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Review:	ISA	Principles	-- Iron-code	Summary

• Section	A.2—Use	general-purpose	registers	with	a	load-store	architecture.	
• Section	A.3—Support	these	addressing	modes:	displacement	(with	an	address	offset	

size	of	12	to	16	bits),	immediate	(size	8	to	16	bits),	and	register	indirect.	
• Section	A.4—Support	these	data	sizes	and	types:	8-,	16-,	32-,	and	64-bit	integers	and	

64-bit	IEEE	754	floating-point	numbers.	
– Now	we	see	16-bit	FP	for	deep	learning	in	GPU

• http://www.nextplatform.com/2016/09/13/nvidia-pushes-deep-learning-inference-
new-pascal-gpus/

• Section	A.5—Support	these	simple	instructions,	since	they	will	dominate	the	number	
of	instructions	executed:	load,	store,	add,	subtract,	move	register- register,	and	shift.	

• Section	A.6—Compare	equal,	compare	not	equal,	compare	less,	branch	(with	a	PC-
relative	address	at	least	8	bits	long),	jump,	call,	and	return.	

• Section	A.7—Use	fixed	instruction	encoding	if	interested	in	performance,	and	use	
variable	instruction	encoding	if	interested	in	code	size.	

• Section	A.8—Provide	at	least	16	general-purpose	registers,	be	sure	all	addressing	
modes	apply	to	all	data	transfer	instructions,	and	aim	for	a	minimalist	IS

– Often	use	separate	floating-point	registers.	
– The	justification	is	to	increase	the	total	number	of	registers	without	raising	problems	in	

the	instruction	format	or	in	the	speed	of	the	general-purpose	register	file.	This	
compromise,	however,	is	not	orthogonal.	
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What	is	RISC-V
• RISC-V	(pronounced	"risk-five”)	is	a	ISA	standard

– An	open	source	implementation	of	a	reduced	instruction	set	computing	(RISC)	
based	instruction	set	architecture	(ISA)

– There	was	RISC-I,	II,	III,	IV	before
• Most	ISAs:	X86,	ARM,	Power,	MIPS,	SPARC

– Commercially	protected	by	patents
– Preventing	practical	efforts	to	reproduce	the	computer	systems.	

• RISC-V	is	open
– Permitting	any	person	or	group	to	construct	compatible	computers
– Use	associated	software

• Originated	in	2010	by	researchers	at	UC	Berkeley
– Krste Asanović,	David	Patterson	and	students

• 2017	version	2	of	the	userspace ISA	is	fixed
– User-Level	ISA	Specification	v2.2
– Draft	Compressed	ISA	Specification	v1.79
– Draft	Privileged	ISA	Specification	v1.10
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Goals	in	Defining	RISC-V

• A	completely	open	ISA	that	is	freely	available	to	academia	and	industry
• A	real	ISA	suitable	for	direct	native	hardware	implementation,	not	just	

simulation	or	binary	translation
• An	ISA	that	avoids	"over-architecting"	for

– a	particular	microarchitecture	style	(e.g.,	microcoded,	in-order,	decoupled,	out-of-
order)	or	

– implementation	technology	(e.g.,	full-custom,	ASIC,	FPGA),	but	which	allows	
efficient	implementation	in	any	of	these

• RISC-V	ISA	includes
– A small	base	integer	ISA,	usable	by	itself	as	a	base	for	customized	accelerators	or	

for	educational	purposes,	and	
– Optional	standard	extensions,	to	support	general-purpose	software	development
– Optional	customer	extensions

• Support	for	the	revised	2008	IEEE-754	floating-point	standard
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RISC-V	ISA	Principles

• Generally	kept	very	simple	and	extendable
• Separated	into	multiple	specifications

– User-Level	ISA	spec	(compute	instructions)
– Compressed	ISA	spec	(16-bit	instructions)
– Privileged	ISA	spec	(supervisor-mode	instructions)
– More	…	

