
Lecture	03	Instruction	Set	Principles	

CSCE	513	Computer	Architecture

Department	of	Computer	Science	and	Engineering
Yonghong Yan

yanyh@cse.sc.edu
http://cse.sc.edu/~yanyh

1



Contents

1. Introduction
2. Classifying	Instruction	Set	Architectures
3. Memory	Addressing
4. Type	and	Size	of	Operands
5. Operations	in	the	Instruction	Set
6. Instructions	for	Control	Flow
7. Encoding	an	Instruction	Set
8. Crosscutting	Issues:	The	Role	of	Compilers
9. RISC-V	ISA

• Supplement	(not	covered)
– RISC	vs	CISC
– Comparison	of	ISA

• Appendix	K 2



1	Introduction

Instruction	Set	Architecture	– the	portion	of	the	machine	
visible	to	the	assembly	level	programmer	or	to	the	
compiler	writer
– To	use	the	hardware	of	a	computer,	we	must	speak its	language
– The	words	of	a	computer	language	are	called	instructions,	and	

its	vocabulary	is	called	an	instruction	set

instruction	set

software

hardware

Instr.	# Operation+Operands
i movl -4(%ebp),	%eax
(i+1) addl %eax,	(%edx)
(i+2) cmpl 8(%ebp),	%eax
(i+3) jl L5
:
L5:

3



sum.s for	X86

• http://www.cs.virginia.edu/~evans/cs216/guides/x86.html
• https://en.wikibooks.org/wiki/X86_Assembly/SSE

2	operands
-8	(%eax):	Memory	address

4



sum.s for	RISC-V

https://riscv.org/

2	or	3	operands
-20	(s0):	Memory	address

5



ISA	In	Real

• A	pdf	document	that	defines	the	
model/architecture/interface	of	the	machine
– X86	and	Intel	SDM:	https://software.intel.com/en-

us/articles/intel-sdm
• Several	thousands	pages

– RISC-V	ISA	Spec:	https://riscv.org/specifications/
• Latest	version	2.2,	145	pages

• A	specification	that	provides	the	ISA	details

• Review	Chapter	2	of	the	COD	book

6



2	Classifying	Instruction	Set	Architectures

Operand	storage	in	CPU Where	are	they	other	than	memory

#	explicit	operands	named	
per	instruction

How	many?	Min,	Max,	Average

Addressing	mode How	the	effective	address	for	an	
operand	calculated?	Can	all	use	any	
mode?

Operations What	are	the	options	for	the	opcode?

Type	&	size	of	operands How	is	typing	done?	How	is	the	size	
specified?

These	choices	critically	affect	number	of	instructions,	CPI,	and	
CPU	cycle	time

7



ISA	Classification

• Most	basic	differentiation:	internal	storage	in	a	processor
– Operands	may	be	named	explicitly or	implicitly

• Major	choices:
1. In	an	accumulator	architecture one	operand	is	implicitly the	

accumulator	=>	similar	to	calculator
2. The	operands	in	a	stack	architecture are	implicitly on	the	

top	of	the	stack
3. The	general-purpose	register	architectures have	only	

explicit operands	– either	registers	or	memory	location

8



Four	ISA	Classes	

• Register-memory:	X86	
(CISC)

• Register-register:	RISC	
(e.g.	ARM,	MIPS,	RISC-V,	
Power)

9



Register	Machines
• How	many	registers	are	sufficient?
• General-purpose	registers	vs.	special-purpose	registers

• compiler	flexibility	and	hand-optimization
• Two	major	concerns	for	arithmetic	and	logical	instructions	(ALU)

1.	Two	or	three	operands
• X	+	Y	Þ X
• X	+	Y Þ Z

2.	How	many	of	the	operands	may	be	memory	addresses	(0	– 3)

Hence,	register	architecture	classification	(#	mem,	#	operands)

Number	of	
memory	
addresses

Maximum	number	
of	operands	
allowed

Type	of	
Architecture Examples

0 3 Load-Store Alpha,	ARM,	MIPS,	PowerPC,	SPARC,	
SuperH,	TM32		

1 2 Register-Memory IBM	360/370,	Intel	80x86,	Motorola	
68000,	TI	TMS320C54x

2 2 Memory	– memory VAX	(also	has	3	operand	formats)

3 3 Memory	- memory VAX	(also	has	2	operand	formats)

10



(0,	3):	Register-Register	(RISC)

