Linux and C Programming Language

Department of Computer Science and
Engineering

Yonghong Yan
yanyh@cse.sc.edu
http://cse.sc.edu/~yanyh

Contents

Remote Login using SSH
Linux

C Programming
Compiling and Linking

Computation Server

sl el 2522 In the cold and dark
| : £5 server room!

.........

Run Linux/Unix
Operating System

Client/Server and SSH (Secure Shell)

I:I

@i/

SSH client
{local host)

SSH user

The SSH user enters:
ssh remote.com
fsmythe (username)
r@m320'0 (password)

Your browser
connects to a server
and requests a page.

The server sends
back the requested
page.

Your machine

running a Web
browser

Encrypted SSH login
session to a remote host

U3p+kiga —
WSgSwgqb

+kzKUWOf
jJpWiByO

-

SSH server
(remote host, 'remote.com’)

") rsteNNrPesA e
V. q6+9aGihvidYLtl7e
Ku SOp+9aG|hv1decaV3bguf
JpWIeéOrsopeNNrPesAIgAbp+k

wgq6+9aGihvidYLtI7eZ
- SQp+9aG|hv1decaV ’

SN LD

o

What a sniffer on the
network can view. ..

L)
SHIOMJJMISMOH E002Q

Server machine
running a Web
server

Machine for Development and Experiment

* Linux machines in Swearingen 1D43 and 3D22

— Al CSCE students by default have access to these machine
using their standard login credentials

* Let me know if you, CSCE or not, cannot access

— Remote access is also available via SSH over port
222. Naming schema is as follows:

* |-1d43-01.cse.sc.edu through I-1d43-26.cse.sc.edu
e |-3d22-01.cse.sc.edu through I-3d22-20.cse.sc.edu

* Restricted to 2GB of data in their home folder (~/).

— For more space, create a directory in /scratch on the login
machine, however that data is not shared and it will only be
available on that specific machine.

Putty SSH Connection on Windows

-

PuTTY Configuration (w23

_ Basic options for your PuTTY session
i .ogging Specify the destination you want to connect to
(=) Terminal -
: : MOSL INGME {0 gOOre
... Keyboard
Bell I-1d43-08.cse.sc.edu
: .. Features Connection type:
=)- Window ()Raw () Telnet) Rlogin @ SSH () Serial
. L. Appearance
I;zﬁaviour Load, save or delete a stored session
Translation Saved Sessions
Selection
. Colours Default Settings Load
=- Cpnnection
. Telnet
+- SSH
""" Serial Close window on exit:
(JAways () Never @ Onlyon clean exit

About [Open I ‘ Cancel

SSH Connection from Linux/Mac OS X Terminal

-
MacBook-Pro-7:notes yanyh$§ ssh 1-1d43-08.cse.sc.edu —p 222 -lyanyh|-X |

skokokokokokokkokokokkokok ok kokok sk kokok sk ok okok sk k ok sk sk kok sk sk kok sk sk okok sk sk skok sk sk kok sk sk okok sk sk okok sk sk okok sk sk okok sk sk ok ok sk ok sk sk sk ok sk k

This system is for the use of authorized users only. Usage of this system
may be monitored and recorded by system personnel.

XX X X X X

activity, system personnel may provide the evidence fp==—= bmonfbonian
to law enforcement officials. -X for enabling X-
windows forwarding so
olopiollpiololiilpiolliclliclpiclolilpiclliiolpicllriclillpiolRiok you can use the graphics
Password:
yanyh@cocsce-11d39-08:~$ [

* X X X X X X X X
>
>
<
- O
>
¢
c
n
[
>
(@]
-t
=
[
n
wn
<
n
—+
[0
E
- o
X
'D
=3
D
n
n
f_‘
<
0
o
>
n
1)
-
—+
wn
-
o
n
c
0
=
. 5
o
-
=
—~+
o
=
[
-]
(@]
- Q
>
=
n

display on your computer.
For Mac OS X, you need
have X server software
installed, e.g.
Xquartz(https://www.xqu
artz.org/) is the one | use.

7

Linux Basic Commands

It is all about dealing with files and folders

Linux folder: /home/yan/... .