• ISA	support	is	given	by	RV	+	word-width	+	extensions	
supported
– E.g.	RV32I	means	32-bit	RISC-V	with	support	for	the	I(nteger)	

instruction	set
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User	Level	ISA

• Defines	the	normal	instructions	needed	for	computation
– A mandatory	Base	integer	ISA

• I:	Integer	instructions:	
– ALU
– Branches/jumps
– Loads/stores

– Standard	Extensions
• M:	Integer	Multiplication	and	Division
• A:	Atomic	Instructions
• F:	Single-Precision	Floating-Point
• D:	Double-Precision	Floating-Point
• C:	Compressed	Instructions	(16	bit)

• G	=	IMAFD:	Integer	base	+	four	standard	extensions
– Optional	extensions
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RISC-V	ISA

• Both	32-bit	and	64-bit	
address	space	variants
– RV32	and	RV64

• Easy	to	subset/extend	
for	education/research
– RV32IM,	RV32IMA,	

RV32IMAFD,	RV32G

• SPEC	on	the	website
– www.riscv.org
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RV32/64	Processor	State

• Program	counter	(pc)
• 32	32/64-bit	integer	registers	

(x0-x31)
– x0	always	contains	a	0
– x1	to	hold	the	return	address	on	a	

call.

• 32	floating-point	(FP)	registers	
(f0-f31)
– Each	can	contain	a	single- or	

double-precision	FP	value	(32-bit	
or	64-bit	IEEE	FP)

• FP	status	register	(fsr),	used	
for	FP	rounding	mode	&	
exception	reporting
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RV64G	In	
One	Table
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Load/Store	Instructions
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ALU	Instructions
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Control	Flow	Instructions
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RISC-V	Dynamic	Instruction	Mix	for	SPECint2006
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RISC-V	Hybrid	Instruction	Encoding

• 16,	32,	48,	64	…	bits	length	encoding
• Base	instruction	set	(RV32)	always	has	fixed	32-bit	
instructions	lowest	two	bits	=	112

• All	branches	and	jumps	have	targets	at	16-bit	granularity	
(even	in	base	ISA	where	all	instructions	are	fixed	32	bits
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Four	Core	RISC-V	Instruction	Formats
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Reg.	Source	2 Reg.	Source	1

7-bit	opcode field	
(but	low	2	bits	=112)

Additional	opcode
bits/immediate

Destination	Reg.

Aligned	on	a	four-byte	boundary	in	memory.	There	are	variants!
Sign	bit	of	immediates always	on	bit	31	of	instruction.	Register	
fields	never	move.

https://github.com/riscv/riscv-opcodes/blob/master/opcodes

Additional	opcode bits



With	Variants
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Reg.	Source	2 Reg.	Source	1

7-bit	opcode field	
(but	low	2	bits	=112)

Additional	opcode
bits/immediate

Destination	Reg.

Additional	opcode bits

Based	on	the	handling	of	the	immediates



RISC-V	Encoding	Summary



Immediate	Encoding	Variants

• 32-bit	Immediate	produced	by	each	base	instruction	format
– Instruction	bit:	inst[y]
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RISC-V	Addressing	Summary

,	i.e.,	displacement	addressing



R-Format	Encoding	Example

add x6, x10, x6

0000 0000 0110 0101 0000 0011 0011 0011two =
0065033316

funct7 rs2 rs1 rdfunct3 opcode
7 bits 7 bits5 bits 5 bits 5 bits3 bits

0 6 10 60 51

0000000 00110 01010 00110000 0110011



RISC-V	I-Format	Instructions

• Immediate	arithmetic	and	load	instructions
– rs1:	source	or	base	address	register	number
– immediate:	constant	operand,	or	offset	added	to	base	address

