
Linux	and	C	Programming	Language

Department	of	Computer	Science	and	
Engineering
Yonghong Yan

yanyh@cse.sc.edu
http://cse.sc.edu/~yanyh

1

Contents

• Remote	Login	using	SSH
• Linux
• C	Programming
• Compiling	and	Linking

2

Computation	Server

3

In	the	cold	and	dark	
server	room!

Run	Linux/Unix	
Operating	System

Client/Server	and	SSH	(Secure	Shell)

4

Machine	for	Development	and	Experiment

• Linux	machines	in	Swearingen	1D43	and	3D22
– All	CSCE	students	by	default	have	access	to	these	machine	

using	their	standard	login	credentials
• Let	me	know	if	you,	CSCE	or	not,	cannot	access	

– Remote	access	is	also	available	via	SSH	over	port	
222. Naming	schema	is	as	follows:
• l-1d43-01.cse.sc.edu	through	l-1d43-26.cse.sc.edu
• l-3d22-01.cse.sc.edu	through	l-3d22-20.cse.sc.edu

• Restricted	to	2GB	of	data	in	their	home	folder	(~/).
– For	more	space,	create	a	directory	in	/scratch	on	the	login	

machine,	however	that	data	is	not	shared	and	it	will	only	be	
available	on	that	specific	machine.

5

Putty	SSH	Connection	on	Windows

6

l-1d43-08.cse.sc.edu 222

SSH	Connection	from	Linux/Mac	OS	X	Terminal

7

-X	for	enabling	X-
windows	forwarding	so	
you	can	use	the	graphics	
display	on	your	computer.	
For	Mac	OS	X,	you	need	
have	X	server	software	
installed,	e.g.	
Xquartz(https://www.xqu
artz.org/)	is	the	one	I	use.	

Linux	Basic	Commands

It	is	all	about	dealing	with	files	and	folders
Linux	folder:	/home/yan/…	

• ls (list	files	in	the	current	folder)
– $	ls -l
– $	ls -a
– $	ls -la
– $	ls -l	--sort=time
– $	ls -l	--sort=size	–r

• cd	(change	directory	to)
– $	cd	/usr/bin

• pwd (show	current	folder	name)
– $	pwd

• ~	(home	folder)
– $	cd	~

• ~user	(home	folder	of	a	user)
– $	cd	~weesan

• What	will	“cd	~/weesan” do?

• rm (remove	a	filer/folder)
– $	rm foo
– $	rm -rf foo
– $	rm -i foo
– $	rm -- -foo

• cat	(print	the	file	contents	to	
terminal)

– $	cat	/etc/motd
– $	cat	/proc/cpuinfo

• cp (create	a	copy	of	a	file/folder)
– $	cp foo	bar
– $	cp -a	foo	bar

• mv	(move	a	file/folder	to	
another	location.	Used	also	for	
renaming)

– $	mv	foo	bar
• mkdir (create	a	folder)

– $	mkdir foo

Basic	Commands	(cont)

• df (Disk	usage)
– $	df -h	/
– $	du	-sxh ~/

• man	(manual)
– $	man	ls
– $	man	2	mkdir
– $	man	man
– $	man	-k	mkdir

• Manpage sections
– 1	 User-level	cmds and	apps

• /bin/mkdir
– 2 System	calls	

• int mkdir(const char	*,	…);
– 3 Library	calls

• int printf(const char	*,	…);

Search	a	command	or	a	file

• which
– $	which	ls

• whereis
– $	whereis ls

• locate
– $	locate	stdio.h
– $	locate	iostream

• find
– $	find	/	|	grep stdio.h
– $	find	/usr/include	|	grep stdio.h

Smarty
1. [Tab]	key:	auto-complete	the	command	

sequence
2. é key:	to	find	previous	command
3. [Ctl]+r	key:	to	search	previous	command

Editing	a	File:	Vi

• 2	modes
– Input	mode

• ESC	to	back	to	cmd mode
– Command	mode

• Cursor	movement
– h	(left),	j	(down),	k	(up),	l	(right)
– ^f	(page	down)
– ^b	(page	up)
– ^	(first	char.)
– $	(last	char.)
– G	(bottom	page)
– :1	(goto first	line)

• Swtch to	input	mode
– a	(append)
– i (insert)
– o	(insert	line	after
– O	(insert	line	before)

• Delete
– dd (delete	a	line)
– d10d	(delete	10	lines)
– d$	(delete	till	end	of	line)
– dG (delete	till	end	of	file)
– x	(current	char.)

• Paste
– p	(paste	after)
– P	(paste	before)

• Undo
– u

• Search
– /

• Save/Quit
– :w	(write)
– :q	(quit)
– :wq (write	and	quit)
– :q!	(give	up	changes)

C	Hello	World
• vi	hello.c
• Switch	to	editing	mode:	i or	a
• Switching	to	control	mode:	ESC
• Save	a	file:	in	control	mode,	:w
• To	quit,	in	control	mode,	:q
• To	quit	without	saving,	:q!
• Copy/paste	a	line:	yy and	then	p,	both	from	the	current	cursor

– 5	line:	5yy	and	then	p
• To	delete	a	whole	line,	in	control	mode,	:	dd

• vi	hello.c
• ls hello.c
• gcc hello.c –o	hello
• ls	
• ./hello

11

#include <stdio.h>

/* The simplest C Program */

int main(int argc, char **argv) {

printf(“Hello World\n”);

return 0;

}

C	Syntax	and	Hello	World

#include <stdio.h>

/* The simplest C Program */

int main(int argc, char **argv)

{

printf(“Hello World\n”);

return 0;

}

The main() function is always
where your program starts
running.

