
Lecture	02:	Technology	Trends	and	
Quantitative	Design	and	Analysis	for	

Performance

CSCE	513	Computer	Architecture
Department	of	Computer	Science	and	Engineering

Yonghong Yan
yanyh@cse.sc.edu

http://cse.sc.edu/~yanyh

1



Contents

• Computer	components
• Computer	architectures	and	great	ideas	in	
computer	architectures

• Trends	and	Performance

2



Computer	Architecture

• Covers	three	aspects	of	computer	design
– Instruction	set	architecture

• Software	and	hardware	interfaces
– Organization	or	microarchitecture

• CPU,	memory,	cache	architecture	
– Hardware

• Computer	systems,	e.g.	I/O	devices

3



Levels	of	Program	Code

• High-level	language
– Level	of	abstraction	closer	
to	problem	domain

– Provides	for	productivity	
and	portability	

• Assembly	language
– Textual	representation	of	
instructions

• Hardware	representation
– Binary	digits	(bits)
– Encoded	instructions	and	
data

4



Below	Your	Program

• Application	software
– Written	in	high-level	language

• System	software
– Compiler:	translates	HLL	code	to	machine	code
– Operating	System:	service	code

• Handling	input/output
• Managing	memory	and	storage
• Scheduling	tasks	&	sharing	resources

• Hardware
– Processor,	memory,	I/O	controllers

5



Understanding	Performance

• Algorithm
– Determines	number	of	operations	executed

• Programming	language,	compiler,	architecture
– Determine	number	of	machine	instructions	executed	per	

operation
• Processor	and	memory	system

– Determine	how	fast	instructions	are	executed
• I/O	system	(including	OS)

– Determines	how	fast	I/O	operations	are	executed

• Architecture	vs	Technology

6



Trends	in	Technology

• Integrated	circuit	technology	(Moore’s	Law)
– Transistor	density:		35%/year
– Die	size:		10-20%/year
– Integration	overall:		40-55%/year

• DRAM	capacity:		25-40%/year	(slowing)
– 8	Gb	(2014),	16	Gb	(2019),	possibly	no	32	Gb

• Flash	capacity:		50-60%/year
– 8-10X	cheaper/bit	than	DRAM

• Magnetic	disk	capacity:		recently	slowed	to	5%/year
– Density	increases	may	no	longer	be	possible,	maybe	increase	from	7	to	9	

platters
– 8-10X	cheaper/bit	then	Flash
– 200-300X	cheaper/bit	than	DRAM 7



Bandwidth	and	Latency

• Bandwidth	or	throughput
– Total	work	done	in	a	given	time
– 10,000-25,000X	improvement	for	

processors
– 300-1200X	improvement	for	

memory	and	disks

• Latency	or	response	time
– Time	between	start	and	completion	of	an	event
– 30-80X	improvement	for	processors
– 6-8X	improvement	for	memory	and	disks

8



Measuring	Performance

• Typical	performance	metrics:	
– Response	time
– Throughput

• Speedup	of	X	relative	to	Y:	Execution	timeY /	Execution	timeX
– Example:	time	taken	to	run	a	program,	10s	on	X,	15s	on	Y
– Speedup:	15s/10s	=	1.5,	à X	is	1.5	faster	than	Y

• Execution	time
– Wall	clock	time:		includes	all	system	overheads	(I/O,	swapping,	etc)
– CPU	time:		only	computation	time

• Benchmarks
– Kernels	(e.g.	matrix	multiply)
– Toy	programs	(e.g.	sorting)
– Synthetic	benchmarks	(e.g.	Dhrystone)
– Benchmark	suites	(e.g.	SPEC06fp,	TPC-C)

9



Measuring	Execution	Time	1/2

• Elapsed	time
– Total	response	time,	including	all	aspects

• Processing,	I/O,	OS	overhead,	idle	time
– Determines	system	performance

• CPU	time

10

https://passlab.github.io/CSCE513/exercises/sum/sum_full.c



Measuring	Execution	Time	2/2

• Elapsed	time
• CPU	time

– Time	spent	processing	a	given	job
• Discounts	I/O	time,	other	jobs’	shares

– Comprises	user	CPU	time	and	system	CPU	time
– Different	programs	are	affected	differently	by	CPU	and	system
– “time”	command	in	Linux