Is (list files in the current folder)
Sls -l

Sls-a

Sls-la

S Is -l --sort=time

S Is -l --sort=size —r

cd (change directory to)

— Scd /usr/bin

* pwd (show current folder name) °
— S pwd

* ~(home folder)
— Scd”~

* ~user (home folder of a user)
— Scd ~weesan

What will “cd ~/weesan” do?

rm (remove a filer/folder)
— Srmfoo

— Srm -rf foo
— Srm-ifoo
— Srm---foo

cat (print the file contents to
terminal)

— S cat /etc/motd
— S cat /proc/cpuinfo
cp (create a copy of a file/folder)
— Scp foo bar
— Scp -afoo bar

mv (move a file/folder to
another location. Used also for
renaming)

— S mvfoo bar

mkdir (create a folder)
— S mkdir foo

Basic Commands (cont)

e df (Disk usage) Search a command or a file
— Sdf-h/
* which
— Sdu-sxh~/ — S which s
°* man (manual) e whereis
— Smanls — S whereis Is
— S man 2 mkdir e locate
— Sman man — Slocate stdio.h
— S man -k mkdir — Slocate iostream
* Manpage sections * find
— 1 User-level cmds and apps — Sfind /| grep stdio.h
e /bin/mkdir — Sfind /usr/include | grep stdio.h

— 2 System calls
* int mkdir(const char *, ..); Smarty

— 3 Library calls 1. [Tab] key: auto-complete the command
 int printf(const char *, ...); sequence

2. N key: to find previous command
3. [Ctl]+r key: to search previous command

Editing a File: Vi

° 2 modes e Delete

— Input mode

— dd (delete a line)
— d10d (delete 10 lines)

ESC to back to cmd mod
0 back to cma mode — dS$ (delete till end of line)

— Command mode — dG (delete till end of file)

Cursor movement — X (current char.)
— h(left), j (down), k (up), | (right)
— M (page down)

— b (page up)

— A (first char.)

Paste
— p (paste after)
— P (paste before)

— S (last char.) * Undo
— G (bottom page) —u
— :1 (goto first line) e Search
Swtch to input mode —/
~ a(append) * Save/Quit
— i(insert) — :w (write)
— o (insert line after ' _

— :g (quit)

— O (insert line before) : :
— :wq (write and quit)

— :q! (give up changes)

C Hello World

vi hello.c

Switch to editing mode:iora
Switching to control mode: ESC
Save a file: in control mode, :w
To quit, in control mode, :q

To quit without saving, :q!

Copy/paste a line: yy and then p, both from the current cursor
— 5line: 5yy and then p

To delete a whole line, in control mode, : dd

#include <stdio.h>

;" :ellllo.c /* The simplest C Program */

s hello.c

acc hello.c —o hello int main(int argc, char **argv) {
s printf(“Hello world\n”);

./hello return 0;

C Syntax and Hello World

What do the < >

mean?

#include <stdio.h>

/* The simplest C Program */

int main(int argc, char **argv)

{ <
printf(“Hello world\n”);
return O;
<

Compilation Process in C

* Compilation process: gcc hello.c —o hello
— Constructing an executable image for an application
— FOUR stages

— Command:
gcc <options> <source_file.c>

* Compiler Tool
— gcc (GNU Compiler)
* man gcc (on Linux m/c)

— icc (Intel C compiler)

4 Stages of Compilation Process

gcc —E hello.c —o hello.i
hello.c = hello.i

gcc =S hello.i —o hello.s

gcc —c hello.s —o hello.o

gcc hello.o —o hello

Output = Executable (a.out)
Run =2 ./hello (Loader)

4 Stages of Compilation Process

1. Preprocessing (Those with # ...)
— Expansion of Header files (#include ...)
— Substitute macros and inline functions (#define ...)

2. Compilation
— Generates assembly language

— Verification of functions usage using prototypes
— Header files: Prototypes declaration

3. Assembling

— Generates re-locatable object file (contains m/c instructions)
— nm app.o
0000000000000000 T main
U puts
— nm or objdump tool used to view object files

4 Stages of Compilation Process (contd..)

4. Linking
— Generates executable file (nm tool used to view exe file)
— Binds appropriate libraries
e Static Linking
* Dynamic Linking (default)

* Loading and Execution (of an executable file)
— Evaluate size of code and data segment

— Allocates address space in the user mode and transfers them
iInto memory

— Load dependent libraries needed by program and links them
— Invokes Process Manager = Program registration

Compiling a C Program

® gcc <options> program_name.c

* Options: \ Four stages into one

-Wall: Shows all warnings

-o output_file_name: By default a.out executable file is
created when we compile our program with gcc. Instead,
we can specify the output file name using "-0" option.
-g: Include debugging information in the binary.

