Lecture 02: Technology Trends and
Quantitative Design and Analysis for
Performance

CSCE 513 Computer Architecture

Department of Computer Science and Engineering
Yonghong Yan
yanyh@cse.sc.edu
http://cse.sc.edu/~yanyh

Contents

* Computer components

* Computer architectures and great ideas in
computer architectures

* Trends and Performance

Computer Architecture

Genuine Computer Architecture: Designing the Organization
and Hardware to Meet Goals and Functional Requirements

* Covers three aspects of computer design
— Instruction set architecture
e Software and hardware interfaces
— Organization or microarchitecture
 CPU, memory, cache architecture
— Hardware
* Computer systems, e.g. |/O devices

Levels of Program Code

* High-level

— Level of abstraction closer

language

to problem domain
— Provides for productivity

and porta

* Assembly
— Textual re

oility
anguage

oresentation of

instructions

* Hardware representation

— Binary digits (bits)

— Encoded instructions and

data

High-level
language
program

(in C)

IAssembly
language
program
(for RISC-V)

Binary machine
language
program

(for RISC-V)

swap(int v[], int k)
{int temp;

temp = v[k];

vik] = v[k+1];

vik+1l] = temp;

s111 x6, x11, 3
add x6, x10, x6
1d x5, 0(x6)
1d x7, 8(x6)

sd x5, 8(x6)
jalr x0, 0(x1)

00000000001101011001001100010011
00000000011001010000001100110011
00000000000000110011001010000011
00000000100000110011001110000011
00000000011100110011000000100011
00000000010100110011010000100011
00000000000000001000000001100111

Below Your Program

* Application software
— Written in high-level language

* System software
— Compiler: translates HLL code to machine code

— Operating System: service code
* Handling input/output
* Managing memory and storage
* Scheduling tasks & sharing resources

* Hardware
— Processor, memory, |/O controllers

Understanding Performance

* Algorithm
— Determines number of operations executed

* Programming language, compiler, architecture

— Determine number of machine instructions executed per
operation

* Processor and memory system
— Determine how fast instructions are executed
* |/O system (including OS)

— Determines how fast I/O operations are executed

* Architecture vs Technology

Trends in Technology

* |ntegrated circuit technology (Moore’s Law)
— Transistor density: 35%/year
— Die size: 10-20%/year
— Integration overall: 40-55%/year

* DRAM capacity: 25-40%/year (slowing)
— 8Gb (2014), 16 Gb (2019), possibly no 32 Gb

* Flash capacity: 50-60%/year
— 8-10X cheaper/bit than DRAM

* Magnetic disk capacity: recently slowed to 5%/year

— Density increases may no longer be possible, maybe increase from 7 to 9
platters
— 8-10X cheaper/bit then Flash

— 200-300X cheaper/bit than DRAM .

Bandwidth and Latency

* Bandwidth or throughput s
— Total work done in a given time WO
— 10,000-25,000X improvement for ¥ :f. =

processors ‘ A.

— 300-1200X improvement for
memory and disks

* Latency or response time
— Time between start and completion of an event
— 30-80X improvement for processors
— 6-8X improvement for memory and disks

Measuring Performance

* Typical performance metrics:
— Response time
— Throughput
* Speedup of X relative to Y: Execution timeY / Execution timeX
— Example: time taken to run a program, 10s on X, 15son Y
— Speedup: 15s/10s = 1.5, = Xis 1.5 faster than Y

* Execution time

— Wall clock time: includes all system overheads (1/O, swapping, etc)
— CPU time: only computation time

* Benchmarks
— Kernels (e.g. matrix multiply)
— Toy programs (e.g. sorting)
— Synthetic benchmarks (e.g. Dhrystone)
— Benchmark suites (e.g. SPECO6fp, TPC-C)

Measuring Execution Time 1/2

* Elapsed time

— Total response time, including all aspects
* Processing, I/O, OS overhead, idle time
— Determines system performance

elapsed = read timer();
REAL result = sum(N, X, a);
elapsed = (read timer() - elapsed);

https://passlab.github.io/CSCE513/exercises/sum/sum_full.c

* CPU time

10

Measuring Execution Time 2/2

* CPU time
— Time spent processing a given job
* Discounts I/O time, other jobs’ shares
— Comprises user CPU time and system CPU time
— Different programs are affected differently by CPU and system

— “time” command in Linux
yanyh@vm:~$ time ./matmul 512 1

Matrix Multiplication: A[M][K] * B[k][N] = C[M][N], M=K=N=512,

Performance: Runtime (ms) MFLOPS
matmul_base: 628.999949 426.765466
matmul_openmp: 776.000023 345.921969

real ®ml1.419s
user Oml.408s

Sys 0m0.908$

11

CPU Clocking

* Operation of digital hardware governed by a
constant-rate clock

<«—Clock period—

Clock (cycles)