11



CPU	Clocking

• Operation	of	digital	hardware	governed	by	a	
constant-rate	clock

Clock (cycles)

Data transfer
and computation

Update state

Clock period

n Clock	period:	duration	of	a	clock	cycle
n e.g.,	250ps	=	0.25ns	=	250×10–12s

n Clock	frequency	(rate):	cycles	per	second
n e.g.,	4.0GHz	=	4000MHz	=	4.0×109Hz
n Clock	period:	1/(4.0×109)	s	=	0.25ns

12



No	Excuse	About	the	Unit	

• Should	be	as	clear	as	we	know	about	
thousand/million/billion	dollars

13



CPU	Time

• Performance	improved	by
– Reducing	number	of	clock	cycles
– Increasing	clock	rate	(frequency)
– Hardware	designer	must	often	trade	off	clock	rate	
against	cycle	count

CPU Time =CPU Clock Cycles×Clock Cycle Time

=
CPU Clock Cycles

Clock Rate

14



CPU	Time	Example

• Computer	A:	2GHz	clock,	10s	CPU	time
• Designing	Computer	B

– Aim	for	6s	CPU	time
– Can	do	faster	clock,	but	causes	1.2	× clock	cycles	of	A

• How	fast	must	Computer	B	clock	be?

Clock RateB =
Clock CyclesB

CPU TimeB

=
1.2×Clock CyclesA

6s
Clock CyclesA =CPU TimeA ×Clock RateA

=10s×2GHz = 20×109

Clock RateB =
1.2×20×109

6s
=

24×109

6s
= 4GHz

15



Instruction	Count	and	CPI

• Instruction	Count	for	a	program
– Determined	by	program,	ISA	and	compiler

• Average	cycles	per	instruction
– Determined	by	CPU	hardware
– If	different	instructions	have	different	CPI

• Average	CPI	affected	by	instruction	mix

Rate Clock
CPICount nInstructio

Time Cycle ClockCPICount nInstructioTime CPU

nInstructio per CyclesCount nInstructioCycles Clock

´
=

´´=

´=

16



CPI	Example

• Computer	A:	Cycle	Time	=	250ps,	CPI	=	2.0
• Computer	B:	Cycle	Time	=	500ps,	CPI	=	1.2
• Same	ISA
• Which	is	faster,	and	by	how	much?

1.2
500psI
600psI

ATime CPU
BTime CPU

600psI500ps1.2I
BTime CycleBCPICount nInstructioBTime CPU

500psI250ps2.0I
ATime CycleACPICount nInstructioATime CPU

=
´
´

=

´=´´=

´´=

´=´´=

´´=

A	is	faster…

…by	this	much

17



CPI	in	More	Detail

• If	different	instruction	classes	take	different	numbers	
of	cycles

• Weighted	average	CPI

å
=

´=
n

1i
ii )Count nInstructio(CPICycles Clock

å
=

÷
ø
ö

ç
è
æ ´==

n

1i

i
i Count nInstructio

Count nInstructioCPI
Count nInstructio

Cycles ClockCPI

Relative frequency

18



CPI	Example

• Alternative	compiled	code	sequences	using	
instructions	in	classes	A,	B,	C

Class A B C
CPI for class 1 2 3

IC in sequence #1 2 1 2
IC in sequence #2 4 1 1

n Sequence	#1:	IC	=	5
n Clock	Cycles
=	2×1	+	1×2	+	2×3
=	10

n Avg.	CPI	=	10/5	=	2.0

n Sequence	#2:	IC	=	6
n Clock	Cycles
=	4×1	+	1×2	+	1×3
=	9

n Avg.	CPI	=	9/6	=	1.5

19



Impacts	by	Components

Inst Count CPI Clock	Rate

Program X

Compiler X (X)

