Lecture 03 Instruction Set Principles

CSCE 513 Computer Architecture

Department of Computer Science and Engineering
Yonghong Yan
vanyh@cse.sc.edu
http://cse.sc.edu/~yanyh

Contents

Introduction

Classifying Instruction Set Architectures
Memory Addressing

Type and Size of Operands

Operations in the Instruction Set
Instructions for Control Flow

Encoding an Instruction Set

Crosscutting Issues: The Role of Compilers
RISC-V ISA

WONSINRWNR

* Supplement (not covered)
— RISC vs CISC
— Comparison of ISA
* Appendix K

1 Introduction

Instruction Set Architecture — the portion of the machine

visible to the assembly level programmer or to the
compiler writer

— To use the hardware of a computer, we must speak its language
— The words of a computer language are called instructions, and
its vocabulary is called an instruction set

Instr. # Operation+Operands
software i movl -4(%ebp), %eax
(i+1) addl %eax, (%edx)

,,,

- mstructlon set (i+2) cmpl 8(%ebp), %eax
(i+3) jl L5

hardware :
L5:

OCoo~NOOULE WN B

sum:
.LFBO:

.L3:

.L2:

.LFEO:

.file "sum.c"
. text
.globl sum

.type sum, @function Sum.s for X86

.cfi_startproc
pushq %rbp

.cfi_def_cfa_offset 16 .

efioffset 6. -16 1 float sum(int N, float X[], float a) {
movq %rsp, %rbp 2 int 1;

. . = 6 P | N\

Cfi_def cta_register ¢ 3 float result = 0.0;

movq %rsi, —32(925rbg)) 4 for (i = 0; 1 < N; ++1i)

movss xmm@, —-24(%rbp _ c 1.

pxor %Sxmmd, %xmmod 5 resu.l-t += a * X[l],

movss %xmm@, —-4(%rbp) 6 return resu'[_t;

mov 1 $0, —-8(%rbp)

jmp .L2 7 }

mov 1 -8(%rbp), %eax
"cLtq

leaq 0(,%rax,4), %rdx Zoperands

movq -32(%rbp), %rax -Q (o .

POl TRy 8 (%eax): Memory address

movss (%rax), %xmm0@

mulss -24(%rbp), %xmm@

movss —4(%rbp), %xmml

addss %Sxmml, %xmmo

movss _ S%xmm@, —4(%rbp)

addl $1, —-2(%rbp)

mov 1 -3(%rbp), %eax

cmpl -20(%rbp), %eax

il .L3
"MOVSS —4(%ropJ, BXxmmo

%rb .. .

Pefi def cfa 7, & http://www.cs.virginia.edu/~evans/cs216/guides/x86.html
ret * https://en.wikibooks.org/wiki/X86 Assembly/SSE

.cfi_endproc

.size sum, .-sum
.ident "GCC: (Ubuntu 5.4.0-6ubuntul~16.04.1) 5.4.0 20160609" 4
.section .note.GNU-stack,"",@progbits

OCo~NOULTA WN -

sum.

.L3:

.L2:

sum.s for RISC-V

1 float sum(int N, float X[], float a) {
2 int i;

3 float result = 0.0;

4 for (i = 0; 1 < N; ++i)

5 result += a x X[il;

6 return result;

7 }

2 or 3 operands
-20 (s0): Memory address

.file "sum.c"

. text

.align 2

.globl sum

.type sum, @function
add sp,sp,—48
sd s@,40(sp)
add s@,sp,48

SW a0,-36(s0)
sd al,-48(s0)
fsw fa2,-40(s0)
SwW zero,-24(s0)
Sw zero,-20(s0)
j .L2

lw a5,-20(s0)
sll a5, a5, ?2

1d a4,-45(s0)
add ab,a4,ab5
TwW Tad,0(ab)
flw fa5,-40(s0)
fmul.s fab5,fa4, fab
flw fa4,-24(s0)
fadd.s fab5,fa4,fab
fsw f35,-24(s0)
w a5,-20(s0)
addw a5,a5,1

SwW a5,-20(s0)
w ad,-20(s0)
lw a5,-36(s0)
blt a4,a5,.L3
flw fa5,-24(s0)
fmv.s fa0, fab

d s@,40(sp)
add sp,sp,48

jr ra

.size

sum, .-sum

https://riscv.org/

ISA In Real

* A pdf document that defines the
model/architecture/interface of the machine

— X86 and Intel SDM: https://software.intel.com/en-
us/articles/intel-sdm

* Several thousands pages

— RISC-V ISA Spec: https://riscv.org/specifications/
* Latest version 2.2, 145 pages

* A specification that provides the ISA details

* Review Chapter 2 of the COD book

2 Classifying Instruction Set Architectures

Operand storage in CPU Where are they other than memory

explicit operands named |How many? Min, Max, Average
per instruction

Addressing mode How the effective address for an
operand calculated? Can all use any
mode?

Operations What are the options for the opcode?

Type & size of operands How is typing done? How is the size
specified?

These choices critically affect number of instructions, CPI, and
CPU cycle time

ISA Classification

* Most basic differentiation: internal storage in a processor
— Operands may be named explicitly or implicitly

* Major choices:
1.