® man gcc

Linking Multiple files to make executable file

* Two programs, progl.c and prog2.c for one single task
— To make single executable file using following instructions

First, compile these two files with option "-c"
gcc -c progl.c
gcc -c prog2.c

-c: Tells gcc to compile and assemble the code, but not link.

We get two files as output, progl.o and prog2.o
Then, we can link these object files into single executable file
using below instruction.

gcc -0 prog progl.o prog2.o

Now, the output is prog executable file.
We can run our program using

./prog

Linking with other libraries

* Normally, compiler will read/link libraries from /usr/lib
directory to our program during compilation process.
— Library are precompiled object files

* To link our programs with libraries like pthreads and
realtime libraries (rt library).
— gcc <options> program_name.c -lpthread -Irt

-Ipthread: Link with pthread library — libpthread.so file
-Irt: Link with rt library - librt.so file
Option here is "-Ilibrary>"

Another option "-L<dir>" used to tell gcc compiler search for
library file in given <dir> directory.

Compilation, Linking, Execution of C/C++ Programs

<>

source
file 1

N——

<

source
file 2

\:__/

linking
(relocation +
linking)

load
file

—» compilation

>
source
file N

N gl

usually performed by a compiler, usually in one uninterrupted sequence

http://www.tenouk.com/ModuleW.html

sum.cC

cp ~yan/sum.c ~ (copy sum.c file from my home folder to
your home folder)

gcc -save-temps sum.c —o sum
./sum 102400

Vi sum.c

Vi sum.s

Other system commands:
— cat /proc/cpuinfo to show the CPU and #cores
— top command to show system usage and memory

21

More on C Programming

22

Lexical Scoping

void p(char x)

{

/*
char y;
/*
char z;
/*
}
/*
char z;
/*
void g(char a)
{
char b;
/*
{
char c;
/*
}
char d;
/* p,z,q,a,b,
}
/* p,z,q */

p,x */
p,X,y */
p,X,Y,z */
p */

p,z */

p,z,q,a,b */

char b?

p,z,q,a,b,c */

legal?

d (hot c) */

23

equal to
less than

Comparison and Mathematical Operators

less than or equal

greater than
greater than

not equal

logical and
logical or
logical not

plus
minus
mult
divide
modulo

&

I
A

or equal

bitwise and
bitwise or
bitwise xor
bitwise not

<< shift left
>> shift right

24

Assignment Operators

X =Yy assighy to x

X++ post-increment Xx
++X pre-increment X
X-- post-decrement x
--X pre-decrement X

int x=5;

int y;

Y = ++X;
/*X==6,y==6*/

assign (x+y) to
assign (x-y) to
assign (x*y) to
assign (x/y) to
assign (x%y) to

X X X X X
*
I
KKKKKK
X X X X X

int x=5;

int y;

Y = X++;

/*x =6, y =75 */

int x=5;

if (x==6) /% false */
' /¥ .0 %/

}

/* x is still 5 */

int x=5;
if (x=6) /* always true */
{
/* x is now 6 */
}
/* ... */

25

A Quick Digression About the Compiler

#include <stdio.h>

/* The simplest C Program */
int main(int argc, char **argv) Preprocess
{

printf(“Hello world\n");

return 0;

__extension__ typedef unsigned long long int
—dev_t;

__extension__ typedef wunsigned int __uid_t;
__extension__ typedef unsigned int _ _gid_t;
__extension_ typedef unsigned long int
__1ino_t;

__extension_ typedef unsigned long long int
__ino64_t;

__extension_ typedef unsigned int
__nlink_t;

__extension_ typedef 1long int __off_t;
__extension__ typedef Tlong long int
__off64_t;

extern void flockfile (FILE *__stream) ;
extern int ftrylockfile (FILE *__stream) ;
extern void funlockfile (FILE *__stream) ;
int main(int argc, char *%*argv)

{

printf(“Hello world\n");

return 0;

my_program
Compile 26

C Memory Pointers

* To discuss memory pointers, we need to talk a bit about the
concept of memory

* We'll conclude by touching on a couple of other C elements:
— Arrays, typedef, and structs