#include inserts another file. “.h” files are called “header”
files. They contain declarations/definitions needed to
interface to libraries and code in other “.c” files.

A comment, ignored by the compiler

Blocks of code (“lexical
scopes”) are marked by { … }

Return ‘0’ from this function

What do the < >
mean?

12

Compilation	Process	in	C

• Compilation	process:	gcc hello.c –o	hello
– Constructing	an	executable	image	for	an	application
– FOUR	stages
– Command:	

gcc <options>	<source_file.c>

• Compiler	Tool
– gcc (GNU	Compiler)

• man	gcc (on	Linux	m/c)

– icc (Intel	C	compiler)

4	Stages	of	Compilation	Process

Preprocessing
gcc –E	hello.c –o	hello.i
hello.cà hello.i

Compilation	(after	preprocessing)
gcc –S	hello.i –o	hello.s

Assembling	(after	compilation)
gcc –c	hello.s –o	hello.o

Linking	object	files
gcc hello.o –o	hello

Output	à Executable	(a.out)
Run	à ./hello	(Loader)

4	Stages	of	Compilation	Process

1. Preprocessing	(Those	with	#	…)
– Expansion	of	Header	files	(#include	…)
– Substitute	macros	and	inline	functions	(#define	…)

2. Compilation
– Generates	assembly	language
– Verification	of	functions	usage	using	prototypes
– Header	files:	Prototypes	declaration

3. Assembling
– Generates	re-locatable	object	file	(contains	m/c	instructions)
– nm	app.o

0000000000000000	T	main
U	puts

– nm	or	objdump tool	used	to	view	object	files

4	Stages	of	Compilation	Process	(contd..)

4. Linking
– Generates	executable	file	(nm	tool	used	to	view	exe	file)
– Binds	appropriate	libraries

• Static	Linking
• Dynamic	Linking	(default)

• Loading	and	Execution	(of	an	executable	file)
– Evaluate	size	of	code	and	data	segment
– Allocates	address	space	in	the	user	mode	and	transfers	them	

into	memory
– Load	dependent	libraries	needed	by	program	and	links	them
– Invokes	Process	Manager	à Program	registration

Compiling	a	C	Program

• gcc <options>	program_name.c

• Options:

-Wall: Shows	all	warnings
-o	output_file_name: By	default	a.out executable	file	is	
created	when	we	compile	our	program	with	gcc.	Instead,	
we	can	specify	the	output	file	name	using	"-o"	option.
-g: Include	debugging	information	in	the	binary.

• man	gcc

Four	stages	into	one

Linking	Multiple	files	to	make	executable	file

• Two	programs,	prog1.c	and	prog2.c	for	one	single	task
– To	make	single	executable	file	using	following	instructions

First,	compile	these	two	files	with	option	"-c"
gcc -c	prog1.c
gcc -c	prog2.c

-c: Tells	gcc to	compile	and	assemble	the	code,	but	not	link.

We	get	two	files	as	output,	prog1.o	and	prog2.o
Then,	we	can	link	these	object	files	into	single	executable	file	
using below	instruction.

gcc -o	prog prog1.o	prog2.o

Now,	the	output	is	prog executable	file.
We	can	run	our	program	using
./prog

Linking	with	other	libraries

• Normally,	compiler	will	read/link	libraries	from	/usr/lib	
directory	to	our	program	during	compilation	process.
– Library	are	precompiled	object	files	

• To	link	our	programs	with	libraries	like	pthreads and	
realtime libraries	(rt library).
– gcc <options>	program_name.c -lpthread -lrt

-lpthread: Link	with	pthread library		à libpthread.so file
-lrt: Link	with	rt library																									à librt.so file
Option	here	is "-l<library>"

Another	option "-L<dir>" used	to	tell	gcc compiler	search	for	
library	file	in	given	<dir>	directory.

source
file 1

source
file 2

source
file N

object
file 1

object
file 2

object
file N

library
object
file 1

library
object
file M

load
file

usually performed by a compiler, usually in one uninterrupted sequence

linking
(relocation +

linking)
compilation

Compilation,	Linking,	Execution	of	C/C++	Programs

http://www.tenouk.com/ModuleW.html

sum.c

• cp ~yan/sum.c ~		(copy	sum.c file	from	my	home	folder	to	
your	home	folder)

• gcc -save-temps	sum.c –o	sum
• ./sum	102400

• vi	sum.c
• vi	sum.s

• Other	system	commands:
– cat	/proc/cpuinfo to	show	the	CPU	and	#cores
– top	command	to	show	system	usage	and	memory

21

More	on	C	Programming

22

Lexical	Scoping

Every Variable is Defined within some scope. A
Variable cannot be referenced by name (a.k.a.
Symbol) from outside of that scope.

The scope of Function Arguments is the
complete body of that function.

void p(char x)
{

/* p,x */

char y;
/* p,x,y */

char z;
/* p,x,y,z */

}

/* p */
char z;

/* p,z */

void q(char a)

{
char b;

/* p,z,q,a,b */

{

char c;
/* p,z,q,a,b,c */

}

char d;

/* p,z,q,a,b,d (not c) */
}

/* p,z,q */

The scope of Variables defined inside a
function starts at the definition and ends at
the closing brace of the containing block

Lexical scopes are defined with curly braces { }.