Data transfer
and computation

Update state ' '

m Clock period: duration of a clock cycle
= e.g., 250ps = 0.25ns = 250x1071?%s

s Clock frequency (rate): cycles per second
= e.g., 4.0GHz = 4000MHz = 4.0x10°Hz
= Clock period: 1/(4.0x10°) s = 0.25ns

12

No Excuse About the Unit

* Should be as clear as we know about
thousand/million/billion dollars

103s
10%s
10°s

103 Hz
106 Hz
10° Hz

ms
HS
ns

pS

kHz
MHz
GHz

millisecond
microsecond
nanosecond

picosecond

kilohertz
megahertz

gigahertz

Decimal
Value Metric
1000 kB kilobyte
10002 MB megabyte
10002 GB gigabyte
1000* TB terabyte
1000° PB petabyte
1000° EB exabyte

Binary
Value IEC
1024 KiB kibibyte
10242 MiB mebibyte
10243 GiB gibibyte
1024% TiB tebibyte
1024° PiB pebibyte
1024° EiB exbibyte

13

CPU Time

CPU Time = CPU Clock Cycles x Clock Cycle Time

~ CPUClock Cycles
Clock Rate

* Performance improved by
— Reducing number of clock cycles

— Increasing clock rate (frequency)
— Hardware designer must often trade off clock rate

against CYCle count ©One Clock
“Period”

- —
1 Falling edge
0o —) I

TIME — Clock width Rising edge

(Clock Period_|

CPU Time Example

* Computer A: 2GHz clock, 10s CPU time

* Designing Computer B
— Aim for 6s CPU time
— Can do faster clock, but causes 1.2 % clock cycles of A

* How fast must Computer B clock be?

Clock Rate, = Clock Cyclesg _ 1.2xClock Cycles,

CPU Time, 6s
Clock Cycles, = CPU Time, x Clock Rate

=10sx2GHz =20x10°

1.2><20><109_24><1O9
6S 6S

Clock Rate; = =4GHz

15

Instruction Count and CPI

_ Instruction Count x CPI
Clock Rate

Clock Cycles =Instruction Count x Cycles per Instruction

CPU Time =Instruction Count x CPIx Clock Cycle Time

* Instruction Count for a program
— Determined by program, ISA and compiler

* Average cycles per instruction
— Determined by CPU hardware

— If different instructions have different CPI
* Average CPI affected by instruction mix

Instr. No.

Pipeline Stage

| IF | ID

EX

MEM

WB

2 IF

ID

EX

MEM

WB

IF

EX

MEM

WB

EX

MEM

EX

16

CPI Example

Computer A: Cycle Time = 250ps, CP1 = 2.0
Computer B: Cycle Time = 500ps, CPI =1.2
Same [SA

Which is faster, and by how much?

CPU TimeA = Instruction Count x CPIA x Cycle TimeA

=[x2.0x250ps =I1x500ps «——| Aisfas

ter...

CPU TimeB = Instruction Count x CPIB x Cycle TimeB

=1x1.2x500ps =1x600ps
CPU Timeg _ 1x600ps

=12+ ...by this

much

CPUTime 5 1x500ps

17

CPIl in More Detail

* |f different instruction classes take different numbers
of cycles

Clock Cycles =) (CPI, xInstruction Count,)
i=1

* Weighted average CPI

cpy- _ Clock Cycles (CPIix

~ Instruction Count —

Instruction Count,
Instruction Count

— _/
V

Relative frequency

18

CPI Example

* Alternative compiled code sequences using
instructions in classes A, B, C

Class A B C
CPI for class 1 2 3
IC in sequence #1 2 1 2
IC in sequence #2 4 1 1
s Sequence #1:1C=5 m Sequence #2:1C=6
= Clock Cycles s Clock Cycles
=2x1 + 1x2 + 2x3 =4x]1 + 1x2 + 1x3
=10 =9

= Avg. CPI=10/5=2.0 = Avg.CPI=9/6=1.5

Impacts by Components

CPU Time — Instructions y Clock cy.cles y Seconds
Program Instruction Clock cycle

Inst Count | CPI Clock Rate

Program X

Compiler X (X)

