Memory Model

* RISC-V: Relaxed memory model

31 28 271 26 25 24 23 22 21 20 19 1514 12 11 76
0 PI| PO |PR|PW /| SI|SO| SR |SW rsl funct3 rd opcode
4 1 1 1 1 1 1 1 1 5 3 5 7
0 predecessor successor 0 FENCE 0 MISC-MEM
31 20 19 15 14 12 11 76
imm|[11:0] rsl funct3 rd opcode
12 5 3 5 7

0 0 FENCE.I 0 MISC-MEM

Control and Status Register (CSR) Instructions

® CSR Instructions

31 20 19 1514 12 11 76 0
CST rsl funct3 rd opcode
12 5) 3 5) 7
source/dest source ~CSRRW dest SYSTEM
source/dest source ~ CSRRS dest SYSTEM
source/dest source ~ CSRRC dest SYSTEM
source/dest zimm[4:0] CSRRWI dest SYSTEM
source/dest zimm[4:0] CSRRSI dest SYSTEM
source /dest zimm[4:0] CSRRCI dest SYSTEM
* Timer and counters
31 20 19 1514 12 11 76
CST rsl funct3 rd opcode
12 5) 3 5) 7
RDCYCLE[H] 0 CSRRS dest SYSTEM
RDTIMEH] 0 CSRRS dest SYSTEM
RDINSTRET[H] 0 CSRRS dest SYSTEM

38

Data Formats and Memory Addresses

Data formats:

8-b Bytes, 16-b Half words, 32-b words and 64-b double words

Some issues

e Byte addressing

Little Endian
(RISC-V)

Big Endian

e Word alignment

Suppose the memory is organized in 32-bit words.
Can a word address beginonlyat0, 4, 8, ?

Most Significant Least Significant
Byte Byte
3 0
0 / 3
Byte Addresses
6 /

39

ISA Design

RISC-V has 32 integer registers and can have 32 floating-point registers

Register number 0 is a constant O

Register number 1 is the return address (link register)

The memory is addressed by 8-bit bytes

The instructions must be aligned to 32-bit addresses

Like many RISC designs, it is a "load-store" machine

All arithmetic and logic operations occur between registers

RISC-V can load and store 8 and 16-bit items, but it lacks 8 and 16-bit arithmetic, including
comparison-and-branch instructions

The 64-bit instruction set includes 32-bit arithmetic

The only instructions that access main memory are loads and stores

inst [1:2] 000 001 010 01l 100 101 110 111

inst |6:5] (> 32b)
00 LOAD LOAD-FP | custom-0 | MISC-MEN | OP-INMM | AUIPC OP-ININ-32 485
01| STORE |STORE-FP | custom-1 AMO opP LUI OP-32 G4b
10| MADD MSUB NMSUB NMADD OP-FP | reserved | custom-2/rvl28 486
11 | BRANCH JALR reserved JAL SYSTEM | reserved | custormn-3/rvi28 | = 80b

40

ISA Design for Performance

* Features to increase a computer's speed, while reducing its cost
and power usage

— placing most-significant bits at a fixed location to speed sign-extension, and a bit-
arrangement designed to reduce the number of multiplexers in a CPU

31 25 24 20 19 15 14 12 11 76 0
funct7 rs2 rs] funct3 rd opcode R-type
imm|11:0] rsl funct3 rd opcode [-tyvpe
imm|11:5] rs2 rsl funct3 | imm|4:0] opcode S-type
imm|31:12] rd opcode U-type
31 20 19 15 14 12 11 76 0
imm|11:0] rsl funct3 rd opcode
12 5 3 5 7
[-immediate[11:0] STC ADDI/SLTI|U] dest OP-IMM
[-immediate[11:0] SIC ANDI/ORI/XORI dest OP-IMM

41

ISA Design

* Intentionally lacks condition codes, and even lacks a carry bit

— To simplify CPU designs by minimizing interactions between instructions

* Builds comparison operations into its conditional-jumps

31 30 2524 2019 15 14 12 11 8 7 6 0
imm(12] [imm[10:5)] rs2 rsl funct3 imm|4:1] | imm|[11] opcode
1 6 5 H 3 4 1 7
offset[12,10:5] src2 srcl BEQ/BNE offset[11,4:1] BRANCH
offset[12,10:5] src2 srcl BLT|U] offset[11,4:1] BRANCH
offset|12,10:5] src2 srel BGE|[U] offset|11,4:1] BRANCH

42

ISA Design

* The lack of a carry bit complicates multiple-precision arithmetic
— GMP, MPFR

* Does not detect or flag most arithmetic errors, including overflow, underflow
and divide by zero

— No special instruction set support for overflow checks on integer arithmetic operations.

31

Most popular programming languages do not support checks for integer overflow, partly
because most architectures impose a significant runtime penalty to check for overflow on
integer arithmetic and partly because modulo arithmetic is sometimes the desired behavior

— Floating-Point Control and Status Register

8 7

o 4 3 2 1 0

0

[Rounding Mode (frm)

Accrued Exceptions (fflags)

3

Flag Mnemonic

Flag Meaning

NV Invalid Operation
DZ Divide by Zero
OF Overflow

UF Underflow

NX [nexact

NV [DZ [OF | UF | NX

1 1 I 1 1

43

ISA Design

* Lacks the "count leading zero" and bit-field operations normally used to
speed software floating-point in a pure-integer processor

* No branch delay slot, a position after a branch instruction that can be filled
with an instruction which is executed regardless of whether the branch is

taken or not
— This feature can improve performance of pipelined processors,
— Omitted in RISC-V because it complicates both multicycle CPUs and superscalar CPUs

* Lacks address-modes that "write back" to the registers

— For example, it does not do auto-incrementing

44

ISA Design

A load or store can add a twelve-bit signed offset to a register that contains
an address. A further 20 bits (yielding a 32-bit address) can be generated at

an absolute address
RISC-V was designed to permit position-independent code. It has a special instruction to

generate 20 upper address bits that are relative to the program counter. The lower twelve bits
are provided by normal loads, stores and jumps

31

0

rd opcode

7

imm|31:12]

20 5
U-immediate[31:12) dest LUI

U-immediate[31:12)] dest AUIPC

LUI (load upper immediate) places the U-immediate value in the top 20 bits of the destination

register rd, filling in the lowest 12 bits with zeros
AUIPC (add upper immediate to pc) is used to build pc-relative addresses, forms a 32-bit offset
from the 20-bit U-immediate, filling in the lowest 12 bits with zeros, adds this offset to the pc,

then places the result in register rd

45