The scope of Variables defined outside a
function starts at the definition and ends at
the end of the file. Called “Global” Vars.

legal?

char b?

23

Comparison	and	Mathematical	Operators

== equal to
< less than
<= less than or equal
> greater than
>= greater than or equal
!= not equal
&& logical and
|| logical or
! logical not

+ plus
- minus
* mult
/ divide
% modulo

The rules of precedence are clearly
defined but often difficult to remember or
non-intuitive. When in doubt, add
parentheses to make it explicit.

Beware division:
• 17/5=3, 17%5=2
• 5 / 10 = 0 whereas 5 / 10.0 = 0.5
• Division by 0 will cause a FPE(Float-
point exception)

& bitwise and
| bitwise or
^ bitwise xor
~ bitwise not
<< shift left
>> shift right

Don’t confuse & and &&..
1 & 2 = 0 whereas 1 && 2 = <true>

24

Assignment	Operators

x = y assign y to x
x++ post-increment x
++x pre-increment x
x-- post-decrement x
--x pre-decrement x

Note the difference between ++x and x++ (high vs low priority (precedence)):

Don’t confuse “=“ and “==“!

int x=5;
int y;
y = ++x;
/* x == 6, y == 6 */

int x=5;
int y;
y = x++;
/* x == 6, y == 5 */

int x=5;
if (x=6) /* always true */
{
/* x is now 6 */

}
/* ... */

int x=5;
if (x==6) /* false */
{
/* ... */

}
/* x is still 5 */

x += y assign (x+y) to x
x -= y assign (x-y) to x
x *= y assign (x*y) to x
x /= y assign (x/y) to x
x %= y assign (x%y) to x

25

A	Quick	Digression	About	the	Compiler
#include <stdio.h>

/* The simplest C Program */

int main(int argc, char **argv)

{

printf(“Hello World\n”);

return 0;

}

my_program

__extension__ typedef unsigned long long int
__dev_t;

__extension__ typedef unsigned int __uid_t;

__extension__ typedef unsigned int __gid_t;

__extension__ typedef unsigned long int
__ino_t;

__extension__ typedef unsigned long long int
__ino64_t;

__extension__ typedef unsigned int
__nlink_t;

__extension__ typedef long int __off_t;

__extension__ typedef long long int
__off64_t;

extern void flockfile (FILE *__stream) ;

extern int ftrylockfile (FILE *__stream) ;

extern void funlockfile (FILE *__stream) ;

int main(int argc, char **argv)

{

printf(“Hello World\n”);

return 0;

}

Compilation occurs in two steps:
“Preprocessing” and “Compiling”

In Preprocessing, source code is “expanded” into
a larger form that is simpler for the compiler to
understand. Any line that starts with ‘#’ is a line
that is interpreted by the Preprocessor.

• Include files are “pasted in” (#include)
• Macros are “expanded” (#define)
• Comments are stripped out (/* */ , //)
• Continued lines are joined (\)

Preprocess

Compile

The compiler then converts the resulting text
(called translation unit) into binary code the CPU
can execute.

26

C	Memory	Pointers

• To	discuss	memory	pointers,	we	need	to	talk	a	bit	about	the	
concept	of	memory

• We’ll	conclude	by	touching	on	a	couple	of	other	C	elements:
– Arrays,	typedef,	and	structs

27

The	“memory”

Memory: similar to a big table of numbered
slots where bytes of data are stored.

The number of a slot is its Address.
One byte Value can be stored in each slot.

Some data values span more than one slot,
like the character string “Hello\n”

A Type provides a logical meaning to a
span of memory. Some simple types are:

char
char [10]
int
float
int64_t

a single character (1 slot)
an array of 10 characters
signed 4 byte integer
4 byte floating point
signed 8 byte integer

Addr Value
0
1
2
3
4 ‘H’ (72)
5 ‘e’ (101)
6 ‘l’ (108)
7 ‘l’ (108)
8 ‘o’ (111)
9 ‘\n’ (10)

10 ‘\0’ (0)
11
12 28

What	is	a	Variable?

char x;
char y=‘e’;

A Variable names a place in memory where
you store a Value of a certain Type.

Symbol Addr Value
0
1
2
3

x 4 Some
garbage

y 5 ‘e’ (101)
6
7
8
9

10
11
12

You first Declare a variable by giving it a
name and specifying its type and optionally
an initial value declare vs. define

Type is single character (char)
extern? static? const?

Name What names are legal?

Initial value

Variable x declared
but undefined

The compiler puts x and y
somewhere in memory.

symbol table?

29

Multi-byte	Variables

char x;
char y=‘e’;
int z = 0x01020304;

Different types require different amounts of
memory. Most architectures store data on
“word boundaries”, or even multiples of
the size of a primitive data type (int, char)

Symbol Addr Value
0
1
2
3

x 4 Some garbage

y 5 ‘e’ (101)
6
7

z 8 4
9 3
10 2
11 1
12

0x means the constant is
written in hex

An int requires 4 bytes

padding

30

Memory,	a	more	detailed	view…

• A	sequential	list	of	words,	starting	
from	0.

• On	32bit	architectures	(e.g.	Win32):	
each	word	is	4	bytes.