MMMMM

In an accumulator architecture one operand is implicitly the
accumulator => similar to calculator
The operands in a stack architecture are implicitly on the

top of the stack

The general-purpose register architectures have only
explicit operands — either registers or memory location

Four ISA Classes

(A)

Stack

(B) Accumulator

C) Register-memory (D) Register-register/

load-store

Register Register
Stack Accumulator (register-memory) (load-store)
Push A Load A Load R1,A Load R1,A
Push B Add B Add R3,RI1,B Load RZ,B
Add StoreC Store R3,C Add R3,R1,R2
Pop C Store R3,C

Figure A.2 The code sequence for C = A+ B for four classes of instruction sets. Note
that the Add instruction has implicit operands for stack and accumulator architectures
and explicit operands for register architectures. It is assumed that A, B, and C all belong 9
in memory and that the values of A and B cannot be destroyed. Figure A.1 shows the

AAA

_____) SRR

P Y R R SR,

Register Machines

® How many registers are sufficient?
® General-purpose registers vs. special-purpose registers
e compiler flexibility and hand-optimization

® Two major concerns for arithmetic and logical instructions (ALU)
1. Two or three operands

e X+Y=X
e X+Y Z
2. How many of the operands may be memory addresses (0 — 3)
Number of Maximum number Type of
memory of operands Architecture Examples
addresses allowed
0 3 Load-Store Alpha, ARM, MIPS, PowerPC, SPARC,
SuperH, TM32
1 2 Register-Memory IBM 360/370, Intel 80x86, Motorola
68000, TI TMS320C54x
2 2 Memory — memory VAX (also has 3 operand formats)
3 3 Memory - memory VAX (also has 2 operand formats)

Hence, register architecture classification (# mem, # operands),

(0, 3): Register-Register (RISC)

16 .L3:
* ALU is Register to Register — also known as ! ROl
o 19 1d 4,-48(s0)
— pure Reduced Instruction Set Computer (RISC) | add 25.a4,a5
21 flw fa4,0(ab)
22 flw fa5,-40(s0)
23 fmul.s fab5,fa4,fab
. Ad 8 s
25 . ’ ,
Advantages 2 fodd.s fas. fad fos
— Simple fixed length instruction encoding °! ST b
. 29 Sw a5,-20(s0)
— Decode is simple since instruction types are smallje ..2: 1 o)
. . 31 w a4,- s0
— Simple code generation model 32 Lw as, -36(s0)
33 blt a4,a5,.L3

— Instruction CPI tends to be very uniform

* Except for memory instructions of course
— but there are only 2 of them - load and store

* Disadvantages
— Instruction count tends to be higher
— Some instructions are short - wasting instruction word bits

11

(1, 2): Register-Memory (CISC, X86)

* Evolved RISC and also old CISC

— new RISC machines capable of doing speculative loads
— predicated and/or deferred loads are also possible

* Advantages
— data access to ALU immediate without loading first
— instruction format is relatively simple to encode
— code density is improved over Register (0, 3) model

* Disadvantages
— operands are not equivalent - source operand may be destroyed
— need for memory address field may limit # of registers
— CPI will vary
e if memory target is in LO cache then not so bad
* if not - life gets miserable

12

(2, 2) or (3, 3): Memory-Memory

Not used today

True and most complex CISC model

— currently extinct and likely to remain so

— more complex memory actions are likely to appear but not
— directly linked to the ALU

Advantages
— most compact code
— doesn’t waste registers for temporary values
e good idea for use once data - e.g. streaming media

Disadvantages
— large variation in instruction size - may need a shoe-horn
— large variation in CPI - i.e. work per instruction
— exacerbates the infamous memory bottleneck
* register file reduces memory accesses if reused

13

Summary: Tradeoffs for the ISA Classes

Type

Advantages

Disadvantages

Register-register
(0,3)

Simple, fixed length instruction encoding.
Simple code generation model. Instructions
take similar numbers of clocks to execute.

Higher instruction count than
architectures with memory references in
the instructions. More instructions and
lower instruction density leads to larger
programs

Register-memory
(1,2)

Data can be accessed without a separate load
instruction first. Instruction format tends to
be easy to encode and yields good density

Operands are not equivalent since a source
operand is destroyed. Encoding a register
number and a memory address in each
instruction may restrict the number of
registers. Clocks per instruction vary by
operand location

Memory-memory
(2,2) or (3,3)

Most compact. Does not waste registers for
temporaries.

Large variation in instruction size, especially
for three-operand instructions. In addition,
large variation in work per instruction.
Memory accesses create memory
bottleneck. (Not used today)

14

3 Memory Addressing

* Objects have byte addresses

— the number of bytes counted from the beginning of memory

¢ Obj@Ct Length: 0000 0000 0000 0000

0000 0000 0000 0001

—bytes (8 bits), half words (16 bits), 0000 0000 0000 0010

0000 0000 0000 0011

—words (32 bits), and double words (64 bits). o
—The type is implied in opcode, e.g.,

* LDB - load byte 0000 0000 0100 201

* LDW — load word, etc e

1111 1111 1111 1111

Binar

Y
Address

* Byte Ordering

0000
0001
0002
0003
0004
0005

0049
004A
0048

FFFF

Hex

| I T T |

L1 1 1 1 1

L1 1 1 1 1

N I T I |

Memory
Bytes

— Little Endian: puts the byte whose address is xx00 at the least significant position in

the word. (7,6,5,4,3,2,1,0)

— Big Endian: puts the byte whose address is xx00 at the most significant position in

the word. (0,1,2,3,4,5,6,7)

* Problem occurs when exchanging data among machines with different

orderings

15

Interpreting Memory Addresses

* Alignment Issues
— Accesses to objects larger than a byte must be aligned.