Inst. Set. X X

Architecture X X

Technology X

20

Processor Performance Equation Summary

CPU time = CPU clock cycles for a program x Clock cycle time

CPU clock cycles for a program
Clock rate

CPU time =

CPU clock cycles for a program

CPl = :
Instruction count

CPU time = Instruction count X Cycles per instruction X Clock cycle time

[nstructions o Clock cycles o Seconds _ Seconds _ CPU time
Program Instruction Clock cycle Program

n
CPU clock cycles = Z IC, x CPI,
i=1
n

CPU time = Z IC; X CPI; | x Clock cycle time

i=1

21

Principles of Computer Design

* Take Advantage of Parallelism

— e.g. multiple processors, disks, memory banks, pipelining,
multiple functional units

* Principle of Locality
— Reuse of data and instructions

®* Focus on the Common Case
— Amdahl’s Law

Fract lOnenham‘,t‘wl

Execution time,,, = Execution time, ><| (1 — Fractiong o oq) + =
) ‘ Speedupeppanced /

Execution time ~ I

Speedup,eranl = — = :
overall ™ Execution time Fraction

new enhanced

(1 - ch““"enhanced) + Speedun
! [enhanced

22

Amdahl’ s Law

. . . raction
EXTlmenew = EXT"“eOld)(|:(1_ Frtac1'|onenhanced) F enhancedi|

Speedupenhanced

ExTime, 4 1

Speedu Poverall = =

ExTi me,.w Fraction_ ;unced

(1 - Fr‘ac‘rionenhanced) +
Speedupc»:nhancc»:d

Best you could ever hope to do:

1
(1 - Fraction, anced)

B N - I e

Speedupmaximum =

23

Using Amdahl’s Law

Overall speedup if we make 90% of a program run 10 times faster.

F=09 5=10

1 1
Overall Speedup = =

=526
(1-0.9)+ 2 0.1+0.09

Overall speedup if we make 80% of a program run 20% faster.

F=08 5=1.2
1 1
Overall Speedup = = =1.153

(1-08)+ 08 02+0.66

1.2

24

Amdahl’s Law for Parallelism

* The enhanced fraction F is through parallelism, perfect
parallelism with linear speedup

— The speedup for Fis N for N processors

® QOverall speedup

T T - 1
SIN) =7+ F*T F
r (I-F)*T, + * 1-F+—
N N
1
* Speedup upper bound (when N 2>©°): S(N)s1 F

— 1-F: the sequential portion of a program

25

Amdahl’s Law for Parallelism

Speedup

Amdahl's Law

20.00 p—
//
18.00 //
16.00 7 Parallel Portion
/ — 5 0%
14.00 —

/ —_— 0%
— 050

12.00 //
10.00 /
A L1
8.00
6.00 //
4.00 Z
7 —
4 I
"
2.00 e
——
0.00
i ~ < w (Ve ~ < w (Vo) ™~ << w O ~ < w
i ™M (Ve ™~ (%] ~ ™~ < (ey] (a3} w (Vo]
i ™~ (¥} o o o i ™M ~

Number of Processors

65536

Exercise #1: Amdahl’s Law

Suppose that we want to enhance the processor used for Web serving. The new
processor 1s 10 times faster on computation in the Web serving application than
the original processor. Assuming that the original processor is busy with compu-
tation 40% of the time and 1s waiting for I/O 60% of the time, what is the overall
speedup gained by incorporating the enhancement?

27

Exercise #1: Amdahl’s Law Solution

Fraction, panceq = 0-4; Speedupepnanced = 105

1 1
Speedup,yera = =061 " 1.56

O.6+(£1r

10

28

General Amdahl’s Law

* FO 30%, no speedup; F1 40%, speedup by 4; F2 30%
speedup by 3, what is the overall speedup

e =1/(0.3+0.4/4+0.3/3)=1/0.5 =2

29

Exercise #2: CPU time and Speedup

Suppose we have made the following measurements:

Frequency of FP operations = 25%
Average CPI of FP operations = 4.0
Average CPI of other instructions = 1.33
Frequency of FPSQR = 2%

CPI of FPSQR =20

Assume that the two design alternatives are to decrease the CPI of FPSQR to 2 or
to decrease the average CPI of all FP operations to 2.5. Compare these two
design alternatives using the processor performance equation.