• ALU	is	Register	to	Register	– also	known	as	
– pure	Reduced	Instruction	Set	Computer	(RISC)

• Advantages
– Simple	fixed	length	instruction	encoding
– Decode	is	simple	since	instruction	types	are	small
– Simple	code	generation	model
– Instruction	CPI	tends	to	be	very	uniform

• Except	for	memory	instructions	of	course
– but	there	are	only	2	of	them	- load	and	store

• Disadvantages
– Instruction	count	tends	to	be	higher
– Some	instructions	are	short	- wasting	instruction	word	bits

11



(1,	2):	Register-Memory	(CISC,	X86)

• Evolved	RISC	and	also	old	CISC
– new	RISC	machines	capable	of	doing	speculative	loads
– predicated	and/or	deferred	loads	are	also	possible

• Advantages
– data	access	to	ALU	immediate	without	loading	first
– instruction	format	is	relatively	simple	to	encode
– code	density	is	improved	over	Register	(0,	3)	model

• Disadvantages
– operands	are	not	equivalent	- source	operand	may	be	destroyed
– need	for	memory	address	field	may	limit	#	of	registers
– CPI	will	vary

• if	memory	target	is	in	L0	cache	then	not	so	bad
• if	not	- life	gets	miserable

12



(2,	2)	or	(3,	3):	Memory-Memory

Not	used	today

• True	and	most	complex	CISC	model
– currently	extinct	and	likely	to	remain	so
– more	complex	memory	actions	are	likely	to	appear	but	not
– directly	linked	to	the	ALU

• Advantages
– most	compact	code
– doesn’t	waste	registers	for	temporary	values

• good	idea	for	use	once	data	- e.g.	streaming	media

• Disadvantages
– large	variation	in	instruction	size	- may	need	a	shoe-horn
– large	variation	in	CPI	- i.e.	work	per	instruction
– exacerbates	the	infamous	memory	bottleneck

• register	file	reduces	memory	accesses	if	reused

13



Summary:	Tradeoffs	for	the	ISA	Classes

Type Advantages Disadvantages

Register-register
(0,3)

Simple,	fixed	length	instruction	encoding.		
Simple	code	generation	model.	Instructions	
take	similar	numbers	of	clocks	to	execute.

Higher	instruction	count	than	
architectures	with	memory	references	in	
the	instructions.		More	instructions	and	
lower	instruction	density	leads	to	larger	
programs

Register-memory
(1,2)

Data	can	be	accessed	without	a	separate	load	
instruction	first.		Instruction	format	tends	to	
be	easy	to	encode	and	yields	good	density

Operands	are	not	equivalent	since	a	source	
operand	is	destroyed.		Encoding	a	register	
number	and	a	memory	address	in	each	
instruction	may	restrict	the	number	of	
registers.		Clocks	per	instruction	vary	by	
operand	location

Memory-memory
(2,2)	or	(3,3)

Most	compact.		Does	not	waste	registers	for	
temporaries.

Large	variation	in	instruction	size,	especially	
for	three-operand	instructions.		In	addition,	
large	variation	in	work	per	instruction.		
Memory	accesses	create	memory	
bottleneck.		(Not	used	today)

14



3	Memory	Addressing

•Objects	have	byte	addresses
– the	number	of	bytes	counted	from	the	beginning	of	memory

•Object	Length:	
–bytes	(8	bits),	half	words	(16	bits),	
–words	(32	bits),	and	double	words	(64	bits).	
–The	type	is	implied	in	opcode,	e.g.,	

• LDB	– load	byte
• LDW	– load	word,	etc

• Byte	Ordering
– Little	Endian: puts	the	byte	whose	address	is	xx00	at	the	least	significant	position	in	
the	word.	(7,6,5,4,3,2,1,0)

– Big	Endian: puts	the	byte	whose	address	is	xx00	at	the	most	significant	position	in	
the	word.	(0,1,2,3,4,5,6,7)

• Problem	occurs	when	exchanging	data	among	machines	with	different	
orderings

15



Interpreting	Memory	Addresses

• Alignment	Issues
– Accesses	to	objects	larger	than	a	byte	must	be	aligned.	

• An	access	to	an	object	of	size	s	bytes	at	byte	address	A	is	aligned	if	
A	mod	s	=	0.