* An access to an object of size s bytes at byte address A is aligned if
A mod s =0.

— Misalignment causes hardware complications

* since memory is typically aligned on a word or a double-word
boundary

* Misalignment typically results in an alignment fault that must be
handled by the OS

* Hence

— byte address is anything - never misaligned
— half word - even addresses - low order address bit = 0 (XXXXXXXO0)
else trap

— word - low order 2 address bits = 0 (XXXXXX00) else trap
— double word - low order 3 address bits = 0 (XXXXX000) else trap

16

Memory Alighment

Memory CPU Memory CPU

—

data

data

|

4-byte memory access for aligned data 4-byte memory access for misaligned data

Memory
Load upper {:
A Shift 1 byte ik
up
data

4-byte /

Load lower
Combine 2

Shift 3 bytes 4-byte chunks
down

17

Aligned/Misaligned Addresses

Value of 3 low-order bits of byte address

Width of object

0

1

2

3

4

5

1 byte (byte)

Aligned

Aligned

Aligned

Aligned

Aligned

Aligned

2 bytes (half word)

2 bytes (half word)

Aligned

Align

ed

Alig

ned

4 bytes (word)

Misaligned

Misaligned

Misaligned

Misaligned

4 bytes (word)

Aligned

Aligned

4 bytes (word)

4 bytes (word)

8 bytes (double word)

8 bytes (double word)

Misaligned

Misaligned

Misaligned

Misaligned

Misaligned

Misaligned

Aligned

8 bytes (double word)

8 bytes (double word)

8 bytes (double word)

8 bytes (double word)

8 bytes (double word)

8 bytes (double word)

Misaligned

Misaligned

Misaligned

Misaligned

Misaligned

Misaligned
Misaligned

Figure A.5 Aligned and misaligned addresses of byte, half-word, word, and double-word objects for byte-
addressed computers. For each misaligned example some objects require two memory accesses to complete. Every
aligned object can always complete in one memory access, as long as the memory is as wide as the object. The figure
shows the memory organized as 8 bytes wide. The byte offsets that label the columns specify the low-order 3 bits o

tha adAdracc

Addressing Modes

* How architecture specify the effective address of an object?

— Effective address: the actual memory address specified by the
addressing mode.

* E.g. Mem[R[R1]] refers to the contents of the memory
location whose location is given by the contents of register 1
(R1).

Instruction -20 (s0): Memory address

Data

Register | Displacement
. E&,
* Addressing Modes: :1 Memory

— Register. sregster
. Address |

— Immediate

. (@) Register Relative Addressing Mode
— Displacement
— Register indirect,........ "‘0"“"8}‘*”?";?: L o]

{
| D3 I L

()] Register Relative Addressing NMode 19

Address
Modes

Addressingmode Example instruction Meaning When used
Register Add R4,R3 Regs[R4] <« Regs[R4] When a value is in a register.
+ Regs[R3]
Immediate Add R4,#3 Regs[R4] « Regs[R4] + 3 For constants.
Displacement Add R4,100(R1) Regs[R4] <« Regs[R4] Accessing local variables
+ Mem[100 + Regs[R1]] (+ simulates register indirect,
direct addressing modes).
Register indirect Add R4, (R1) Regs[R4] <« Regs[R4] Accessing using a pointer or a
+ Mem[Regs[R1]] computed address.
Indexed Add R3,(R1 + R2) Regs[R3] <« Regs[R3] Sometimes useful in array
+ Mem[Regs[R1] + Regs[R2]] addressing: R1 = base of array;
R2 = index amount.
Direct or Add R1,(1001) Regs[R1] « Regs[R1] Sometimes useful for accessing
absolute + Mem[1001] static data; address constant may
need to be large.
Memory indirect Add R1,@(R3) Regs[R1] « Regs[R1] If R3 is the address of a pointer p,
+ Mem[Mem[Regs[R3]]] then mode yields #p.
Autoincrement Add R1, (R2)+ Regs[R1] « Regs[R1] Useful for stepping through arrays
+ Mem[Regs[R2]] within a loop. R2 points to start of
Regs[R2] <« Regs[R2] + d array; each reference increments
R2 by size of an element, d.
Autodecrement Add R1, —(R2) Regs[R2] « Regs[R2] - d Same use as autoincrement.
Regs[R1] <« Regs[R1] Autodecrement/-increment can
+ Mem[Regs[R2]] also act as push/pop to implement
a stack.
Scaled Add R1,100(R2) [R3] Regs[R1] <« Regs[R1] Used to index arrays. May be

+ Mem[100 + Regs[R2]
+ Regs[R3] = d]

applied to any indexed addressing
mode in some computers.

Figure A.6 Selection of addressing modes with examples, meaning, and usage. In autoincrement/-decrement
and scaled addressing modes, the variable d designates the size of the data item being accessed (i.e., whether the
instruction is accessing 1, 2, 4, or 8 bytes). These addressing modes are only useful when the elements being
accessed are adjacent in memory. RISC computers use displacement addressing to simulate register indirect with 0
for the address and to simulate direct addressing using 0 in the base register. In our measurements, we usfthe first
name shown for each mode. The extensions to C used as hardware descriptions are defined on page A-36.