27

The “memory”

char

char [10]
int
float
int64_t

Addr | Value
0
1
2
3
4 |'H (72)
5 |[‘e(101)
6 |I(108)
7 |l (108)
8 |0 (111)
9 |\n’(10)
10 [0’ (0)
11
12

28

What is a Variable?

symbol table? |

Symbol | Addr| Value
0
1
2
. 3
declare vs. define
X 4 Some
h garbage
char x; .
char |y=* e : y /:'5 e’ (101)
t _ 6
- 7
8
What names are legal? 9
[Ty r
extern? static? const? 11
29 12

Multi-byte Variables

Symbol | Addr Value
0
1
2
3
char x;
char y=‘e’; X 4 Some garbage
int z = 0x01020304; y 5 e (101)
— :
7
?
Z 8 4
9 3
[fn it requres s byes |-
10 2
L 11 1
12

30

Memory, a more detailed view...

A sequential list of words, starting
from 0.

On 32bit architectures (e.g. Win32):
each word is 4 bytes.

Local variables are stored in the
stack

Dynamically allocated memory is set
aside on the heap (more on this
later...)

For multiple-byte variables, the
address is that of the smallest byte
(little endian).

word 0

word 1

word 2

e OO

%
q)
(@]
ol

31

Example

NOTE: sizeof is a compile-time operator that returns the size, in multiples of
the size of char, of the variable or parenthesized type-specifier that it precedes.

Can a C function modify its arguments?

float p = 2.0;
/* p is 2.0 here */
pow_assign(p, 5);

/* Is p is 32.0 here ? */

float p = 2.0;
/* p is 2.0 here */
p = pow(p, 5);

/* pAs 32.0 here */

void pow_assign(float x, uint exp)
{
float result=1.0;
int 1i;
for (i=0; (1 < exp); i++) {
result = result * x;

3
X

= result;

33

In C you can’t change the value of any variable passed as an
argument in a function call...

Pass by value

void pow_assign(float x, uint exp)
{

float result=1.0;

int 1;

for (i=0; (i < exp); i++) {

result = result * x;
}
X

}

= result;

// a code snippet that uses above
// function
{
float p=2.0;
pow_assign(p, 5);
// the value of p is 2 here..
}

C Pointers

* What is a pointer?
— A variable that contains the memory address of another
variable or of a function

* In general, it is safe to assume that on 32 bit
architectures pointers occupy one word

— Pointers to int, char, float, void, etc. (“int*”, “char*”, “*float”,
“void*”), they all occupy 4 bytes (one word).

* Pointers: *very* many bugs in C programs are traced
back to mishandling of pointers...

35

Pointers (cont.)

* The need for pointers

— Needed when you want to modify a variable (its value) inside a
function
* The pointer is passed to that function as an argument

— Passing large objects to functions without the overhead of
copying them first

— Accessing memory allocated on the heap

— Referring to functions, i.e. function pointers

36

Pointer Validity

char * get_pointer(Q)

char x=0;
return &x;
}
{

char * ptr = get_pointer();
ptr = 12; / valid? */
}

Answer: No, it’s invalid...

char * get_pointer(Q
{

char x=0;

return &x;

}

int mainQ)

{
char * ptr = get_pointer();
ptr = 12; / valid? */
other_function(Q);
return O;

Here is what | get in DevStudio when compiling:
main.cpp(6) : warning C4172: returning address of local variable or temporary

Example: What gets printed out?

* NOTE: Here &d = 920 (in practice a 4-

byte hex number such as 0x22FC3A08)

900
904

908
912

916

920
924
928
932

936
940

39

Example:
Usage of Pointers & Pointer Arithmetic

+3 +2 +1 +0

900
904

908
912

1ﬂ 916
920
924
928
932

936
940
944

Q: What are the values stored in arr? [assume little endian architecture] 40

Example [Cntd.]

Question: arr[0] = ?

+3

+2

900
904

908
912

916
920
924
928
932

936
940
944

41

Use of pointers, another example...

® Pass pointer parameters into function

e What will happen here?

42

Dynamic Memory Allocation (on the Heap)

* Allows the program to determine how much memory it
needs at run time and to allocate exactly the right
amount of storage.