– Misalignment	causes	hardware	complications
• since	memory	is	typically	aligned	on	a	word	or	a	double-word	
boundary

• Misalignment	typically	results	in	an	alignment	fault	that	must	be	
handled	by	the	OS

• Hence
– byte	address	is	anything	- never	misaligned
– half	word	- even	addresses	- low	order	address	bit	=	0	(	XXXXXXX0)	

else	trap
– word	- low	order	2	address	bits	=	0	(	XXXXXX00)	else	trap
– double	word	- low	order	3	address	bits	=	0	(XXXXX000)	else	trap	

16



Memory	Alignment

17



Aligned/Misaligned	Addresses

18



Addressing	Modes

• How	architecture	specify	the	effective	address	of	an	object?
– Effective	address:	the	actual	memory	address	specified	by	the	

addressing	mode.
• E.g.	Mem[R[R1]] refers	to	the	contents	of	the	memory	
location	whose	location	is	given	by	the	contents	of	register	1	
(R1).

• Addressing	Modes:
– Register.	
– Immediate	
– Displacement
– Register	indirect,……..

-20	(s0):	Memory	address

19



Address	
Modes

20



Addressing	Mode	Impacts

• Instruction	counts
• Architecture	Complexity
• CPI

21



Summary	of	Use	of	Memory	Addressing	Modes

22



Displacement	Values	are	Widely	Distributed

Impact	instruction	length

23



Displacement	Addressing	Mode

• Benchmarks	show
– 12	bits	of	displacement	would	capture	about	75%	of	the	full	32-bit	

displacements
– 16	bits	should	capture	about	99%

• Remember:	
– optimize	for	the	common	case.	Hence,	the	choice	is	at	least	
12-16	bits

• For	addresses	that	do	fit	in	displacement	size:
Add				 R4,	10000	(R0)

• For	addresses	that	don’t	fit	in	displacement	size,	the	compiler	must	do	the	
following:

Load			 R1,	1000000
Add R1,	R0
Add					 R4,	0	(R1)

24



Immediate	Addressing	Mode

• Used	where	we	want	to	get	to	a	numerical	value	in	an	instruction
• Around	25%	of	the	operations	have	an	immediate	operand

At	high	level:

a		=		b	+	3;

if	(	a	>	17	)

goto Addr

At	Assembler	level:

Load				R2,	#3
Add						R0,		R1,		R2

Load										R2,	#17
CMPBGT			R1,	R2

Load										R1,		Address
Jump									(R1)

25



About	25%	of	data	transfer	and	ALU	operations	have	
an	immediate	operand

Impact	instruction	length

26



Number	of	Bits	for	Immediate

• 16	bits	would	capture	about	80%	and	8	bits	about	50%.	

Impact	instruction	length

27



Summary:	Memory	Addressing

• A	new	architecture	expected	to	support	at	least:	
displacement,	immediate,	and	register	indirect
– represent	75%	to	99%	of	the	addressing	modes

• The	size	of	the	address	for	displacement	mode	to	be	at	
least	12-16	bits
– capture	75%	to	99%	of	the	displacements

• The	size	of	the	immediate	field	to	be	at	least	8-16	bits
– capture	50%	to	80%	of	the	immediates

Processors	rely	on	compilers	to	generate	codes	using	those	
addressing	mode

28



4 Type	And	Size	of	Operands

• The	type	of	the	operand	is	usually	encoded	in	the	opcode
– e.g.,	LDB	– load	byte;	LDW	– load	word

• Common	operand	types:	(imply	their	sizes)
Character	(8	bits	or	1	byte)
Half	word	(16	bits	or	2	bytes)
Word	(32	bits	or	4	bytes)
Double	word	(64	bits	or	8	bytes)
Single	precision	floating	point	(4	bytes	or	1	word)
Double	precision	floating	point	(8	bytes	or	2	words)
ü Characters	are	almost	always	in	ASCII
ü 16-bit	Unicode	(used	in	Java)	is	gaining	popularity
ü Integers	are	two’s	complement	binary
ü Floating	points	follow	the	IEEE	standard	754

• Some	architectures	support	packed	decimal:	4	bits	are	used	to	
encode	the	values	0-9;	2	decimal	digits	are	packed	into	each	byte

How	is	the	type	of	an	operand	designated?

29



Distribution	of	Data	Accesses	by	Size	

30



Summary:	Type	and	Size	of	operands

• 32-architecture	supports	8-,	16-,	and	32-bit	integers,		32-bit	
and	64-bit	IEEE	754	floating-point	data.

• A	new	64-bit	address	architecture	supports	64-bit	integers
• Media	processor	and	DSPs	need	wider	accumulating	
registers	for	accuracy.