Addressing Mode Impacts

®* |nstruction counts
* Architecture Complexity
* CPI

21

Summary of Use of Memory Addressing Modes

TeX | 1%

Memory indirect spice 6%
gcc 1%
TeX (0%
Scaled spice h 16%
gCC | 6 /O
TeX 24%

Register indirect gpjce | 3%

goc N 11%

TeX - 43%
Immediate gpice %
I 39%
gcc | 39%
TeX 32%

Displacement 55%

oo I 0%
gcc
0% 10% 20% 30% 40% 50% 60%
Frequency of the addressing mode

Figure A.7 Summary of use of memory addressing modes (including immediates).
These major addressing modes account for all but a few percent (0% to 3%) of the
memory accesses. Register modes, which are not counted, account for one-half of the
operand references, while memory addressing modes (including immediate) account
for the other half. Of course, the compiler affects what addressing modes are used; see
Section A.8. The memory indirect mode on the VAX can use displacement, autoincre-
ment, or autodecrement to form the initial memory address; in these programs, almost

22

Displacement Values are Widely Distributed

Add R4,100(R1) Regs[R4] « Regs[R4] Accessing local variables

40%

35% -

20% -

15% -

10% -

Percentage of displacement

5% A

30% -

25% -

Integer average

Floating-point average

o 1 2 3 4 5 6 7 8 9 10 11

I | I

12 13 14 15
Number of bits of displacement

+ Mem[100 + Regs[R1]] (+ simulates register indirect,
direct addressing modes).

23

Displacement Addressing Mode

* Benchmarks show

— 12 bits of displacement would capture about 75% of the full 32-bit
displacements

— 16 bits should capture about 99%

* Remember:

— optimize for the common case. Hence, the choice is at least
12-16 bits

* For addresses that do fit in displacement size:

* For addresses that don’t fit in displacement size, the compiler must do the
following:

24

Immediate Addressing Mode

* Used where we want to get to a numerical value in an instruction
* Around 25% of the operations have an immediate operand

At high level: At Assembler level:

a=b+3; Load R2, #3
Add RO, R1, R2

if(a>17) Load R2, #17
CMPBGT R1, R2

goto Addr Load R1, Address
Jump (R1)

25

About 25% of data transfer and ALU operations have
an immediate operand

Add R4,#3 Regs[R4] <« Regs[R4] + 3 For constants.

B Floating-point average
M Integer average

22%

Loads 239

ALU operations 25%

All instructions 21%

0% 5% 10% 15% 20% 25% 30%

ire A.9 About one-quarter of data transfers and ALU operations have an imme-
e operand. The bottom bars show that integer programs use immediates in about
fifth of the instructions, while floating-point programs use immediates in about

Number of Bits for Immediate

* 16 bits would capture about 80% and 8 bits about 50%.

Add R4 ,#3

45% -

40%

35%

30%

25%

20%

15%

Percentage of immediates

10%

5% -

0%

Regs[R4] « Regs[R4] + 3 For constant.

Floating-point average

Integer average

I I I I I | [I I I T I I |
o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

27

Summary: Memory Addressing

* A new architecture expected to support at least:
displacement, immediate, and register indirect

— represent 75% to 99% of the addressing modes

* The size of the address for displacement mode to be at
least 12-16 bits

— capture 75% to 99% of the displacements

®* The size of the immediate field to be at least 8-16 bits
— capture 50% to 80% of the immediates

Processors rely on compilers to generate codes using those
addressing mode

28

4 Type And Size of Operands

How is the type of an operand designated?

* The type of the operand is usually encoded in the opcode
— e.g., LDB —load byte; LDW — load word

* Common operand types: (imply their sizes)
Character (8 bits or 1 byte)
Half word (16 bits or 2 bytes)
Word (32 bits or 4 bytes)
Double word (64 bits or 8 bytes)
Single precision floating point (4 bytes or 1 word)
Double precision floating point (8 bytes or 2 words)
v’ Characters are almost always in ASCII
v’ 16-bit Unicode (used in Java) is gaining popularity
v’ Integers are two’s complement binary
v’ Floating points follow the IEEE standard 754

* Some architectures support packed decimal: 4 bits are used to
encode the values 0-9; 2 decimal digits are packed into each bytze9

Distribution of Data Accesses by Size

Double word | 707

(64 bits) 59%
Word | 20%
(32 bits) 26%
Half word | o

(16 bits) | 5%

. B Floating-point average
Byte 1% [Integer average
(8 bits) 10%

0% 20% 40% 60% 80%

Figure A.11 Distribution of data accesses by size for the benchmark programs. The
double-word data type is used for double-precision floating point in floating-point pro-
grams and for addresses, since the computer uses 64-bit addresses. On a 32-bit address
computer the 64-bit addresses would be replaced by 32-bit addresses, and so almost all
double-word accesses in integer programs would become single-word accesses.

30

Summary: Type and Size of operands

® 32-architecture supports 8-, 16-, and 32-bit integers, 32-bit
and 64-bit IEEE 754 floating-point data.

* A new 64-bit address architecture supports 64-bit integers

* Media processor and DSPs need wider accumulating
registers for accuracy.