• Local	variables	are	stored	in	the	
stack

• Dynamically	allocated	memory	is	set	
aside	on	the	heap	(more	on	this	
later…)

• For	multiple-byte	variables,	the	
address	is	that	of	the	smallest	byte	
(little	endian).

word 0
word 1
word 2

0
4
8

Stack

Heap

31

Example

What is the value of:
- sizeC
- sizeD
- sizeDarr

#include <iostream>

int main() {
char c[10];
int d[10];
int* darr;

darr = (int *)(malloc(10*sizeof(int)));
size_t sizeC = sizeof(c);
size_t sizeD = sizeof(d);
size_t sizeDarr = sizeof(darr);

free(darr);
return 0;

}

32

NOTE:	sizeof is	a	compile-time	operator	that	returns	the	size,	in	multiples	of
the	size	of char,	of	the	variable	or	parenthesized	type-specifier	that	it	precedes.

Can	a	C	function	modify	its	arguments?

What if we wanted to implement a function pow_assign() that
modified its argument, so that these are equivalent:

float p = 2.0;
/* p is 2.0 here */
pow_assign(p, 5);

/* Is p is 32.0 here ? */

float p = 2.0;
/* p is 2.0 here */
p = pow(p, 5);

/* p is 32.0 here */

void pow_assign(float x, uint exp)
{
float result=1.0;
int i;
for (i=0; (i < exp); i++) {
result = result * x;

}
x = result;

}

Would this work?

33

?

Native function, to use you
need #include <math.h>

In	C	you	can’t	change	the	value	of	any	variable	passed	as	an	
argument	in	a	function	call…	

Pass	by	value

void pow_assign(float x, uint exp)
{
float result=1.0;
int i;
for (i=0; (i < exp); i++) {
result = result * x;

}
x = result;

}

// a code snippet that uses above
// function
{
float p=2.0;
pow_assign(p, 5);
// the value of p is 2 here…

}

In C, all arguments are
passed by value

But, what if the argument is
the address of a variable?

34

Keep in mind: pass by
value requires the variable
to be copied. That copy is
then passed to the function.
Sometime generating a
copy can be expensive…

C	Pointers

• What	is	a	pointer?
– A	variable	that	contains	the	memory	address	of	another	

variable	or	of	a	function

• In	general,	it	is	safe	to	assume	that	on	32	bit	
architectures	pointers	occupy	one	word
– Pointers	to	int,	char,	float,	void,	etc.	(“int*”,	“char*”,	“*float”,	

“void*”),	they	all	occupy	4	bytes	(one	word).

• Pointers:	*very*	many	bugs	in	C	programs	are	traced	
back	to	mishandling	of	pointers…

35

Pointers	(cont.)

• The	need	for	pointers

– Needed	when	you	want	to	modify	a	variable	(its	value)	inside	a	
function
• The	pointer	is	passed	to	that	function	as	an	argument

– Passing	large	objects	to	functions	without	the	overhead	of	
copying	them	first

– Accessing	memory	allocated	on	the	heap

– Referring	to	functions,	i.e.	function	pointers

36

Pointer	Validity

A Valid pointer is one that points to memory that your program controls.
Using invalid pointers will cause non-deterministic behavior
• Very often the code will crash with a SEGV, that is, Segment Violation,
or Segmentation Fault.

There are two general causes for these errors:
• Coding errors that end up setting the pointer to a strange number
• Use of a pointer that was at one time valid, but later became invalid

char * get_pointer()
{

char x=0;

return &x;
}

{
char * ptr = get_pointer();

ptr = 12; / valid? */
}

Will ptr be valid or invalid?

37

Good practice:
•Initialize pointers to 0 (or NULL). NULL is never a valid pointer value,
but it is known to be invalid and means “no pointer set”.

Answer:	No,	it’s	invalid…

A pointer to a variable allocated on the stack becomes invalid when
that variable goes out of scope and the stack frame is “popped”. The
pointer will point to an area of the memory that may later get reused
and rewritten.

char * get_pointer()
{

char x=0;

return &x;
}

int main()
{

char * ptr = get_pointer();
ptr = 12; / valid? */
other_function();
return 0;

}

But now, ptr points to a location that’s
no longer in use, and will be reused
the next time a function is called!

38

Here is what I get in DevStudio when compiling:
main.cpp(6)	:	warning	C4172:	returning	address	of	local	variable	or	temporary

Example:	What	gets	printed	out?
int main()	{

int d;
char	c;
short	s;
int*	p;
int arr[2];
printf(“%p,	%p,	%p,	%p,	%p\n”,&d,	&c,	&s,	&p,	arr);
return	0;

}

924
928
932

936
940

d
cs

p
arr

• NOTE: Here &d = 920 (in practice a 4-
byte hex number such as 0x22FC3A08)

39

+0+1+2+3

900
904
908
912

916

920

Example:	
Usage	of	Pointers	&	Pointer	Arithmetic

int main()	{
int d;
char	c;
short	s;
int*	p;
int arr[2];

p	=	&d;
*p	=	10;
c	=	(char)1;

p	=	arr;
*(p+1)	=	5;
p[0]	=	d;

((char)p	+	1)	=	c;

return	0;
}

d
cs

p
arr[1]
arr[0]

= 920

= 10
= 1

900
904
908
912

916

920
924
928
932

936
940
944

40Q:	What	are	the	values	stored	in	arr?	[assume	little	endian	architecture]

+0+1+2+3

Example	[Cntd.]

p	=	&d;
*p	=	10;
c	=	(char)1;

p	=	arr;
(p+1)	=	5;		//	int	p;
p[0]	=	d;