31



5 Operations	in	the	Instruction	Set

• All	computers	generally	provide	a	full	set	of	operations	for	
the	first	three	categories

• All	computers	must	have	some	instruction	support	for	basic	
system	functions

• Graphics	instructions	typically	operate	on	many	smaller	
data	items	in	parallel

32



Top	10	Instructions	for	80x86

33



Instruction	Encoding

• RISC-V	R-format	instruction

34

• RISC-V	I-format	instruction



6 Instructions	for	Control	Flow

• Control	instructions	change	the	flow	of	control:	
– instead	of	executing	the	next	instruction,	the	program	branches	to	

the	address	specified	in	the	branching	instructions
• They	break	the	pipeline

– Difficult	to	optimize	out
– AND	they	are	frequent

• Four	types	of	control	instructions
– Conditional	branches

• if…else,	for/while,	switch/case,	…
– Jumps	– unconditional	transfer

• goto
– Procedure	calls

• foo()
– Procedure	returns

• return
35



Breakdown	of	Control	Flow	Instructions

– Conditional	branches	
– Jumps	– unconditional	transfer
– Procedure	calls
– Procedure	returns

• Issues:
– Where	is	the	target	address?	How	to	specify	it?	(label)
– Caller:	Where	is	return	address	kept?	How	are	the	arguments	

passed?	
– Callee:	Where	is	return	address?	How	are	the	results	passed?

36



Addressing	Modes	for	Control	Flow	Instructions

• PC-relative	(Program	Counter)
– Supply	a	displacement	added	to	the	PC

• Known	at	compile	time	for	jumps,	branches,	and	calls	(specified	
within	the	instruction)

– The	target	is	often	near	the	current	instruction
• Requiring	fewer	bits
• Independently	of	where	it	is	loaded	(position	independence)

• Register	indirect	addressing	– dynamic	addressing
– The	target	address	may	not	be	known	at	compile	time
– Naming	a	register	that	contains	the	target	address

• Case	or	switch	statements
• Virtual	functions	or	methods	in	C++	or	Java
• High-order	functions	or	function	pointers	in	C	or	C++
• Dynamically	shared	libraries

37



Branch	Distances

38



Conditional	Branch	Options	

Figure	2.21	Major	methods	for	evaluating	branch	conditions

39



Comparison	Type	vs.	Frequency

• Most	loops	go	from	0	to	n.
• Most	backward	branches	
are	loops	– taken	about	
90%

Program % backward 
branches

% all control 
instructions that 

modify PC
gcc 26% 63%
spice 31% 63%
TeX 17% 70%
Average 25% 65% 40



Procedure	Invocation	Options
• Procedure	calls	and	returns

– control	transfer
– state	saving;	the	return	address	must	be	saved
Newer	architectures	require	the	compiler	to	generate	stores	and	loads	

for	each	register	saved	and	restored

• Two	basic	conventions	in	use	to	save	registers
– caller	saving:	the	calling	procedure	must	save	the	registers	that	it	

wants	preserved	for	access	after	the	call
• the	called	procedure	need	not	worry	about	registers

– callee saving:	the	called	procedure	must	save	the	registers	it	wants	to	
use

• leaving	the	caller	unrestrained

most	real	systems	today	use	a	combination	of	both
• Application	binary	interface	(ABI)	that	set	down	the	basic	rules	as	
to	which	register	be	caller	saved	and	which	should	be	callee saved

41



7.	Encoding	an	Instruction	Set

• Opcode:	specifying	the	operation
• #	of	operand

– addressing	mode
– address	specifier:	tells	what	addressing	mode	is	used
– Load-store	computer

• Only	one	memory	operand
• Only	one	or	two	addressing	modes

• The	architecture	must	balancing	several	competing	forces	when	
encoding	the	instruction	set:
– #	of	registers	&&	Addressing	modes	
– Size	of	registers	&&	Addressing	mode	fields
– Average	instruction	size	&&	Average	program	size.
– Easy	to	handle	in	pipeline	implementation.

42



Example:	x86	and	Alpha

• x86:

• Alpha:

43



Three	Basic	Variations	for	Instruction	Encoding

The	length	of	80x86	(CISC)	
instructions	varies	
between	1	and	17	bytes.

The	length	of	most	RISC	ISA	
instructions	are	4	bytes.

X86	program	are	generally	
smaller	than	RISC	ISA.