31

5 Operations in the Instruction Set

Operator type
Arithmetic and logical

Examples

Integer arithmetic and logical operations: add, subtract, and, or,
multiply, divide

Data transfer

Loads-stores (move instructions on computers with memory
addressing)

Control

Branch, jump, procedure call and return, traps

System Operating system call, virtual memory management instructions
Floating point Floating-point operations: add, multiply, divide, compare
Decimal Decimal add, decimal multiply, decimal-to-character conversions
String String move, string compare, string search

Graphics Pixel and vertex operations, compression/decompression

operations

Figure A.12 Categories of instruction operators and examples of each. All comput-
ers generally provide a full set of operations for the first three categories. The support
for system functions in the instruction set varies widely among architectures, but all
computers must have some instruction support for basic system functions. The amount
of support in the instruction set for the last four categories may vary from none t&an

............... [R DU [JUPUN T S gl [T S U S U SR . S, 1 | I PR O [N [S,

Top 10 Instructions for 80x86

Integer average
Rank 80x86 instruction (% total executed)
1 load 22%
2 conditional branch 20%
3 compare 16%
4 store 12%
5 add 8%
6 and 6%
7 sub 5%
8 move register-register 4%
9 call 1%
10 return 1%
Total 96 %

Figure A.13 The top 10 instructions for the 80x86. Simple instructions dominate this
list and are responsible for 96% of the instructions executed. These percentages are the

average of the five SPECint92 programs.
33

Instruction Encoding

High-level
language
program

(in C)

Assembly
language
program
(for RISC-V)

Binary machine

language
program
(for RISC-V)

swap(int v[], int k)

{int temp;
temp = v[k];
vlk] = v[k+1];

vlk+1] = temp;

l

swap:

s11i x6, x11, 3
add x6, x10, x6
1d x5, 0(x6)
1d x7, 8(x6)
sd x7, 0(x6)
sd x5, 8(x6)
jalr x0, 0(x1)

Assembler

00000000001101011001001100010011
00000000011001010000001100110011
00000000000000110011001010000011
00000000100000110011001110000011
00000000011100110011000000100011
00000000010100110011010000100011

®* RISC-V R-format instruction

funct7 rs2 - funct3 rd opcode

7 bits 5 bits 5 bits 3 bits 5 bits 7 bits

— add x6, x10,

0 6 [0 o 6 51

0000000 | 00110 - 000 | 00110 | 0110011

0000 0000 0110 0101 0000 0011 0011 0011, =
00650333,

®* RISC-V I-format instruction
.

immediate rs1 funct3 rd opcode
12 bits 5bits 3 bits 5 bits 7 bits

Immediate arithmetic and load instructions
rs1: source or base address register number
immediate: constant operand, or offset added to base address

00000000000000001000000001100111

2s-complement, sign extended

34

6 Instructions for Control Flow

* Control instructions change the flow of control:
— instead of executing the next instruction, the program branches to

the address specified in the branching instructions e
3 .align
* They break the pipeline s e Sun, efunctior
— Difficult to optimize out : W Wit

10 sw a0,-36(s0)

— AND they are frequent 11 S a1asiso)

12 fsw fa2,-40(s0)
13 sw zero,-24(s0)

* Four types of control instructions 3 s ‘Sm\

w a5,-20(s0)
sl a5, a5,
19 1d a4,-48(s0)

— Conditional branches

20 add a5,a4,ab5

o if...else, for/while, switch/case,™

21 flw fa4,0(a5)
22 flw fa5,-40(s0)
- 23 fmul.s fa5,fa4,fab
— Jumps — unconditional transfer 2 " faa2ats0)
25 fadd.s fa5,fa4,fab
26 fsw fa5,-24(s0)
. ’
gOtO 1 float sum(int N, float XN, float a) { 2/ ;gdw 22:;5’(50)
2 int i; sw a5,-20(s0)
— Procedure calls 3 Float result = 0.0;
4 for (i = 0; i < N; ++1i) w :g" (se)
! ! . ,—36(s0)
° fOO() 5 result += a * X[il; 33 blt a4,as,.L3
6 return result; 34 :le ;as,? (s0)
35 mv.s a0, fab
— Procedure returns ¢ 3 W 50,40(5p)
‘—"““--~_§~_________7 37 add Sp,Sp,
38 ir ra
o return 39 .size sum, .-sum
40 .ident "GCC: (GNU) 6.1.0"

35

Breakdown of Control Flow Instructions

E Floating-point average
M Integer average

8%

Call/return

Jump

82%
75%

Conditional branch

0% 25% 50% 75% 100%
Frequency of branch instructions

Issues:
— Where is the target address? How to specify it? (label)

— Caller: Where is return address kept? How are the arguments
passed?

— Callee: Where is return address? How are the results passed?