— It is your responsibility to clean up after you (free the dynamic
memory you allocated)

* The region of memory where dynamic allocation and
deallocation of memory can take place is called the
heap.

43

Recall Discussion on
Dynamic Memory Allocation

{

int * alloc_ints(size_t requested_count)
big_array o Cim -

big_array = (int *)calloc(requested_count, sizeof(int));

if (big_array == NULL) {
printf(“can’t allocate %d ints: %m\n”, requested_count)_
return NULL;

}

/* big_array[0] through big_array[requested_count-1] are
* valid and zeroed. */
return big_array; <«

Caveats with Dynamic Memory

[Dvname memony s ueet Butithes severalcavests |
=
=
R

45

Data Structures

* A data structure is a collection of one or more variables,
possibly of different types.

* An example of student record

46

Data Structures (cont.)

* A data structure is also a data type

* Accessing a field inside a data structure

47

Data Structures (cont.)

* Allocating a data structure instance

This is a new type now

* IMPORTANT:
— Never calculate the size of a data structure yourself. Rely on

the sizeof() function
— Example: Because of memory padding, the size of “struct
StudRecord” is 64 (instead of 62 as one might estimate)

48

The “typedef” Construct

Using typedef to P

improve readability...

49

Arrays

/* define an array of 10 chars */
char x[5] = {‘t’,’e’,’s’,’t’,’\0’};

/* access element 0, change 1its value */
X[0] = ‘T’; <«

/* pointer arithmetic to get elt 3 */
char elt3 = *(x+3); /* X[3] */ <«

/* x[0] evaluates to the first element; Symbol Addr Value
* x evaluates to the address of the
* first element, or &(x[0]) */ char x [0] 100 v
/* 0-indexed for Toop idiom */ char x [1] 101 €
#define COUNT 10 char x [2] 102 ‘g
char y[COUNT];
int 1i; char x [3] 103 t
for (i=0; i<COUNT; i++) { N
/* process y[i] */ charx[4] 104 \O

printf(“%c\n”, y[il);
} Q: What'’s the difference
between “char x[5]” and a
declaration like “char *x"? 5

o

How to Parse and Define C Types

int X; int; typedef int T;
int *x; /* pointer to int; */ typedef int *T;
int x[10]; /* array of 1ints; */ +typedef int T[10];
int *x[10]; /* array of pointers to int; */ typedef int *T[10];
int (*x)[10]; /* pointer to array of 1ints; typedef int (*T)[10];
X is
g/ﬁ\¥:::% an array of
pointers to _
int *x[10]; int Arrays are the primary
source of confusion. When
int (*X) [10]; X is in doubt, use extra parens to
’ a pointer to clarify the expression.
an array of
int

Function Types

void qgsort(void *base, size_t nmemb, size_t size,
int (*compar) (const void *, const void ¥*));

/* function matching this type: */
int cmp_function(const void *x, const void *y);

/* typedef defining this type: */
typedef int (*cmp_type) (const void *, const void *);

/* rewrite qsort prototype using our typedef */
void gsort(void *base, size_t nmemb, size_t size, cmp_type compar);

52

Row Major and Column Major

GOl 12 3 .4.56.7 89

Row major Column major
1 2 3] 1 4 7

A 8
7 9

5 6 2 5
8 9| |3 6

References

Linux/Unix Introduction
— http://www.ee.surrey.ac.uk/Teaching/Unix/

VI Editor
— https://www.cs.colostate.edu/helpdocs/vi.html

C Programming Tutorial
— http://www.cprogramming.com/tutorial/c-tutorial.html

Compiler, Assembler, Linker and Loader: A Brief Story
— http://www.tenouk.com/ModuleW.html

54

Backup and More

55

Sequential Memory Regions vs Multi-

dimensional Array

* Memory is a sequentially accessed using the address of
each byte/word

Memory

oo 012 3

0001

0003
0004

1004
1005

W —-O

1009
1010

56

Vector/Matrix and Array in C

* C has row-major storage for multiple dimensional array

— A[2,2] is followed by A[2,3]

* 3-dimensional array
— B[3][100][100]

WN—=O

char A[4][4]

0123

M emory

0

1

3

4

5

2

8

9

11

12

13

15

O = N W LN O =) WO

57

Store Array in Memory in Row Major or

Column Ma'!or
8 | 6 | 5 | 4 |
2 1 9 7
3 6 4 2

Row-Major (Row Wise Arrangement)