• 2s-complement,	sign	extended

• Design	Principle: Good	design	demands	good	compromises
– Different	formats	complicate	decoding,	but	allow	32-bit	instructions	

uniformly
– Keep	formats	as	similar	as	possible

immediate rs1 rdfunct3 opcode
12 bits 7 bits5 bits 5 bits3 bits



RISC-V	S-Format	Instructions

• Different	immediate	format	for	store	instructions
– rs1:	base	address	register	number
– rs2:	source	operand	register	number
– immediate:	offset	added	to	base	address

• Split	so	that	rs1	and	rs2	fields	always	in	the	same	place

rs2 rs1 funct3 opcode
7 bits 7 bits5 bits 5 bits 5 bits3 bits

imm[11:5] imm[4:0]



Integer	Computational	Instructions	(ALU)
• I-type	(Immediate),	all	immediates in	all	instructions	are	sign	

extended
– ADDI:	adds	sign	extended	12-bit	immediate	to	rs1
– SLTI(U):	set	less	than	immediate
– ANDI/ORI/XORI:	Logical	operations
– SLLI/SRLI/SRAI:	Shifts	by	constants
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I-type	instructions	end	with	I



Integer	Computational	Instructions	(ALU)
• I-type	(Immediate),	all	immediates in	all	instructions	are	sign	

extended
– LUI/AUIPC:	load	upper	immediate/add	upper	immediate	to	pc
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I-type	instructions	end	with	I

• Writes	20-bit	immediate	to	top	of	destination	register.
• Used	to	build	large	immediates.
• 12-bit	immediates are	signed,	so	have	to	account	for	sign	when	

building	32-bit	immediates in	2-instruction	sequence	(LUI	high-
20b,	ADDI	low-12b)



Integer	Computational	Instructions
• R-type	(Register)

– rs1	and	rs2	are	the	source	registers.	rd the	destination
– ADD/SUB:	
– SLT,	SLTU:	set	less	than
– SRL,	SLL,	SRA:	shift	logical	or	arithmetic	left	or	right
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Control	Transfer	Instructions
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NO	architecturally	visible	delay	slots
• Unconditional	Jumps:	PC+offset target

– JAL:	Jump	and	link,	also	writes	PC+4	to	x1,	UJ-type
• Offset	scaled	by	1-bit	left	shift	– can	jump	to	16-bit	
instruction	boundary	(Same	for	branches)

– JALR:	Jump	and	link	register	where	Imm (12	bits)	+	rd1	=	target



Control	Transfer	Instructions
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NO	architecturally	visible	delay	slots
• Conditional	Branches:	SB-type	and	PC+offset target

12-bit	signed	immediate	split	across	two	fields

Branches,	compare	two	registers,	PC+(immediate<<1)	target
(Signed	offset	in	multiples	of	two).Branches	do	not	have	delay	slot



Loads	and	Stores

• Store	instructions	(S-type)
– MEM(rs1+imm)	=	rs2

• Loads	(I-type)
– Rd	=	MEM(rs1	+	imm)
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Specifications	and	Software	
From	riscv.org and	github.com/riscv

• Specification	from	RISC-V	website
– https://riscv.org/specifications/

• RISC-V	software	includes
– GNU	Compiler	Collection	(GCC)	toolchain	(with	GDB,	the	debugger)

• https://github.com/riscv/riscv-tools
– LLVM	toolchain
– A simulator	("Spike")

• https://github.com/riscv/riscv-isa-sim
– Standard	simulator	QEMU

• https://github.com/riscv/riscv-qemu
• Operating	systems	support	exists	for	Linux

– https://github.com/riscv/riscv-linux
• A	JavaScript	ISA	simulator	to	run	a	RISC-V	Linux	system	on	a	web	

browser
– https://github.com/riscv/riscv-angel
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RISC-V	Implementations

• For	RISC-V	implementation,	the	UCB	created	Chisel,	an	
open-source	hardware	construction	language	that	is	a	
specialized	dialect	of	Scala.
– Chisel:	Constructing	Hardware	In	a	Scala	Embedded	Language
– https://chisel.eecs.berkeley.edu/