36

Addressing Modes for Control Flow Instructions

* PC-relative (Program Counter)
— Supply a displacement added to the PC

* Known at compile time for jumps, branches, and calls (specified
within the instruction)

— The target is often near the current instruction
* Requiring fewer bits
* Independently of where it is loaded (position independence)

* Register indirect addressing — dynamic addressing
— The target address may not be known at compile time
— Naming a register that contains the target address
» Case or switch statements
* Virtual functions or methods in C++ or Java
* High-order functions or function pointers in C or C++
* Dynamically shared libraries

37

30%

25%

20%

15%

10%

Percentage of distance

|

|

Branch Distances

Integer
average

Floating-point average

T

T T
o 1+ 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Bits of branch displacement

‘igure A.15 Branch distances in terms of number of instructions between the target and the branch instruction.
‘he most frequent branches in the integer programs are to targets that can be encoded in 4 to 8 bits. This result tells
Is that short displacement fields often suffice for branches and that the designer can gain some encoding density by
1aving a shorter instruction with a smaller branch displacement. These measurements were taken on a load-store
omputer (Alpha architecture) with all instructions aligned on word boundaries. An architecture that requires fewer
nstructions for the same program, such as a VAX, would have shorter branch distances. However, the number of bits
ieeded for the displacement may increase if the computer has variable-length instructions to be aligned on any byte
youndary. The programs and computer used to collect these statistics are the same as those in Figure A.8.

38

Conditional Branch Options

Name Examples How condition is tested Advantages Disadvantages
Condition 80x86, ARM, Tests special bits set by Sometimes condition CC is extra state. Condition
code (CC) PowerPC, ALU operations, possibly is set for free. codes constrain the ordering of
SPARC, SuperH under program control. instructions since they pass
information from one instruction
to a branch.
Condition Alpha, MIPS Tests arbitrary register Simple. Uses up a register.
register with the result of a
comparison.
Compare PA-RISC, VAX Compare is part of the One instruction rather May be too much work per
and branch branch. Often compare is than two for a branch. instruction for pipelined
limited to subset. execution.

Figure A.16 The major methods for evaluating branch conditions, their advantages, and their disadvantages.
Although condition codes can be set by ALU operations that are needed for other purposes, measurements on pro-
grams show that this rarely happens. The major implementation problems with condition codes arise when the con-
dition code is set by a large or haphazardly chosen subset of the instructions, rather than being controlled by a bit in
the instruction. Computers with compare and branch often limit the set of compares and use a condition register for
more complex compares. Often, different techniques are used for branches based on floating-point comparison ver-
sus those based on integer comparison. This dichotomy is reasonable since the number of branches that depend on
floating-point comparisons is much smaller than the number depending on integer comparisons.

39

Comparison Type vs. Frequency

59 [Floating-point average
Not equal 29, ° M Integer average
(<]
16%
Equal 18%

0%
Greater than or equal || 11%

0%

Greater than 0%

44%
Less than or equal 339

34%

Less than 35%

0% 10% 20% 30% 40% 50%
Frequency of comparison types in branches

Figure A.17 Frequency of different types of compares in conditional branches.

* Most loops go from O to n.
* Most backward branches

are loops — taken about
90%

Program | % backward
branches

% all control
instructions that
modify PC

gcc 26%

63%

spice 31%

63%

TeX 17%

70%

Average 25%

65% 40

Procedure Invocation Options

® Procedure calls and returns
— control transfer
— state saving; the return address must be saved
Newer architectures require the compiler to generate stores and loads
for each register saved and restored

* Two basic conventions in use to save registers
— caller saving: the calling procedure must save the registers that it
wants preserved for access after the call
* the called procedure need not worry about registers

— callee saving: the called procedure must save the registers it wants to
use

* leaving the caller unrestrained

most real systems today use a combination of both
* Application binary interface (ABI) that set down the basic rules as
to which register be caller saved and which should be callee saved

41

7. Encoding an Instruction Set

(57) [I) I E

° OpCOde: SpeCifying the Operation Opcode Address 1 Address 2 Address 3
* # of operand I A
— addressing mode omote J

— address specifier: tells what addressing mode is used
— Load-store computer

* Only one memory operand

* Only one or two addressing modes

* The architecture must balancing several competing forces when
encoding the instruction set:

— # of registers && Addressing modes

— Size of registers && Addressing mode fields

— Average instruction size && Average program size.
— Easy to handle in pipeline implementation.

42

* X86:

* Alpha:

Example: x86 and Alpha

'”&té]‘ﬂiigcs’” Opcode ModR/M SIB Displacement Immediate
Up to four 1-, 2-, or 3-byte 1 byte 1 byte Address Immediate
prefixes of opcode (if required) (if required) displacement data of
1 byte each of1,2,0or4 1,2, 0r4
(optional) / \ bytes or none bytes or none

7 6 5 32 0 7 6 5 32 0
Mod Osfogc{e R/M Scale | Index Base
31 26 25 2120 16 15 5 4 0
Opcode Number PALcode Format
Opcode RA Disp Branch Format
Opcode RA RB Disp Memory Format
Opcode RA RB Function RC |Operate Format

43

Three Basic Variations for Instruction Encoding

Operation and | Address Address .. Address Address
no. of operands | specifier 1 | field 1 specifier n field n
(A) Variable (e.g., Intel 80x86, VAX)
Operation Address Address Address
field 1 field 2 field 3

(B) Fixed (e.g., RISC V, ARM, MIPS, PowerPC, SPARC)

Operation Address Address
specifier field

Operation Address Address Address
specifier 1 specifier 2 field

Operation Address Address Address
specifier field 1 field 2

The length of 80x86 (CISC)
instructions varies
between 1 and 17 bytes.

The length of most RISC ISA
instructions are 4 bytes.

|

X86 program are generally
smaller than RISC ISA.