((char)p	+	1)	=	c;

d
cs

p
arr[1]
arr[0]

= 904

= 10
= 1

900
904
908
912

916

920
924
928
932

936
940
944

= 5
= 10

41
Question: arr[0] = ?

+0+1+2+3

Use	of	pointers,	another	example…

• Pass	pointer	parameters	into	function

42

l What will happen here?

void swap(int *px, int *py)
{

int temp;
temp = *px;
*px = *py;
*py = temp;

}
int a = 5;
int b = 6;
swap(&a, &b);

int * a;
int * b;
swap(a, b);

Dynamic	Memory	Allocation	(on	the	Heap)

43

• Allows	the	program	to	determine	how	much	memory	it	
needs	at	run	time and	to	allocate	exactly	the	right	
amount	of	storage.
– It	is	your	responsibility	to	clean	up	after	you	(free	the	dynamic	

memory	you	allocated)

• The	region	of	memory	where	dynamic	allocation	and	
deallocation of	memory	can	take	place	is	called	the	
heap.

Recall	Discussion	on
Dynamic	Memory	Allocation

Recall that variables are allocated statically by having declared with a
given size. This allocates them in the stack.

Allocating memory at run-time requires dynamic allocation. This
allocates them on the heap.

int * alloc_ints(size_t requested_count)
{

int * big_array;

big_array = (int *)calloc(requested_count, sizeof(int));
if (big_array == NULL) {

printf(“can’t allocate %d ints: %m\n”, requested_count);
return NULL;

}

/* big_array[0] through big_array[requested_count-1] are
* valid and zeroed. */

return big_array;
}

calloc() allocates memory
for N elements of size k

Returns NULL if can’t alloc

sizeof() reports the size of a type in bytes

It’s OK to return this pointer.
It will remain valid until it is
freed with free(). However,
it’s a bad practice to return it
(if you need is somewhere
else, declare and define it
there…)44

Caveats	with	Dynamic	Memory

Dynamic memory is useful. But it has several caveats:

Whereas the compiler enforces that reclaimed stack space can no longer
be reached, it is easy to accidentally keep a pointer to dynamic memory
that was freed. Whenever you free memory you must be certain that you
will not try to use it again.

Whereas the stack is automatically reclaimed, dynamic allocations must be
tracked and free()’d when they are no longer needed. With every
allocation, be sure to plan how that memory will get freed. Losing track of
memory causes “memory leak”.

Because dynamic memory always uses pointers, there is generally no way
for the compiler to statically verify usage of dynamic memory. This means
that errors that are detectable with static allocation are not with dynamic

45

Data	Structures

46

struct StudRecord {
char name[50];
int id;
int age;
int major;

};

• A	data	structure	is	a	collection	of	one	or	more	variables,	
possibly	of	different	types.	

• An	example	of	student	record

Data	Structures	(cont.)

47

struct StudRecord my_record;
struct StudRecord * pointer;
pointer = & my_record;

my_record.id = 10;
// or

pointer->id = 10;

• A	data	structure	is	also	a	data	type

• Accessing	a	field	inside	a	data	structure

Data	Structures				(cont.)

48

struct StudRecord* pStudentRecord;
pStudentRecord = (StudRecord*)malloc(sizeof(struct StudRecord));
pStudentRecord ->id = 10;

This	is	a	new	type	now

• Allocating	a	data	structure	instance

• IMPORTANT:	
– Never	calculate	the	size	of	a	data	structure	yourself.	Rely	on	

the	sizeof()	function
– Example:	Because	of	memory	padding,	the	size	of	“struct

StudRecord”	is	64	(instead	of	62	as	one	might	estimate)

The	“typedef”	Construct

struct StudRecord {
char name[50];
int id;
int age;
int major;

};

typedef struct StudRecord RECORD_t;

int main() {
RECORD_t my_record;
strcpy_s(my_record.name, “Joe Doe”);
my_record.age = 20;
my_record.id = 6114;

RECORD_t* p = &my_record;
p->major = 643;
return 0;

}

Using typedef to
improve readability…

49

Arrays

Arrays in C are composed of a particular type, laid out in memory in a
repeating pattern. Array elements are accessed by stepping forward in
memory from the base of the array by a multiple of the element size.

/* define an array of 10 chars */
char x[5] = {‘t’,’e’,’s’,’t’,’\0’};

/* access element 0, change its value */
x[0] = ‘T’;

/* pointer arithmetic to get elt 3 */
char elt3 = *(x+3); /* x[3] */

/* x[0] evaluates to the first element;
* x evaluates to the address of the
* first element, or &(x[0]) */

/* 0-indexed for loop idiom */
#define COUNT 10
char y[COUNT];
int i;
for (i=0; i<COUNT; i++) {

/* process y[i] */
printf(“%c\n”, y[i]);

}

Brackets specify the count of elements.
Initial values optionally set in braces.

Arrays in C are 0-indexed (here, 0…4)

x[3] == *(x+3) == ‘t’ (notice, it’s not ‘s’!)

Symbol Addr Value

char x [0] 100 ‘t’

char x [1] 101 ‘e’

char x [2] 102 ‘s’

char x [3] 103 ‘t’

char x [4] 104 ‘\0’

Q: What’s the difference
between “char x[5]” and a
declaration like “char *x”?

For loop that iterates
from 0 to COUNT-1.