Row O Row 1 Row 2

Column-Major (Column Wise Arrangement)

-« > < > < > < >
Column O Column 1l Column 2 Column 3

For a Memory Region to Store Data for an Array

in Either Row or Col Major

3X4 . EEEEENEE
A _ 2 1 9 7
Row-Major (Row Wise Arrangement)

3 6 4 2

34 8 | a4 | 9 | 6
> 6 2 7 4

Column-Major (Column Wise Arrangement) 5 1 3 2

59

Compiler

A compiler is a computer program (or
set of programs) that translates text
written in a computer language (the

Lexical Analyzer (Scanner)

Syntax/Semantic
Analyzer (Parser)

Compiler front-end for language 1

Compiler front-end for langua

* A programming language is an artificial
language that can be used to control the
behavior of a machine, particularly a L [L.
computer. = =

. l |

e 2

Lexical Analyzer (Scanner)

Syntax/Semantic
Analyzer (Parser)

source language) into another computer
language (the target language). The
original sequence is usually called the
source code and the output called object
code. Commonly the output has a form
suitable for processing by other
programs (e.g., a linker), but it may be a /gg;m;gg,ecm\
human-readable text file.

Intermediate-code

Intermediate-code
Generator

Generator

Non-optimized Non-o i
-optimized
Intermediate Codt\ /ntermed:ate Code

Intermediate-code
Optimizer

Target-1

Code Generator Target-2

Code Generator

l Target-1 machine code l Target-2 machine code

= =

60

Debug and Performance Analysis

Debugging is a methodical process of finding and reducing the number of
bugs, or defects, in a computer program or a piece of electronic hardware
thus making it behave as expected.

In software engineering, performance analysis (a field of dynamic program
analysis) is the investigation of a program's behavior using information
gathered as the program runs, as opposed to static code analysis. The usual
goal of performance analysis is to determine which parts of a program to
optimize for speed or memory usage.

A profiler is a performance analysis tool that measures the behavior of a
program as it runs, particularly the frequency and duration of function calls.
The output is a stream of recorded events (a trace) or a statistical summary of
the events observed (a profile).

61

Optimization

* In computing, optimization is the process of modifying a system
to make some aspect of it work more efficiently or use less
resources. For instance, a computer program may be optimized
so that it executes more rapidly, or is capable of operating within
a reduced amount of memory storage, or draws less battery
power in a portable computer. The system may be a single
computer program, a collection of computers or even an entire
network such as the Internet.

(http: //en.wikipedia/org/wiki/Optimization_0/028computer_science63/029)

Object module structure

Header section

Machine code section
(a.k.a. text section)

Initialized data section

Symbol table section

Relocation information
section

A sample C program:

#include <stdio.h>

int a[l10]={0,1,2,3,4,5,6,7,8,9};
int b[10];

void main|()
{
int 1i;

static int k 3;

for(i = 0; i < 10; i++) {
printf ("$d\n",al[i]);
b[i] = k*a[1i];

}

Object module of the sample C program:

| |
Offset Contents Comment

Header section

0 124 number of bytes of Machine code section

4 44 number of bytes of initialized data section

8 40 number of bytes of Uninitialized data section (arrayb[])
(not part of this object module)

12 60 number of bytes of Symbol table section

16 44 number of bytes of Relocation information section

Machine code section (124 bytes)

20 X code for the top of the for loop (36 bytes)

56 X code for call to print£ () (22 bytes)

68 X code for the assignment statement (10 bytes)

88 X code for the bottom of the for loop (4 bytes)

92 X code for exiting main () (52 bytes)

Initialized data section (44 bytes)

144 0 beginning of array a[]

148 1

176 8

180 9 end of array a[] (40 bytes)

184 3 variable k (4 bytes)

Symbol table section (60 bytes)

188 X array a[] : offset O in Initialized data section (12 bytes)

200 X variable k : offset 40 in Initialized data section (10 bytes)

210 X arrayb[] : offset 0 in Uninitialized data section (12 bytes)

222 X main : offset O in Machine code section (12 bytes)

234 X printf : external, used at offset 56 of Machine code section (14 bytes)

Relocation information section (44 bytes)