To reduce RISC code size

<

(C) Hybrid (e.g., RISC V Compressed (RV32IC), IBM 360/370, microMIPS, Arm Thumb?2)

Figure A.18 Three basic variations in instruction encoding: variable length, fixed
length, and hybrid. The variable format can support any number of operands, with

each address specifier determining the addressing mode and the length of the spec-
ifier for that operand. It generally enables the smallest code representation, because

-

44

-

Instruction Length Tradeoffs

* Fixed length: Length of all instructions the same
+ Easier to decode single instruction in hardware
+ Easier to decode multiple instructions concurrently
-- Wasted bits in instructions (Why is this bad?)
-- Harder-to-extend ISA (how to add new instructions?)

* Variable length: Length of instructions different

(determined by opcode and sub-opcode)
+ Compact encoding (Why is this good?)
Intel 432: Huffman encoding (sort of). 6 to 321 bit instructions. How?
-- More logic to decode a single instruction
-- Harder to decode multiple instructions concurrently

* Tradeoffs

— Code size (memory space, bandwidth, latency) vs. hardware complexity
— ISA extensibility and expressiveness
— Performance? Smaller code vs. imperfect decode

45

Uniform vs Non-uniform Decode

* Uniform decode: Same bits in each instruction correspond
to the same meaning
— Opcode is always in the same location
— immediate values, ...

— Many “RISC” ISAs: Alpha, MIPS, SPARC
+ Easier decode, simpler hardware

+ Enables parallelism: generate target address before knowing the instruction
is a branch

-- Restricts instruction format (fewer instructions?) or wastes space

* Non-uniform decode

— E.g., opcode can be the 1st-7th byte in x86
+ More compact and powerful instruction format
-- More complex decode logic

46

Reduced Code Size in RISCs

* Hybrid encoding — support 16-bit and 32-bit instructions in RISC,

eg. ARM Thumb, MIPS 16 and RISC-V

— Narrow instructions support fewer operations, smaller address and
immediate fields, fewer registers, and two-address format rather
than the classic three-address format

— Claim a code size reduction of up to 40%

* Compression in IBM’s CodePack

— Adds hardware to decompress instructions as they are fetched from
memory on an instruction cache miss

— The instruction cache contains full 32-bit instructions, but
compressed code is kept in main memory, ROMs, and the disk

— Claim code reduction 35% - 40%

— PowerPC create a Hash table in memory that map between
compressed and uncompressed address. Code size 35%~40%

* Hitachi’s SuperH: fixed 16-bit format
— 16 rather than 32 registers
— fewer instructions
47

Summary of Instruction Encoding

®* Three choices
— Variable, fixed and hybrid
— Note the differences of hybrid and variable

* Choices of instruction encoding is a tradeoff between
— For performance: fixed encoding
— For code size: variable encoding

* How hybrid encoding is used in RISC to reduce code size
— 16bit and 32bit

* In general, we see:
— RISC: fixed or hybrid
— CISC: variable

48

8 The Role of Compilers

* Almost all programming is done in high-level languages.
— An ISA is essentially a complier target.

* See backup slides for the
compilation stage by most

compiler, e.g. gcc

* Compiler goals:

All correct programs execute correctly

Source
Code
File

if a<b

(Lib ref)

do while

Z=X-y

(Lib ref)

Object
File

Executable

‘»‘EIIINIIII’P>

11011001

(Lib ref)

00010111
10101011

(Lib ref)

()

A

Library

Files

File

11011001
01000100
ooololll
10101011
11111100

10111101
11100001
00000011
0l000100
10011101
11111100

Most compiled programs execute fast (optimizations)

Fast compilation
Debugging support

49

Typical Modern Compiler Structure

Dependencies Function
Language dependent; Front end per Transform language to
machine independent language common intermediate form

Intermediate
representation

For example, loop
transformations and
procedure inlining
(also called
procedure integration)

Somewhat language
dependent; largely machine
independent

High-level
optimizations

Small language dependencies; Including global and local
machine dependencies slight Global optimizations + register
(e.g., register counts/types) optimizer allocation

Highly machine dependent; Detailed instruction selection
language independent | Code generator I and machine-dependent
optimizations; may include

or be followed by assembler

Figure A.19 Compilers typically consist of two to four passes, with more highly optimizing compilers having more passes.
This structure maximizes the probability that a program compiled at various levels of optimization will produce the same output
when given the same input. The optimizing passes are designed to be optional and may be skipped when faster compilation is the
goal and lower-quality code is acceptable. A pass is simply one phase in which the compiler reads and transforms the entire
program. (The term phase is often used inter-changeably with pass.) Because the optimizing passes are separated, multiple
languages can use the same optimizing and code generation passes. Only a new front end is required for a new language. 50

Optimization Types

* High level — done at or near source code level
— If procedure is called only once, put it in-line and save CALL
— more general case: if call-count < some threshold, put them in-line

* Local — done within straight-line code

— common sub-expressions produce same value — either allocate a
register or replace with single copy

— constant propagation — replace constant valued variable with the
constant

— stack height reduction — re-arrange expression tree to minimize
temporary storage needs
* Global —across a branch

— copy propagation —replace all instances of a variable A that has
been assigned X (i.e., A=X) with X.