To	reduce	RISC	code	size

44



Instruction	Length	Tradeoffs

• Fixed	length:	Length	of	all	instructions	the	same
+	Easier	to	decode	single	instruction	in	hardware
+	Easier	to	decode	multiple	instructions	concurrently
-- Wasted	bits	in	instructions	(Why	is	this	bad?)
-- Harder-to-extend	ISA	(how	to	add	new	instructions?)

• Variable	length:	Length	of	instructions	different	
(determined	by	opcode and	sub-opcode)
+	Compact	encoding	(Why	is	this	good?)

Intel	432:	Huffman	encoding	(sort	of).	6	to	321	bit	instructions.	How?
-- More	logic	to	decode	a	single	instruction
-- Harder	to	decode	multiple	instructions	concurrently

• Tradeoffs
– Code	size	(memory	space,	bandwidth,	latency)	vs.	hardware	complexity
– ISA	extensibility	and	expressiveness
– Performance?	Smaller	code	vs.	imperfect	decode

45



Uniform	vs Non-uniform	Decode

• Uniform	decode:	Same	bits	in	each	instruction	correspond	
to	the	same	meaning
– Opcode is	always	in	the	same	location
– immediate	values,	…
– Many	“RISC” ISAs:	Alpha,	MIPS,	SPARC
+	Easier	decode,	simpler	hardware
+	Enables	parallelism:	generate	target	address	before	knowing	the	instruction	

is	a	branch
-- Restricts	instruction	format	(fewer	instructions?)	or	wastes	space

• Non-uniform	decode
– E.g.,	opcode can	be	the	1st-7th	byte	in	x86
+	More	compact	and	powerful	instruction	format
-- More	complex	decode	logic

46



Reduced	Code	Size	in	RISCs

• Hybrid	encoding	– support	16-bit	and	32-bit	instructions	in	RISC,	
eg.	ARM	Thumb,	MIPS	16	and	RISC-V
– Narrow	instructions	support	fewer	operations,	smaller	address	and	

immediate	fields,	fewer	registers,	and	two-address	format	rather	
than	the	classic	three-address	format

– Claim	a	code	size	reduction	of	up	to	40%

• Compression	in	IBM’s	CodePack
– Adds	hardware	to	decompress	instructions	as	they	are	fetched	from	

memory	on	an	instruction	cache	miss
– The	instruction	cache	contains	full	32-bit	instructions,	but	

compressed	code	is	kept	in	main	memory,	ROMs,	and	the	disk
– Claim	code	reduction	35%	- 40%
– PowerPC	create	a	Hash	table	in	memory	that	map	between	

compressed	and	uncompressed	address.	Code	size	35%~40%

• Hitachi’s	SuperH:	fixed	16-bit	format
– 16	rather	than	32	registers
– fewer	instructions

47



Summary	of	Instruction	Encoding

• Three	choices
– Variable,	fixed	and	hybrid
– Note	the	differences	of	hybrid	and	variable

• Choices	of	instruction	encoding	is	a	tradeoff	between
– For	performance:	fixed	encoding
– For	code	size:	variable	encoding

• How	hybrid	encoding	is	used	in	RISC	to	reduce	code	size
– 16bit	and	32bit

• In	general,	we	see:	
– RISC:	fixed	or	hybrid
– CISC:	variable	

48



8	The	Role	of	Compilers
• Almost	all	programming	is	done	in	high-level	languages.	

– An	ISA	is	essentially	a	complier	target.

• See	backup	slides	for	the	
compilation	stage	by	most	
compiler,	e.g.	gcc

• Compiler	goals:	
– All	correct	programs	execute	correctly	
– Most	compiled	programs	execute	fast	(optimizations)	
– Fast	compilation	
– Debugging	support	

49



Typical	Modern	Compiler	Structure

Figure A.19 Compilers typically consist of two to four passes, with more highly optimizing compilers having more passes.
This structure maximizes the probability that a program compiled at various levels of optimization will produce the same output
when given the same input. The optimizing passes are designed to be optional and may be skipped when faster compilation is the
goal and lower-quality code is acceptable. A pass is simply one phase in which the compiler reads and transforms the entire
program. (The term phase is often used inter-changeably with pass.) Because the optimizing passes are separated, multiple
languages can use the same optimizing and code generation passes. Only a new front end is required for a new language. 50



Optimization	Types

• High	level	– done	at	or	near	source	code	level
– If	procedure	is	called	only	once,	put	it	in-line	and	save	CALL
– more	general	case:	if	call-count	<	some	threshold,	put	them	in-line

• Local	– done	within	straight-line	code
– common	sub-expressions	produce	same	value	– either	allocate	a	

register	or	replace	with	single	copy
– constant	propagation	– replace	constant	valued	variable	with	the	

constant
– stack	height	reduction	– re-arrange	expression	tree	to	minimize	

temporary	storage	needs
• Global	– across	a	branch

– copy	propagation	– replace	all	instances	of	a	variable	A	that	has	
been	assigned	X	(i.e.,	A=X)	with	X.	