248 X relocation information

Creation of load module

Object Module A

Header Section

Load Module

Machine Code
Section

Initialized data
Section

Header Section

Symbol table
Section

Machine Code

P

Section

Header Section

Machine Code
Section

Initialized data

Initialized data
Section

Symbol table
Section

Section

Object Module B

Symbol table
Section

Loading and memory mapping

—>

Header Section Code
Machine Code
Section initialized
Initialized data
Section | ____.-----] Static data
Symbol table uninitialized
Section

L

load module

(logical)
Code address
space of
program 2
Static data

Dynamic data

Dynamic data

S
.
s

Unused
logical
Unused address
logical e
address
(logical) address space
space of Stack
program 1
Stack
loadin h - OPERATING (logical) address
° g SYSTEM A ~N space of
memory program 3
mapping memory

PHYSICAL MEMORY

mapping

From source program to “placement” in
memory during execution

physical memory

code for print£ ()

source program

code for top of for loop

int a[10]={0,1,2,3,4,5,6,7,8,9};
int b[10];
code for call to print£ ()
void main() codeforb[i] = k*a[i]
{
int i;
staticintk = 3;

for(i=0;i<10;i++){
printf("%d\n",a[il);
b[i] = k*a[i]; array a[]
}*endfor*/
}*end main*/

arrayb[]
variable k

Dynamic memory allocat

Code

5

initialized
Static data

uninitialized

Code

n

Dynamic data

initialized
Static data

uninitialized

Unused
logical
address
space

Dynamic data

increment of
dynamic data

Stack

Unused
logical
address
space

by /4]

(logical) address
space of the
program

Stack

L/ 4

OPERATING
SYSTEM

PHYSICAL MEMORY
Before dynamic memory allocation

(logical) address
space of the
program

OPERATING
SYSTEM

PHYSICAL MEMORY
After dynamic memory allocation

Overview of memory management

* Stack-allocated memory

— When a function is called, memory is allocated for all of its
parameters and local variables.

— Each active function call has memory on the stack (with the

current function call on top)
OO

— When a function call terminates, O
g

the memory is deallocated (“freed up”)

* Ex: mainQ calls fO, g0
fO calls gO ..,()

g recursively calls gO
[

main()

70

Overview of memory management

* Heap-allocated memory

— This is used for persistent data, that must survive beyond the
lifetime of a function call
* global variables
* dynamically allocated memory — C statements can create

new heap data (similar to new in Java/C++)

— Heap memory is allocated in a more complex way than stack
memory

— Like stack-allocated memory, the underlying system
determines where to get more memory — the programmer
doesn’t have to search for free memory space!

71

Note: vO1d * denotes a generic pointer type

2ap memory

void *malloc(size_t size);

* Allocate a block of size bytes,
return a pointer to the block
(NuLL if unable to allocate block)

void *calloc(size_t num_elements, size_t element_size);
* Allocate a block of num_elements * element_size bytes,
initialize every byte to zero,
return pointer to the block

(NuLL if unable to allocate block)

72

Allocating new heap memory

void *realloc(void *ptr, size_t new_size);

* Given a previously allocated block starting at ptr,
— change the block size to new_s1ize,
— return pointer to resized block

* If block size is increased, contents of old block may be copied to a
completely different region

* In this case, the pointer returned will be different from the ptr
argument, and ptr will no longer point to a valid memory region

* IfptrisNuLL, real loc isidentical tomalloc

* Note: may need to cast return value of malloc/calloc/realloc:
char *p = (char *) malloc(BUFFER_SIZE);

73

Deallocating heap memory

void free(void *pointer);
® Given a pointer to previously allocated memory,
— put the region back in the heap of unallocated memory

* Note: easy to forget to free memory when no longer
needed...

— especially if you’re used to a language with “garbage
collection” like Java

— This is the source of the notorious “memory leak” problem

— Difficult to trace — the program will run fine for some time,
until suddenly there is no more memory!