— code motion — remove code from a loop that computes same value
each iteration of the loop and put it before the loop

— simplify or eliminate array addressing calculations in loops

51

Optimization Types

* Machine-dependent optimizations — based on machine
knowledge

— strength reduction — replace multiply by a constant with shifts
and adds

* would make sense if there was no hardware support for MUL
 atrickier version: 17 < = arithmetic left shift 4 and add

* Pipelining scheduling — reorder instructions to improve
pipeline performance
— dependency analysis

— branch offset optimization - reorder code to minimize branch
offsets

52

Major Types of Optimizations

Optimization name

Explanation

Percentage of the total number of
optimizing transforms

High-level

At or near the source level; processor-
independent

Procedure integration Replace procedure call by procedure body N.M.

Local Within straight-line code

Common subexpression Replace two instances of the same 18%

elimination computation by single copy

Constant propagation Replace all instances of a variable that 22%
is assigned a constant with the constant

Stack height reduction Rearrange expression tree to minimize N.M.
resources needed for expression evaluation

Global Across a branch

Global common subexpression Same as local, but this version crosses 13%

elimination branches

Copy propagation Replace all instances of a variable A that has 11%
been assigned X (i.e., A = X) with X

Code motion Remove code from a loop that computes 16%
same value each iteration of the loop

Induction variable elimination Simplify/eliminate array addressing 2%
calculations within loops

Processor-dependent Depends on processor knowledge

Strength reduction Many examples, such as replace multiply by N.M.
a constant with adds and shifts

Pipeline scheduling Reorder instructions to improve pipeline N.M.
performance

Branch offset optimization Choose the shortest branch displacement that N.M.

reaches target

Figure A.20 Major types of optimizations and examples in each class. These data tell us about the relative fre-
quency of occurrence of various optimizations. The third column lists the static frequency with which some of the

53

Complier Optimizations — Change in IC

< lucas, level 3 11% M Branches/calls

@ M Floating-point ALU ops

5 lucas, level 2 12% [Loads-stores

8 lucas, level 1 21% O Integer ALU ops

£ :

2 lucas, level 0 [N 100%

2 mdf, level 3 [N 76%

£ . gcc -02 hello.c -0 hello

8 mcf, level 2 | 76%

E -

S mcf, level 1 [N 84%

o4 _

O mcf, level 0 _ 100%
0% 20% 40% 60% 80% 100%

Percentage of unoptimized instructions executed

Figure A.21 Change in instruction count for the programs lucas and mcf from the
SPEC2000 as compiler optimization levels vary. Level 0 is the same as unoptimized
code. Level 1 includes local optimizations, code scheduling, and local register alloca-
tion. Level 2 includes global optimizations, loop transformations (software pipelining),
and global register allocation. Level 3 adds procedure integration. These experiments
were performed on Alpha compilers. 54

Compiler Based Register Optimization

* Compiler assumes small number of registers (16-32)
— Optimizing use is up to compiler
— HLL programs have no explicit references to registers

* Compiler Approach
— Assign symbolic or virtual register to each candidate variable
— Map (unlimited) symbolic registers to real registers
— Symbolic registers that do not overlap can share real registers
— If you run out of real registers some variables
* Spilling

55

Graph Coloring

* Given a graph of nodes and edges
— Assign a color to each node "
* Adjacent nodes have different color:

* Use minimum number of colors

https://en.wikipedia.org/wiki/Graph_coloring

* Registration allocation
— Nodes are symbolic registers
— Two registers that are live in the same program fragment are
joined by an edge
— Try to color the graph with n colors, where n is the number of
real registers
— Nodes that can not be colored are placed in memory

56

Iron-code Summary

Section A.2—Use general-purpose registers with a load-store architecture.

Section A.3—Support these addressing modes: displacement (with an address offset
size of 12 to 16 bits), immediate (size 8 to 16 bits), and register indirect.

Section A.4—Support these data sizes and types: 8-, 16-, 32-, and 64-bit integers and
64-bit IEEE 754 floating-point numbers.
— Now we see 16-bit FP for deep learning in GPU
* http://www.nextplatform.com/2016/09/13/nvidia-pushes-deep-learning-inference-
new-pascal-gpus/

Section A.5—Support these simple instructions, since they will dominate the number
of instructions executed: load, store, add, subtract, move register- register, and shift.

Section A.6—Compare equal, compare not equal, compare less, branch (with a PC-
relative address at least 8 bits long), jump, call, and return.

Section A.7—Use fixed instruction encoding if interested in performance, and use
variable instruction encoding if interested in code size.

Section A.8—Provide at least 16 general-purpose registers, be sure all addressing
modes apply to all data transfer instructions, and aim for a minimalist IS
— Often use separate floating-point registers.

— The justification is to increase the total number of registers without raising problems in
the instruction format or in the speed of the general-purpose register file. This
compromise, however, is not orthogonal.

57

Real World ISA

Alpha

ARM

MIPS

SPARC
T1 C6000
IBM 360

x86

VAX

Reg-Reg

Reg-Reg
Reg-Reg
Reg-Reg
Reg-Reg

Reg-Mem

Reg-Mem

Mem-Mem

2

3

64-bit

32/64-bit

32/64-bit

32/64-bit
32-bit
32-bit

8/16/32/
64-bit

32-bit

32

16

32

24-32
32
16

4/8/24

16

64-bit

32/64-bit

32/64-bit

32/64-bit
32-bit
24/31/64

16/32/64

32-bit

Workstation

Cell Phones,
Embedded

Workstation,
Embedded

Workstation
DSP
Mainframe

Personal
Computers

Minicomputer

58

The details in design is to trade-
off!