– code	motion	– remove	code	from	a	loop	that	computes	same	value	
each	iteration	of	the	loop	and	put	it	before	the	loop

– simplify	or	eliminate	array	addressing	calculations	in	loops

51



Optimization	Types

• Machine-dependent	optimizations	– based	on	machine	
knowledge
– strength	reduction	– replace	multiply	by	a	constant	with	shifts	

and	adds
• would	make	sense	if	there	was	no	hardware	support	for	MUL
• a	trickier	version:	17	´ =	arithmetic	left	shift	4	and	add

• Pipelining	scheduling	– reorder	instructions	to	improve	
pipeline	performance
– dependency	analysis
– branch	offset	optimization	- reorder	code	to	minimize	branch	

offsets

52



Major	Types	of	Optimizations

53



Complier	Optimizations	– Change	in	IC

• L0	– unoptimized
• L1	– local	opts,	code	scheduling,	&	local	reg.	allocation
• L2	– global	opts	and	loop	transformations,	&	global	reg.	Allocation
• L3	– procedure	integration	

gcc -O2	hello.c -o	hello

54



Compiler	Based	Register	Optimization

• Compiler	assumes	small	number	of	registers	(16-32)
– Optimizing	use	is	up	to	compiler
– HLL	programs	have	no	explicit	references	to	registers

• Compiler	Approach
– Assign	symbolic	or	virtual	register	to	each	candidate	variable	
– Map	(unlimited)	symbolic	registers	to	real	registers
– Symbolic	registers	that	do	not	overlap	can	share	real	registers
– If	you	run	out	of	real	registers	some	variables

• Spilling

55



Graph	Coloring

• Given	a	graph	of	nodes	and	edges
– Assign	a	color to	each	node

• Adjacent	nodes	have	different	colors
• Use	minimum	number	of	colors

• Registration	allocation
– Nodes	are	symbolic	registers
– Two	registers	that	are	live	in	the	same	program	fragment	are	

joined	by	an	edge
– Try	to	color the	graph	with	n colors,	where	n is	the	number	of	

real	registers
– Nodes	that	can	not	be	colored are	placed	in	memory

https://en.wikipedia.org/wiki/Graph_coloring

56



Iron-code	Summary
• Section	A.2—Use	general-purpose	registers	with	a	load-store	architecture.	
• Section	A.3—Support	these	addressing	modes:	displacement	(with	an	address	offset	

size	of	12	to	16	bits),	immediate	(size	8	to	16	bits),	and	register	indirect.	
• Section	A.4—Support	these	data	sizes	and	types:	8-,	16-,	32-,	and	64-bit	integers	and	

64-bit	IEEE	754	floating-point	numbers.	
– Now	we	see	16-bit	FP	for	deep	learning	in	GPU

• http://www.nextplatform.com/2016/09/13/nvidia-pushes-deep-learning-inference-
new-pascal-gpus/

• Section	A.5—Support	these	simple	instructions,	since	they	will	dominate	the	number	
of	instructions	executed:	load,	store,	add,	subtract,	move	register- register,	and	shift.	

• Section	A.6—Compare	equal,	compare	not	equal,	compare	less,	branch	(with	a	PC-
relative	address	at	least	8	bits	long),	jump,	call,	and	return.	

• Section	A.7—Use	fixed	instruction	encoding	if	interested	in	performance,	and	use	
variable	instruction	encoding	if	interested	in	code	size.	

• Section	A.8—Provide	at	least	16	general-purpose	registers,	be	sure	all	addressing	
modes	apply	to	all	data	transfer	instructions,	and	aim	for	a	minimalist	IS

– Often	use	separate	floating-point	registers.	
– The	justification	is	to	increase	the	total	number	of	registers	without	raising	problems	in	

the	instruction	format	or	in	the	speed	of	the	general-purpose	register	file.	This	
compromise,	however,	is	not	orthogonal.	

57



Real	World	ISA

58



The	details	in	design	is	to	trade-
off!

59