Inst.	Set.	 X X

Architecture X X

Technology X

20

cycle Clock
Seconds

nInstructio
cycles Clock

Program
nsInstructioTime CPU ´´=



Processor	Performance	Equation	Summary

21



Principles	of	Computer	Design

• Take	Advantage	of	Parallelism
– e.g.	multiple	processors,	disks,	memory	banks,	pipelining,	

multiple	functional	units

• Principle	of	Locality
– Reuse	of	data	and	instructions

• Focus	on	the	Common	Case
– Amdahl’s	Law

22



Amdahl’s	Law

23

( )
enhanced

enhanced
enhanced

new

old
overall

Speedup
Fraction  Fraction 

1  
ExTime
ExTime Speedup

+-
==
1

Best you could ever hope to do:

( )enhanced
maximum Fraction - 1

1  Speedup =

( ) ú
û

ù
ê
ë

é
+-´=

enhanced

enhanced
enhancedoldnew Speedup

FractionFraction ExTime  ExTime 1



Using	Amdahl’s	Law

24



Amdahl’s	Law	for	Parallelism

• The	enhanced	fraction	F	is	through	parallelism,	perfect	
parallelism	with	linear	speedup
– The	speedup	for	F	is	N	for	N	processors

• Overall	speedup

• Speedup	upper	bound	(when	N	à∞):	
– 1-F:	the	sequential	portion	of	a	program

25



Amdahl’s	Law	for	Parallelism

26



Exercise	#1:	Amdahl’s	Law

27



Exercise	#1:	Amdahl’s	Law	Solution

28



General	Amdahl’s	Law

• F0	30%,	no	speedup;	F1	40%,	speedup	by	4;	F2	30%	
speedup	by	3,	what	is	the	overall	speedup

• =	1	/	(0.3	+	0.4/4	+	0.3/3)	=	1/0.5	=	2

29



Exercise	#2:	CPU	time	and	Speedup

30



Exercise	#2:	Solution,	Textbook	Page	54

31



Power	and	Energy

• Problem:		
– Get	power	in	and	distribute	around
– get	power	out:	dissipate	heat	

• Three	primary	concerns:
– Max	power	requirement	for	a	processor
– Thermal	Design	Power	(TDP)

• Characterizes	sustained	power	consumption
• Used	as	target	for	power	supply	and	cooling	system
• Lower	than	peak	power,	higher	than	average	power	consumption

– Energy	and	energy	efficiency

• Clock	rate	can	be	reduced	dynamically	to	limit	power	
consumption

32



Energy	and	Energy	Efficiency

• Power:	energy	per	unit	time
– 1	watt	=	1	joule	per	second
– Energy	per	task	is	often	a	better	measurement

• Processor	A	has	20%	higher	average	power	consumption	
than	processor	B.	A	executes	task	in	only	70%	of	the	time	
needed	by	B.	
– So	energy	consumption	of	A	will	be	1.2	*	0.7	=	0.84	of	B

33



Dynamic	Energy	and	Power

• Dynamic	energy
– Transistor	switch	from	0	->	1	or	1	->	0

• Dynamic	power

• Reducing	clock	rate	reduces	power,	not	energy
• The	capacitive	load:

– a	function	of	the	number	of	transistors	connected	to	an	output	
and	the	technology,	which	determines	the	capacitance	of	the	
wires	and	the	transistors.	

34



An	Example	from	Textbook	page	#25

35



An	Example	from	Textbook

• Suppose a new CPU has
– 85% of capacitive load of old CPU
– 15% voltage and 15% frequency reduction

0.520.85
FVC

0.85F0.85)(V0.85C
P
P 4

old
2

oldold

old
2

oldold

old

new ==
´´

´´´´´
=

36



Power	Trends

• In CMOS IC technology

Power =Capacitive load×Voltage2 ×Frequency

×1000×30 5V	→	1V

37



Reducing	Power

• Techniques	for	reducing	power:
– Do	nothing	well
– Dynamic	Voltage-Frequency	Scaling

– Low	power	state	for	DRAM,	disks
– Overclocking,	turning	off	cores

38



Static	Power

• Power	includes	both	dynamic	power	and	static	power
• Static	power	consumption

– 25-50%	of	total	power
– Scales	with	number	of	transistors
– To	reduce:		power	gating	(turn	off	power	of	inactive	modules)	

39