• In-order	Rocket	core	and	chip	generator
– https://github.com/freechipsproject/rocket-chip

• Out-of-order	BOOM	core
– https://github.com/ucb-bar/riscv-boom

• UCB	Sodor	cores	for	education	(single	cycle,	and	1-5	stages	
pipeline)
– https://github.com/ucb-bar/riscv-sodor
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RISC-V	Implementations

• A	list	from
– https://riscv.org/risc-v-cores/

• The	Indian	IIT-Madras	is	developing	six	RISC-V	open-source	
CPU	designs	(SHAKTI)	for	six	distinct	usages
– https://shaktiproject.bitbucket.io/index.html

• SiFive HiFive Unleashed
– First	Linux	RISC-V	Board

• First	shipment:	June	2018
– https://www.sifive.com/
– https://github.com/sifive/freedom
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Additional	Information

33



Calling	Convention

• C	Datatypes and	Alignment
– RV32	employs	an	ILP32	integer	model,	while	RV64	is	LP64
– Floating-point	types	are	IEEE	754-2008	compatible
– All	of	the	data	types	are	keeped naturally	aligned	when	stored	in	memory
– char	is	implicitly	unsigned
– In	RV64,	32-bit	types,	such	as	int,	are	stored	in	integer	registers	as	proper	sign	extensions	of	

their	32-bit	values;	that	is,	bits	63..31	are	all	equal
• This	restriction	holds	even	for	unsigned	32-bit	types
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Calling	Convention

• RVG	Calling	Convention
– If	the	arguments	to	a	function	are	conceptualized	as	fields	of	a	C	struct,	each	with	

pointer	alignment,	the	argument	registers	are	a	shadow	of	the	first	eight	pointer-
words	of	that	struct
• Floating-point	arguments	that	are	part	of	unions	or	array	fields of	structures	are	passed	in	

integer	registers
• Floating-point	arguments	to	variadic functions	(except	those	that	are	explicitly	named	in	

the	parameter	list)	are	passed	in	integer	registers
– The	portion	of	the	conceptual	struct that	is	not	passed	in	argument	registers	is	

passed	on	the	stack
• The	stack	pointer	sp	points	to	the	first	argument	not	passed	in	a	register

– Arguments	smaller	than	a	pointer-word	are	passed	in	the	least-significant bits	of	
argument	registers

– When	primitive	arguments	twice	the	size	of	a	pointer-word	are	passed	on	the	stack,	
they	are	naturally	aligned
• When	they	are	passed	in	the	integer	registers,	they	reside	in	an	aligned	even-odd	register	

pair,	with	the	even	register	holding	the	least-significant bits
– Arguments	more	than	twice	the	size	of	a	pointer-word	are	passed	by	reference
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Calling	Convention
• The	stack	grows	downward	and	the	stack	pointer	is	always	kept	16-byte	aligned
• Values	are	returned	from	functions	in	integer	registers	v0	and	v1	and	floating-point	

registers	fv0	and	fv1
– Floating-point	values	are	returned	in	floating-point	registers	only	if	they	are	primitives	or	

members	of	a	struct consisting	of	only	one	or	two	floating-point	values
– Other	return	values	that	fit	into	two	pointer-words	are	returned	in	v0	and	v1
– Larger	return	values	are	passed	entirely	in	memory;	the	caller	allocates	this	memory	

region	and	passes	a	pointer	to	it	as	an	implicit	first	parameter	to	the	callee
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Memory	Model

• RISC-V:	Relaxed	memory	model
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Control	and	Status	Register	(CSR)	Instructions

• CSR	Instructions

• Timer	and	counters
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Data	Formats	and	Memory	Addresses
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Data	formats:
8-b	Bytes, 16-b	Half	words, 32-b	words	and 64-b	double	words

Some	issues
• Byte	addressing

•Word	alignment	
Suppose	the	memory	is	organized	in	32-bit	words.
Can	a	word	address	begin	only	at	0,	4,	8,	....	?