50

How	to	Parse	and	Define	C	Types

At this point we have seen a few basic types, arrays, pointer types,
and structures. So far we’ve glossed over how types are named.

int x; /* int; */ typedef int T;
int *x; /* pointer to int; */ typedef int *T;
int x[10]; /* array of ints; */ typedef int T[10];

int *x[10]; /* array of pointers to int; */ typedef int *T[10];
int (*x)[10]; /* pointer to array of ints; */ typedef int (*T)[10];

C type names are parsed by starting at the type name and working
outwards according to the rules of precedence:

int (*x)[10]; x is
a pointer to
an array of

int

int *x[10];

x is
an array of
pointers to

int Arrays are the primary
source of confusion. When
in doubt, use extra parens to
clarify the expression.

typedef defines
a new type

51
REMEMBER THIS: (), which stands for function, and [], which stands
for array, have higher precedence than *, which stands for pointer

Function	Types

Another less obvious construct is the “pointer to function” type.
For example, qsort: (a sort function in the standard library)

void qsort(void *base, size_t nmemb, size_t size,
int (*compar)(const void *, const void *));

/* function matching this type: */
int cmp_function(const void *x, const void *y);

/* typedef defining this type: */
typedef int (*cmp_type) (const void *, const void *);

/* rewrite qsort prototype using our typedef */
void qsort(void *base, size_t nmemb, size_t size, cmp_type compar);

The last argument is a
comparison function

const means the function
is not allowed to modify
memory via this pointer.

void * is a pointer to memory of unknown type.

size_t is an unsigned int

52

Row	Major	and	Column	Major

53

1 2 3 4 5 6 7 8 9REAL	*	A

References

• Linux/Unix	Introduction
– http://www.ee.surrey.ac.uk/Teaching/Unix/

• VI	Editor
– https://www.cs.colostate.edu/helpdocs/vi.html

• C	Programming	Tutorial
– http://www.cprogramming.com/tutorial/c-tutorial.html

• Compiler,	Assembler,	Linker	and	Loader:	A	Brief	Story
– http://www.tenouk.com/ModuleW.html

54

Backup	and	More

55

Sequential	Memory	Regions	vs Multi-
dimensional	Array

• Memory	is	a	sequentially	accessed	using	the	address	of	
each	byte/word

56

Vector/Matrix	and	Array	in	C

• C	has	row-major	storage	for	multiple	dimensional	array
– A[2,2]	is	followed	by	A[2,3]

• 3-dimensional	array
– B[3][100][100]

57

char	A[4][4]

Store	Array	in	Memory	in	Row	Major	or	
Column	Major

58

8 6 5 4

2 1 9 7

3 6 4 2

For	a	Memory	Region	to	Store	Data	for	an	Array	
in	Either	Row	or	Col	Major

59

8 6 5 4

2 1 9 7

3 6 4 2

3	X	4

8 4 9 6

6 2 7 4

5 1 3 2

3	X	4

Compiler
• A	programming	language is	an	artificial	

language that	can	be	used	to	control the	
behavior	of	a	machine,	particularly	a	
computer.	

• A	compiler is	a	computer	program (or	
set	of	programs)	that	translates	text	
written	in	a	computer	language (the	
source	language)	into	another	computer	
language	(the	target	language).	The	
original	sequence	is	usually	called	the	
source	code and	the	output	called	object	
code.	Commonly	the	output	has	a	form	
suitable	for	processing	by	other	
programs	(e.g.,	a	linker),	but	it	may	be	a	
human-readable	text	file.	

60

Debug	and	Performance	Analysis
• Debugging is	a	methodical	process	of	finding	and	reducing	the	number	of	

bugs,	or	defects,	in	a	computer	program or	a	piece	of	electronic	hardware
thus	making	it	behave	as	expected.	

• In	software	engineering,	performance	analysis (a	field	of	dynamic	program	
analysis)	is	the	investigation	of	a	program's	behavior	using	information	
gathered	as	the	program	runs,	as	opposed	to	static	code	analysis.	The	usual	
goal	of	performance	analysis	is	to	determine	which	parts	of	a	program	to	
optimize for	speed	or	memory	usage.

• A	profiler is	a	performance	analysis	tool	that	measures	the	behavior	of	a	
program	as	it	runs,	particularly	the	frequency	and	duration	of	function	calls.	
The	output	is	a	stream	of	recorded	events	(a	trace)	or	a	statistical	summary	of	
the	events	observed	(a	profile).

61

Optimization

• In	computing,	optimization is	the	process	of	modifying	a	system	
to	make	some	aspect	of	it	work	more	efficiently	or	use	less	
resources.	For	instance,	a	computer	program may	be	optimized	
so	that	it	executes	more	rapidly,	or	is	capable	of	operating	within	
a	reduced	amount	of	memory	storage,	or	draws	less	battery
power	in	a	portable	computer.	The	system	may	be	a	single	
computer	program,	a	collection	of	computers or	even	an	entire	
network	such	as	the	Internet.