74

Memory errors

Using memory that you have not initialized
Using memory that you do not own
Using more memory than you have allocated

Using faulty heap memory management

75

Using memory that you have not initialized

® Uninitialized memory read

* Uninitialized memory copy
— not necessarily critical — unless a memory read follows

void foo(int *pi) {

int j;

*p1 = J;

/¥ UMC: j 1s uninitialized, copied into *pi */
}
void bar() {

int 1=10;

foo(&1);

printf("1 = %d\n", 1);

/* UMR: Using i1, which is now junk value */

}

76

Using memory that you don’t own

* Null pointer read/write
* Zero page read/write

typedef struct node {
struct node* next;

int val;
} Node; What if head is NULL?

int findLastNodevalue(Node* head) {
while (head->next != NULL) { /* Expect NPR */
head = head->next;

}
return head->val; /* Expect ZPR */

}

77

Using memory that you don’t own

* |nvalid pointer read/write
— Pointer to memory that hasn’t been allocated to program

void genIPR() {
int *ipr = (int *) malloc(4 * sizeof(int));
int 1, J;

1 = *@pr - 1000); j = *(ipr + 1000); /* Expect IPR *

free(ipr);
}

void geniPw() {
int *ipw — (int *) ma11OC(5 w SizeOf(int));

*(ipw - 1000) = O0; *(ipw + 1000) = O0; /* Expect IPwW *

free(ipw);
}

78

Using memory that you don’t own

* Common error in 64-bit applications:
— 1nts are 4 bytes but pointers are 8 bytes

— If prototype of malloc() not provided, return value will be cast
to a 4-byte int

Four bytes will be lopped off this value —

resulting in an invalid pointer value
/*Forgot to #include <malloc.h>, <stdlib.h>
in a 64-bit applicatjon*/
void 1llegalpPointer() /{
int *pi1 = (int*) malloc(4 * sizeof(int));
p1[0] = 10; /* Expect IPwW */
printf("Array value = %d\n", pi1[0]); /* Expect IPR */

79

Using memory that you don’t own

* Free memory read/write
— Access of memory that has been freed earlier

int* init_array(int *ptr, int new_size) {
ptr = (Ant*) realloc(ptr, new_size*sizeof(int));

memset(ptr, 0, new_size*sizeof(int));

return ptr;
1 Remember: real 1oc may move entire block
int* fill_fibonacci(int *fib, int size) {

int 1;

/* oops, forgot: fib = */ init_array(fib, size);

/* fib[0] = 0; */ fib[1l] = 1;

for (i=2; i<size; i++)

fib[1] = fib[i1-1] + fib[i-2]; What if array is moved to
return fib; new location?

80

Using memory that you don’t own

* Beyond stack read/write

char *append(const char* sl1l, const char *s2) {
const 1nt MAXSIZE = 128;

char result[128]; resultisa local array name —

int 1=0, j=0; stack memory allocated

for (j=0; 1<MAXSIZE-1 && j<strlen(sl); i++,J++) {
result[1] = s1[j];

}

for (j=0; 1<MAXSIZE-1 && j<strlen(s2); i++,j++) {
result[i] = s2[j];

}

result[++1] = "\0';

return result; Function returns pointer to stack
1 memory —won’t be valid after

function returns

81

Using memory that you haven’t allocated

* Array bound read/write

void genABRandABW() {
const char *name = “Safety Critical";
char *str = (char*) malloc(10);
strncpy(str, name, 10);
str[11] = "\O0'; /* Expect ABW */
printf("%s\n", str); /* Expect ABR */

82

Faulty heap management

* Memory leak

int *pi;
void foo() {
pi = (int*) malloc(8*sizeof(int));
/* Allocate memory for pi */
/* 0oops, leaked the old memory pointed to by pi

free(pi); /* foo() is done with pi, so free it */
}
void main() {

pi = (int*) malloc(4*sizeof(int));

/* Expect MLK: foo leaks it */

foo();
}

."
o~ /

83

Faulty heap management

* Potential memory leak
— no pointer to the beginning of a block

— not necessarily critical — block beginning may still be reachable via pointer
arithmetic

int *plk = NULL;
void genPLK() {
plk = (int *) malloc(2 * sizeof(int));
/* Expect PLK as pointer variable i1s incremented
past beginning of block */
plk++;

84

Faulty heap management

* Freeing non-heap memory

* Freeing unallocated memory
void genFNH() {
int fnh = 0;
free(&fnh); /* Expect FNH: freeing stack memory */
}
void genFuM() {
int *fum = (int *) malloc(4 * sizeof(int));

free(fum+l); /* Expect FUM: fum+l points to middle
of a block */

free(fum);

free(fum); /* Expect FUM: freeing already freed
memory */

85