0         1           2          3          4           5           6          7 

Most	Significant	
Byte

Least	Significant	
Byte

Byte	Addresses

3 2 1 0

0 1 2 3Big	Endian

Little	Endian	
(RISC-V)



ISA	Design
• RISC-V	has	32	integer	registers	and	can	have	32	floating-point	registers

– Register	number	0	is	a	constant	0
– Register	number	1	is	the	return	address	(link	register)

• The	memory	is	addressed	by	8-bit	bytes
• The	instructions	must	be	aligned	to	32-bit	addresses
• Like	many	RISC	designs,	it	is	a	"load-store"	machine

– The	only	instructions	that	access	main	memory	are	loads	and	stores
– All	arithmetic	and	logic	operations	occur	between	registers

• RISC-V	can	load	and	store	8	and	16-bit	items,	but	it	lacks	8	and	16-bit	arithmetic,	including	
comparison-and-branch	instructions

• The	64-bit	instruction	set	includes	32-bit	arithmetic
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ISA	Design	for	Performance

• Features	to	increase	a	computer's	speed,	while	reducing	its	cost	
and	power	usage

– placing	most-significant	bits	at	a	fixed	location	to	speed	sign-extension,	and	a	bit-
arrangement	designed	to	reduce	the	number	of	multiplexers	in	a	CPU
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ISA	Design

• Intentionally	lacks	condition	codes,	and	even	lacks	a	carry	bit
– To	simplify	CPU	designs	by	minimizing	interactions	between	instructions

• Builds	comparison	operations	into	its	conditional-jumps
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ISA	Design

• The	lack	of	a	carry	bit	complicates	multiple-precision	arithmetic
– GMP,	MPFR

• Does	not	detect	or	flag	most	arithmetic	errors,	including	overflow,	underflow	
and	divide	by	zero

– No	special	instruction	set	support	for	overflow	checks	on	integer	arithmetic	operations.
• Most	popular	programming	languages	do	not	support	checks	for	integer	overflow,	partly	

because	most	architectures	impose	a	significant	runtime	penalty	to	check	for	overflow	on	
integer	arithmetic	and	partly	because	modulo	arithmetic	is	sometimes	the	desired	behavior

– Floating-Point	Control	and	Status	Register
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ISA	Design

• Lacks	the	"count	leading	zero"	and	bit-field	operations	normally	used	to	
speed	software	floating-point	in	a	pure-integer	processor

• No	branch	delay	slot,	a	position	after	a	branch	instruction	that	can	be	filled	
with	an	instruction	which	is	executed	regardless	of	whether	the	branch	is	
taken	or	not

– This	feature	can	improve	performance	of	pipelined	processors,
– Omitted	in	RISC-V	because	it	complicates	both	multicycle CPUs	and	superscalar	CPUs

• Lacks	address-modes	that	"write	back"	to	the	registers
– For	example,	it	does	not	do	auto-incrementing
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ISA	Design

• A	load	or	store	can	add	a	twelve-bit	signed	offset	to	a	register	that	contains	
an	address.	A	further	20	bits	(yielding	a	32-bit	address)	can	be	generated	at	
an	absolute	address

– RISC-V	was	designed	to	permit	position-independent	code.	It	has	a	special	instruction	to	
generate	20	upper	address	bits	that	are	relative	to	the	program	counter.	The	lower	twelve	bits	
are	provided	by	normal	loads,	stores	and	jumps

– LUI	(load	upper	immediate)	places	the	U-immediate	value	in	the	top	20	bits	of	the	destination	
register	rd,	filling in	the	lowest	12	bits	with	zeros

– AUIPC	(add	upper	immediate	to	pc)	is	used	to	build	pc-relative	addresses,	forms	a	32-bit	offset
from	the	20-bit	U-immediate,	filling in	the	lowest	12	bits	with	zeros,	adds	this	offset to	the	pc,	
then	places	the	result	in	register	rd

45