62
(http://en.wikipedia/org/wiki/Optimization_%28computer_science%29)

Header section

Machine code section
(a.k.a. text section)

Initialized data section

Symbol table section

Relocation information
section

Object	module	structure

#include <stdio.h>

int a[10]={0,1,2,3,4,5,6,7,8,9};
int b[10];

void main()
{

int i;
static int k = 3;

for(i = 0; i < 10; i++) {
printf("%d\n",a[i]);
b[i] = k*a[i];

}

}

A	sample	C	program:

Offset Contents Comment
Header section
0 124 number of bytes of Machine code section
4 44 number of bytes of initialized data section
8 40 number of bytes of Uninitialized data section (array b[])

(not part of this object module)
12 60 number of bytes of Symbol table section
16 44 number of bytes of Relocation information section
Machine code section (124 bytes)
20 X code for the top of the for loop (36 bytes)
56 X code for call to printf() (22 bytes)
68 X code for the assignment statement (10 bytes)
88 X code for the bottom of the for loop (4 bytes)
92 X code for exiting main() (52 bytes)
Initialized data section (44 bytes)
144 0 beginning of array a[]
148 1
:
176 8
180 9 end of array a[] (40 bytes)
184 3 variable k (4 bytes)
Symbol table section (60 bytes)
188 X array a[] : offset 0 in Initialized data section (12 bytes)
200 X variable k : offset 40 in Initialized data section (10 bytes)
210 X array b[] : offset 0 in Uninitialized data section (12 bytes)
222 X main : offset 0 in Machine code section (12 bytes)
234 X printf : external, used at offset 56 of Machine code section (14 bytes)
Relocation information section (44 bytes)
248 X relocation information

Object	module	of	the	sample	C	program:

Header Section

Machine Code
Section

Initialized data
Section

Symbol table
Section

Header Section

Machine Code
Section

Initialized data
Section

Symbol table
Section

Header Section

Machine Code
Section

Initialized data
Section

Symbol table
Section

Object Module A

Object Module B

Load Module

Creation	of	load	module

(logical) address
space of

program 1

(logical)
address
space of

program 2

Header Section

Machine Code
Section

Initialized data
Section

Symbol table
Section

Code

Static data

Dynamic data

Unused
logical

address
space

initialized

uninitialized

load module

Stack

Code

Static data

Dynamic data

(logical) address
space of

program 3

Stack

Unused
Logical
address
space

loading
memory
mapping

PHYSICAL MEMORY

OPERATING
SYSTEM

memory
mapping

Code

Static data

Dynamic data

Unused
logical

address
space

Stack

Loading	and	memory	mapping

int a[10]={0,1,2,3,4,5,6,7,8,9};
int b[10];

void main()
{
 int i;
 static int k = 3;

 for(i = 0; i < 10; i++) {
 printf("%d\n",a[i]);
 b[i] = k*a[i];
 }/*endfor*/
}/*end main*/

array a[]

array b[]
variable k

code for top of for loop

code for call to printf()
code for b[i] = k*a[i]

code for printf()

physical memory

source program

From	source	program	to	“placement” in	
memory	during	execution

PHYSICAL MEMORY

Before dynamic memory allocation

Code

Static data

Dynamic data

Unused
logical

address
space

initialized

uninitialized

(logical) address
space of the

program
OPERATING
SYSTEM

Stack

PHYSICAL MEMORY

After dynamic memory allocation

Code

Static data

Dynamic data

Unused
logical

address
space

initialized

uninitialized

(logical) address
space of the

program
OPERATING
SYSTEM

Stack

increment of
dynamic data

Dynamic	memory	allocation

Overview	of	memory	management

70

• Stack-allocated	memory
– When	a	function	is	called,	memory	is	allocated	for	all	of	its	

parameters	and	local	variables.
– Each	active	function	call	has	memory	on	the	stack	(with	the	

current	function	call	on	top)
– When	a	function	call	terminates,

the	memory	is	deallocated (“freed	up”)

• Ex: main() calls	f(),
f() calls	g()
g() recursively	calls	g()

main()

f()

g()

g()

Overview	of	memory	management

71

• Heap-allocated	memory
– This	is	used	for	persistent data,	that	must	survive	beyond	the	

lifetime	of	a	function	call
• global	variables
• dynamically	allocated	memory	– C	statements	can	create	
new	heap	data	(similar	to	new in	Java/C++)

– Heap	memory	is	allocated	in	a	more	complex	way	than	stack	
memory

– Like	stack-allocated	memory,	the	underlying	system	
determines	where	to	get	more	memory	– the	programmer	
doesn’t	have	to	search	for	free	memory	space!

Allocating	new	heap	memory

72

void *malloc(size_t size);

• Allocate	a	block	of	size bytes,
return	a	pointer	to	the	block
(NULL if	unable	to	allocate	block)

void *calloc(size_t num_elements, size_t element_size);

• Allocate	a	block	of	num_elements * element_size bytes,
initialize	every	byte	to	zero,
return	pointer	to	the	block
(NULL if	unable	to	allocate	block)

Note:	void * denotes	a	generic	pointer	type

Allocating	new	heap	memory

73

void *realloc(void *ptr, size_t new_size);

• Given	a	previously	allocated	block	starting	at	ptr,
– change	the	block	size	to	new_size,
– return	pointer	to	resized	block

• If	block	size	is	increased,	contents	of	old	block	may	be	copied	to	a	
completely	different	region

• In	this	case,	the	pointer	returned	will	be	different	from	the	ptr
argument,	and	ptr will	no	longer	point	to	a	valid	memory	region

• If	ptr is	NULL,	realloc is	identical	to	malloc

• Note:	may	need	to	cast	return	value	of	malloc/calloc/realloc:
char *p = (char *) malloc(BUFFER_SIZE);

Deallocating heap	memory

74

void free(void *pointer);

• Given	a	pointer	to	previously	allocated	memory,
– put	the	region	back	in	the	heap	of	unallocated	memory

• Note:	easy	to	forget	to	free	memory	when	no	longer	
needed...
– especially	if	you’re	used	to	a	language	with	“garbage	

collection”	like	Java
– This	is	the	source	of	the	notorious	“memory	leak”	problem
– Difficult	to	trace	– the	program	will	run	fine	for	some	time,	

until	suddenly	there	is	no	more	memory!