30

Exercise #2: Solution, Textbook Page 54

First, observe that only the CPI changes; the clock rate and instruction count
remain identical. We start by finding the original CPI with neither enhancement:

n I1C.
PI .. = PIX(" - J
C original Z;; c ! \Instruction coun
1=

= (4% 25%) + (1.33 X 75%) = 2.0

We can compute the CPI for the enhanced FPSQR by subtracting the cycles
saved from the original CPI:

CPlyith new FPSQR = CPloriginal — 2% X (CPlold FPSQR — CPlLof new FPSQR only)
= 20-2%x%(20-2) = 1.64

We can compute the CPI for the enhancement of all FP instructions the same way
or by summing the FP and non-FP CPIs. Using the latter gives us:

CPL_. pp = (75% x 1.33) + (25% % 2.5) = 1.625

Since the CPI of the overall FP enhancement is slightly lower, its performance
will be marginally better. Specifically, the speedup for the overall FP enhance-
ment is

CPU time ginal IC x Clock cycle x CPI original

CPU time_,, pp 1C X Clock cycle X CPL . rp

Speedup .. pp =

CPIoﬂginal _ 2.00

CPI =165 - B

new FP

31

Power and Energy

* Problem:
— Get power in and distribute around
— get power out: dissipate heat

®* Three primary concerns: | _
— Max power requirement for a process# ==
— Thermal Design Power (TDP) |
* Characterizes sustained power consumption
* Used as target for power supply and cooling system
* Lower than peak power, higher than average power consumption
— Energy and energy efficiency

® Clock rate can be reduced dynamically to limit power
consumption

32

Energy and Energy Efficiency

* Power: energy per unit time
— 1 watt =1 joule per second
— Energy per task is often a better measurement

* Processor A has 20% higher average power consumption
than processor B. A executes task in only 70% of the time
needed by B.

— So energy consumption of A will be 1.2 * 0.7 = 0.84 of B

33

Dynamic Energy and Power

®* Dynamic energy
— Transistor switch fromO0->1o0r1->0

Energy dynamic ™ 1/2 x Capacitive load X Voltage2

* Dynamic power

Powerdynamic o< 1/2 X Capacitive load X Voltage2 X@Cy S‘Vitﬁ

* Reducing clock rate reduces power, not energy

®* The capacitive load:

— a function of the number of transistors connected to an output
and the technology, which determines the capacitance of the
wires and the transistors.

34

An Example from Textbook page #25

Some microprocessors today are designed to have adjustable voltage, so a 15%
reduction in voltage may result in a 15% reduction in frequency. What would be
the impact on dynamic energy and on dynamic power?

Since the capacitance is unchanged, the answer for energy is the ratio of the volt-
ages since the capacitance is unchanged:

Energy .., _ (Voltage x 0.85)2

22) = 0.85” = 0.72
Energy 4 Voltage

thereby reducing energy to about 72% of the original. For power, we add the ratio
of the frequencies

Power .., _ 072 x (Frequency switched x 0.85)

= 0.61
Power Frequency switched

shrinking power to about 61% of the original.

35

An Example from Textbook

* Suppose a new CPU has
— 85% of capacitive load of old CPU
— 15% voltage and 15% frequency reduction

P.. _ C,.,x0.85x(V,,x0.85)*xF ,x0.85 _0.85% —0.52

Pais Cag X Vold2 X Fog

36

Power Trends

(spem) Jemod

o

-+ 100

M~
M~

o o o

< o - ™~ o
] ! !]
| | | |

(z102)
ebpug An|

gl 8100

(0102)
sepyJe|D
Gl 8100

(£002)
playsiusy|
Z 810D
(y002)
JJ0os8ald
¥ wnnued

(L002)
ajlswe|Ip\
 wnnuad

(2661) 0id
wnijuad

(€661)
wniusd

(6861)
98708

(G861)
98£08

(z861)
98208

10,000 +

!
1
o
~—

1000 +
100 +

(ZHW) 81y 00|10

load x Voltage” x Frequency

ve

Power = Capac

37

Reducing

Power

* Techniques for reducing power:

— Do nothing well

— Dynamic Voltage-Frequency Scaling

100

80

24 GHz

60

40

Power (% of peak)

20

0

DVS savings (%)

Compute load (%)

— Low power state for DRAM, disks

— Overclocking, turning off cores

Ide 7 14 21 29 36 43 50 57 64 71 79 86 93 100

38

Static Power

* Power includes both dynamic power and static power

* Static power consumption
— 25-50% of total power Power, ... o Current
— Scales with number of transistors
— To reduce: power gating (turn off power of inactive modules)

X Voltage

static

Relative energy cost Relative area cost

Operation: Energy (pJ) Area (um?)
8b Add 0.03 36

16b Add 0.05 67

32b Add 0.1 137
16b FB Add 0.4 1360
32b FB Add 0.9 4184
8b Mult 0.2 282
32b Mult 3.1 3495
16b FB Mult 1.1 1640
32b FB Mult 3.7 7700
32b SRAM Read (8KB) 5 N/A
32b DRAM Read 640 N/A

1 10 100 1000 10000 1 10 100 1000 39