Memory	errors

75

• Using	memory	that	you	have	not	initialized

• Using	memory	that	you	do	not	own

• Using	more	memory	than	you	have	allocated

• Using	faulty	heap	memory	management

Using	memory	that	you	have	not	initialized

76

• Uninitialized	memory	read
• Uninitialized	memory	copy

– not	necessarily	critical	– unless	a	memory	read	follows

void foo(int *pi) {

int j;

*pi = j;
/* UMC: j is uninitialized, copied into *pi */

}
void bar() {

int i=10;

foo(&i);
printf("i = %d\n", i);

/* UMR: Using i, which is now junk value */
}

Using	memory	that	you	don’t	own

77

• Null	pointer	read/write
• Zero	page	read/write

typedef struct node {

struct node* next;

int val;

} Node;

int findLastNodeValue(Node* head) {

while (head->next != NULL) { /* Expect NPR */

head = head->next;

}

return head->val; /* Expect ZPR */

}

What	if	head is	NULL?

Using	memory	that	you	don’t	own

78

• Invalid	pointer	read/write
– Pointer	to	memory	that	hasn’t	been	allocated	to	program

void genIPR() {

int *ipr = (int *) malloc(4 * sizeof(int));

int i, j;
i = *(ipr - 1000); j = *(ipr + 1000); /* Expect IPR */

free(ipr);

}

void genIPW() {
int *ipw = (int *) malloc(5 * sizeof(int));

*(ipw - 1000) = 0; *(ipw + 1000) = 0; /* Expect IPW */

free(ipw);

}

Using	memory	that	you	don’t	own

79

• Common	error	in	64-bit	applications:
– ints are	4	bytes	but	pointers	are	8	bytes
– If	prototype	of	malloc() not	provided,	return	value	will	be	cast	

to	a	4-byte	int

/*Forgot to #include <malloc.h>, <stdlib.h>

in a 64-bit application*/

void illegalPointer() {

int *pi = (int*) malloc(4 * sizeof(int));

pi[0] = 10; /* Expect IPW */

printf("Array value = %d\n", pi[0]); /* Expect IPR */

}

Four	bytes	will	be	lopped	off	this	value	–
resulting	in	an	invalid	pointer	value

Using	memory	that	you	don’t	own

80

• Free	memory	read/write
– Access	of	memory	that	has	been	freed	earlier

int* init_array(int *ptr, int new_size) {

ptr = (int*) realloc(ptr, new_size*sizeof(int));

memset(ptr, 0, new_size*sizeof(int));

return ptr;
}

int* fill_fibonacci(int *fib, int size) {

int i;

/* oops, forgot: fib = */ init_array(fib, size);

/* fib[0] = 0; */ fib[1] = 1;
for (i=2; i<size; i++)

fib[i] = fib[i-1] + fib[i-2];

return fib;

}

What	if	array	is	moved	to	
new	location?

Remember:	reallocmay	move	entire	block

Using	memory	that	you	don’t	own

81

• Beyond	stack	read/write

char *append(const char* s1, const char *s2) {

const int MAXSIZE = 128;

char result[128];

int i=0, j=0;
for (j=0; i<MAXSIZE-1 && j<strlen(s1); i++,j++) {

result[i] = s1[j];

}

for (j=0; i<MAXSIZE-1 && j<strlen(s2); i++,j++) {

result[i] = s2[j];
}

result[++i] = '\0';

return result;

}
Function	returns	pointer	to	stack	
memory	– won’t	be	valid	after	

function	returns

result is	a	local	array	name	–
stack	memory	allocated

Using	memory	that	you	haven’t	allocated

82

• Array	bound	read/write

void genABRandABW() {

const char *name = “Safety Critical";

char *str = (char*) malloc(10);

strncpy(str, name, 10);

str[11] = '\0'; /* Expect ABW */

printf("%s\n", str); /* Expect ABR */

}

Faulty	heap	management

83

• Memory	leak

int *pi;

void foo() {

pi = (int*) malloc(8*sizeof(int));

/* Allocate memory for pi */
/* Oops, leaked the old memory pointed to by pi */

…

free(pi); /* foo() is done with pi, so free it */

}

void main() {
pi = (int*) malloc(4*sizeof(int));

/* Expect MLK: foo leaks it */

foo();

}

Faulty	heap	management

84

• Potential	memory	leak
– no	pointer	to	the	beginning	of	a	block
– not	necessarily	critical	– block	beginning	may	still	be	reachable	via	pointer	

arithmetic

int *plk = NULL;

void genPLK() {

plk = (int *) malloc(2 * sizeof(int));

/* Expect PLK as pointer variable is incremented

past beginning of block */

plk++;

}

Faulty	heap	management

85

• Freeing	non-heap	memory
• Freeing	unallocated	memory
void genFNH() {

int fnh = 0;

free(&fnh); /* Expect FNH: freeing stack memory */

}

void genFUM() {

int *fum = (int *) malloc(4 * sizeof(int));

free(fum+1); /* Expect FUM: fum+1 points to middle
of a block */

free(fum);

free(fum); /* Expect FUM: freeing already freed
memory */

}

